Temporal Logic and Model Checking

Fraser Brown and Ian Dardik

Fall 2024

0.1 Motivating Example

Previously, we introduced Hoare Logic for reasoning about partial correctness of a program.
Hoare Logic is a powerful formalism for reasoning about sequential programs, but fall short
for concurrent programs. For example, consider the following example (due to Lamport [?]):

Program 1 Program 2
{true} {true}
z:=x+1 zi=z+y+1
{z =2+ 1} Ti=z—y
{z =2 +1}

Both programs above satisfy the exact same Hoare triples; moreover, they are semantically
equivalent. However, consider the result of running each program above in parallel with the
following program:

Program 3
yi=y—"7

When Program 1 and 3 are run in parallel, the postcondition is unaffected. However, when
program 2 and 3 are run in parallel, the correct postcondition changes to {z € {z + 1,z + 8}}.
The key point of this example is that Hoare style pre- and postconditions are insufficient for
reasoning about concurrent programs; it is necessary to consider what happens during the
program execution. Next, we will introduce linear temporal logic to address this concern.

0.2 Linear Temporal Logic (LTL)

Temporal logics are types of logics that reason about program state over time, and hence are
able to specify correctness conditions during program execution. There are many different
temporal logic languages, for instance Linear Temporal Logic (LTL) [?], Computation Tree
Logic, and the p-Calculus. We will exclusively focus on LTL in this text, due to its intuitiveness
and popularity.

Linear time logics, including LTL, specify properties over behaviors. Behaviors are similar
to program traces (which were introduced in the textbook), except we define behaviors to
be inifinite sequences of program state (whereas traces were finite sequences). For example,
consider the following behavior:

[z — 0][z — 1][z — 2]...

This program behavior satisfies the invariant z > 0. We can express this in LTL using the
syntax G(z > 0). The G temporal operator is pronounced “always” or “globally” and means
that the enclosed formula is true at all time steps. The behavior also satisfies the LTL formula
X(z = 1), which means that z = 1 in the second step of the behavior and the X operator is
pronounced “next”. The behavior also satisfies the LTL formula (z = 0) A XX(z = 2). The final
operator we will discuss is F which is pronounced “eventually”. For example, the behavior
above satisfies the formula F(z = 1) because the behavior eventually satisfies z = 1 (at the
second time step).
The syntax for an LTL formula ¢ is as follows:

¢ :=non-temporal formula | ¢1 A ¢2 | ¢’ | G¢' | Fo' | X¢'

We now define the semantics of LTL in terms of whether a behavior o satisfies a given LTL
formula. We will use o[i] to denote the ith state in the behavior, and o[i...| to denote the
behavior o[i]o[i + 1]...

o=y iff o[0] = ¢ (where 1) is a non-temporal formula)
cEAY iffc =E¢and o =0

oE—¢ iff o = ¢

o =Go iffVi e No[i...] = ¢

o E=F¢ iff 3o e Nyo[i...] E ¢

o = Xo iffo[l...]=¢

LTL allows us to specify partial correctness properties, e.g. invariants, that are familiar to
us from Hoare Logic. Such properties are called safety properties; intuitively, safety properties
specify that something bad does not happen. However, LTL also allows us to specify an ad-
ditional class of properties called liveness properties. Intuitively, liveness properties specify that
something good eventually happens, and allow us to express properties such as termination
(full correctness). For example, if the end of a program occurs when the program counter is at
location END, then we can specify termination with the formula F(pc = END). In general, all
linear temporal properties are the intersection of a safety and a liveness property [?].

In the LTL syntax, we have defined three temporal operators: G, F, and X. However, LTL
can be equally as expressive with only two of the three operators because G can be defined in
terms of F and vice versa. For example, given a temporal logic language that defines G but
not F, we could desguar a desired formula F¢ to —G(—¢). However, neither G nor F can be
defined in terms of X and vice versa.

There are many LTL patterns that are commonly used. For example, ¢ happens infinitely
often is specified as GF¢. Additionally, stability is specified as FG¢. As a final example, ¢ leads
to v is specified as G(¢ = F¢), which means that whenever ¢ happens, ¢ must eventually
follow.

0.3 Model Checking

0.3.1 Introduction

The semantics above define when a particular behavior satisfies an LTL property. More im-
portantly, however, we are interested to know when an entire program M satisfies a property,
written as M | P for some LTL formula P. To define property satisfaction, we will use the
semantics operator [.] that denotes the set of all behaviors of a given program or formula. We
define [M] to be the set of every behavior of M, given by the usual semantics of our program-
ming languages. For LTL formulas, we define [P] = {0 | o = P}. We now define M = P to be
exactly when [M] < [P], i.e. when every behavior of M satisfies P. In the case that M |= P,
we say that the program M satisfies the property P, or alternatively M is a model of P.

Model Checking is the act of using an automated approach to check (and prove) whether a
program satisfies a given property. In general, the model checking problem is undecidable, due
to Rice’s Theorem. However, in the 1980’s, Ed Clarke, Allen Emerson, and (separately) Joseph
Sifakis showed that model checking is decidable for finite-state programs and specifications.
Since its inception, model checking has flourished into an important and active research area
in computer science.

The main challenge of model checking (finite state systems) is known as the state explo-
sion problem for parallel systems. This problem refers to the fact that the state space of the
overall system increases exponentially with the number of parallel processes. The state explo-
sion problem makes it infeasible to model check most complicated programs, although model

2

checking for programs is an active area of research. More often, however, model checking is
applied to prove the correctness of a formal specification of a program or protocol, rather than
the implementation itself.

Defining and verifying formal specifications is a form of lightweight formal methods. The
idea is to apply verification at a higher level of abstraction than the program itself. One of
the key advantages to lightweight formal methods is that it makes model checking feasible
in many cases. A disadvantage, however, is that model checking proves correctness of the
specification, and not the actual implementation. Although verifying a specification-rather
than the implementation-may seem to defeat the very purpose of verification, it has many
practical advantages for software development. For instance, an engineer can ensure that a
complicated algorithm, such as a distributed or concurrent algorithm, is bug-free before even
starting to implement it in code. Lghtweight formal methods has enjoyed many success stories
across several domains, including distributed systems, operating systems, and security.

0.3.2 Running Example: ConcurrentAdd

Suppose we have a concurrent program where several processes read and write to the same
shared variable . We want each process’s source code to look approximately like:

modifications to local state variables

r:=2+6

However, it is extremely important that « never equals 555; if this is the case, the entire system
will have a meltdown and explode. Our goal, as the engineer tasked to write the code, is to
make sure the code is correct, i.e. the system satisfies the invariant G(z # 555). However, there
is a lot of code to write which makes verification tough. Therefore, we will use lightweight
formal methods and create a formal specification of the tough, concurrent part of the code,
and only prove this part correct. Once we have proved the formal specification to be correct,
we can write the code to implement the algorithm. In the following section, we will specify
the algorithm in the TLA* formal specification language.

0.3.3 Specifying ConcurrentAdd in TLA*

In this section we will introduce the TLA* formal specification language and use it to encode
the running example. The TLA* language allows us to specify our system as a symbolic transi-
tion system. A symbolic transition system is a tuple (Init, Next), where Init is the initial predicate
that describes the set of initial states, and Nezt is the transition relation predicate that describes
the transitions that the system can make. It is easiest to understand TLA" and symbolic transi-
tions systems through and example, so we will proceed to model the ConcurrentAdd system
in TLA*. Using the principle of lightweight formal methods, we will only specify the tough,
concurrent parts of the code. We show the TLA* specification in Fig. 1.

The specification begins by declaring a constant Proc, also known as a parameter to the
system. Proc is the set of processes in the system; since the specification should work for any
number of processes, we let Proc be given. A system—such as ConcurrentAdd-that declares
parameters is also called a parameterized system. For now, it is convenient to think of Proc as
the set of two process, e.g. Proc = {p1, p2}.

The specification also declares two state variables z and memory. The variable z repre-
sents the global shared variable that each process accesses, while memory represents the local
memory for each process. In the initial state of the system, = as well as the local memory of
each process is set to 0, as specified by the initial state predicate Init. The transition relation,

CONSTANT Proc
VARIABLES z, memory

Init =
Az =0
A memory = [p € Proc — 0]

A

Next =
dp € Proc:

MODULE ConcurrentAdd

Read(p) £
A memory’ = [memory EXCEPT ![p] = z]
A UNCHANGED x

Write(p) =
Az’ = memory|p]
AN UNCHANGED memory

Safety = [O(z # 555)

v Read(p)
v Inc(p)
v Write(p)

A

Inc(p) =
A memory’ = [memory EXCEPT ![p] = memory[p] + 6]
A UNCHANGED x

Figure 1: TLA* specification for the ConcurrentAdd example

defined by Neut, is the disjunction of three possible actions that a processes can take: Read,
Inc, and Write. In each action, primed state variables (e.g. z) represent the value of a variable
in the next state, while unprimed variables (e.g. z) represent the current value of a variable.
An example behavior of this system (with two processes) is:

pl'_)07p2'_)0)

z — 0, memory — 1]
p1 = 6,p2 — 0]],
I
1

x +— 0, memory —

x +— 6, memory — |p1 — 6,p2 — 0

)

[
[
[
[

— /o

x +— 6, memory — |p1 — 6, p2 — 6]],

This behavior corresponds to the sequence of actions: Inc(p1), Write(p1), Read(pz),

The key safety property is also encoded in the specification as Safety. In TLA*, the (]
operator is the G temporal operator introduced above. Therefore, Safety defines an invariant
that says = will never equal 555.

0.3.4 Explicit-State Model Checking

Our goal is to verify that the TLA™ specification satisfies its key safety property Safety. In this
section, we will explore a verification technique called explicit-state model checking.

Explicit-state model checking is a style of model checking that enumerates every reachable
state in the underlying transition system. At each state we visit, we check whether the invariant
x # 555 holds. If the invariant does not hold, then model checking reports a safety violation
along with a violating behavior. In the case that the invariant holds, we continue to enumerate
more states and build the transition system. If no error is detected by the time the entire system
is built, then model checking succeeds and the system is verified.

Unfortunately, explicit-state model checking cannot prove that ConcurrentAdd satisfies
Safety. ConcurrentAdd is an infinite-state transition system, and hence the explicit-state ap-
proach will never terminate. Furthermore, the explicit-state approach is not sufficient for prov-
ing safety for parameterized systems, such as ConcurrentAdd. Explicit-state model checking

4

can show that finite instances of a system are safe (e.g. for Proc = {p1, p2}), but cannot show
that the entire family of transition systems (for arbitrary choice of Proc) for ConcurrentAdd is
safe. Many real-world specifications, e.g. distributed protocols, are specified as infinite-state
parameterized systems. We therefore introduce a new technique that can be used to prove
safety for such systems.

0.3.5 The Inductive Invariant Approach

To prove safety for systems that are infinite-state and/or parameterized, we must use the in-
ductive invariant approach. An inductive invariant IndInv is a formula that has the following
two properties:

Init = IndInv (@)
IndInv A Next = IndInv’ (2)

Property (1) shows that every initial state satisfies IndInv, while (2) shows that IndInv is closed
with respect to the transition relation Nezt. Together, these two properties imply that IndInv
is an overapproximation of the set of states in the transition system. Inductive invariants that
imply safety, i.e. IndInv = Safety, are powerful due to the following proof rule:

Init = IndInv IndInv A Next = IndInv’ IndInv = Safety
Spec = [JSafety

INDINVSAFE

Where Spec is the specification with initial state predicate Init and transition relation Nezt.
This rule shows that inductive invariants can be used to prove that a system satisfies a given
invariant. The inductive invariant method is especially powerful because it can be used to
show safety for infinite-state and parameterized systems.

Are you able to find an inductive invariant that proves ConcurrentAdd is correct? In gen-
eral, discovering inductive invariants is a tough problem and an active area of research; how-
ever, it is feasible to write an inductive invariant for ConcurrentAdd that is relatively concise
and elegant.

	Motivating Example
	Linear Temporal Logic (LTL)
	Model Checking
	Introduction
	Running Example: ConcurrentAdd
	Specifying ConcurrentAdd in TLA+
	Explicit-State Model Checking
	The Inductive Invariant Approach

