Recitation 4: Dataflow Analysis Complexity and Correctness

The termination of the worklist algorithm for dataflow analysis relies on two conditions: the dataflow lattice having finite height and the flow functions being monotonic. A flow function f is monotonic iff $\sigma_1 \sqsubseteq \sigma_2$ implies $f(\sigma_1) \sqsubseteq f(\sigma_2)$ for all σ_1, σ_2 .

The correctness of a dataflow analysis depends on the local soundness of its flow functions. For every program configuration c_i in the trace of a program P, a flow function f is locally sound iff $(P \vdash c_i \leadsto c_{i+1})$ and $\alpha(c_i) \sqsubseteq \sigma_{n_i}$ and $f[P[n_i]](\sigma_{n_i}) = \sigma_{n_{i+1}}) \Rightarrow \alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$.

Exercises

These exercises prove properties of parity analysis. Assume the following:

- A lattice (L, \sqsubseteq) where $L = \{\top, O, V, \bot\}$ and $\bot \sqsubseteq \{O, V\} \sqsubseteq \top, O \sqcup V = \top$
- An abstraction function $\alpha : \mathbb{Z} \mapsto L$, defined as follows:

$$\alpha(n) = \begin{cases} V \text{ when } n \text{ is an even integer } (n \in \{2k : k \in \mathbb{Z}\}) \\ O \text{ when } n \text{ is an odd integer } (n \in \{2k + 1 : k \in \mathbb{Z}\}) \end{cases}$$

- a flow function f_P
- initial dataflow analysis assumptions σ_0 , in this case σ_0 maps all variables' initial states to \top .
- 1. Disprove the local soundness of the incorrect flow function $f_P[\![a:=b]\!](\sigma) = \sigma[a\mapsto O]$ Proof: Case $f_P[\![a:=2]\!](\sigma_{n_i})$.

```
Assume c_i = E_i, n_i and \alpha(E_i) \sqsubseteq \sigma_{n_i} \sigma_{n_{i+1}} = f_P[\![a := 2]\!](\sigma_{n_i}) = \sigma_{n_i}[a \mapsto O] (by definition) c_{i+1} = E_i[a \mapsto 2], n_i + 1 (n_{i+1} = n_i + 1 \text{ by rule } \textit{step-assign}) \alpha(c_{i+1}) = \alpha(E_i[a \mapsto 2]) = \alpha(E_i)[a \mapsto \alpha_s(2)] = \alpha(E_i)[a \mapsto V] (by definition of \alpha and \alpha_s.)
```

Notice that $\alpha(E_i) \subseteq \sigma_{n_i}$ by assumption, but $\alpha(c_{i+1}) = \alpha(E_i)[a \mapsto V] \not \equiv \sigma_{n_i}[a \mapsto O]$ because \sqsubseteq is defined piecewise and $V \not \equiv_s O$. Therefore $\alpha(c_i) \sqsubseteq \sigma_{n_i} \land f_P[\![P[n_i]]\!](\sigma_{n_i}) = \sigma_{n_{i+1}} \not \Rightarrow \alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}} \quad \Box$

For the next questions, use the following (correct) flow function for parity analysis:

$$f_{P}\llbracket a := b * c \rrbracket(\sigma) = \begin{cases} \sigma[a \mapsto \bot] & \text{if } \sigma(b) = \bot \vee \sigma(c) = \bot \\ \sigma[a \mapsto O] & \text{if } \sigma(b) = O \wedge \sigma(c) = O \\ \sigma[a \mapsto V] & \text{if } (\sigma(b) = V \wedge \sigma(c) \neq \bot) \vee (\sigma(b) \neq \bot \wedge \sigma(c) = V) \\ \sigma[a \mapsto \top] & \text{if } (\sigma(b) = \top \wedge \sigma(c) \notin \{V, \bot\}) \vee (\sigma(b) \notin \{V, \bot\} \wedge \sigma(c) = \top) \end{cases}$$

2. Prove the monotonicity of $f_P[\![a:=b*c]\!](\sigma)$ for the case $(\sigma(b)=V\land\sigma(c)\neq\bot)\lor(\sigma(b)\neq\bot\land\sigma(c)=V)$ Proof of monotonicity of the above flow function

Assume
$$\sigma_1 \sqsubseteq \sigma_2$$
 $\sigma_1(b) \sqsubseteq_s \sigma_2(b)$ and $\sigma_1(c) \sqsubseteq_s \sigma_2(c)$ (Since \sqsubseteq is defined point-wise)

$$Case \ (\sigma_1(b) = V \land \sigma_1(c) \neq \bot) \lor (\sigma_1(b) \neq \bot \land \sigma_1(c) = V)$$

$$Since \ \sigma_1(b) \sqsubseteq_s \sigma_2(b) \ \text{and} \ \sigma_1(c) \sqsubseteq_s \sigma_2(c) :$$

$$(\sigma_2(b) \in \{V, \top\} \land \sigma_2(c) \neq \bot) \lor (\sigma_2(c) \in \{V, \top\} \land \sigma_2(b) \neq \bot)$$

$$\therefore f_P[[a := b * c]](\sigma_2) = \begin{cases} \sigma_2[a \mapsto V] & \text{if } (\sigma_2(b) = V \land \sigma_2(c) \neq \bot) \lor \\ (\sigma_2(c) = V \land \sigma_2(b) \neq \bot) \end{cases}$$

$$\sigma_2[a \mapsto \top] \quad \text{otherwise}$$

Since \sqsubseteq is defined point-wise, $V \sqsubseteq_s V$, $V \sqsubseteq_s \top$, and $\sigma_1 \sqsubseteq \sigma_2$, we get $f_P[a := b * c](\sigma_1) = \sigma_1[a \mapsto V] \sqsubseteq f_P[a := b * c](\sigma_2)$

3. Prove the local soundness of $f_P\llbracket a:=b*c \rrbracket(\sigma)$ Now let's try showing that the above function is locally sound. Remember, a flow function f is locally sound iff $(P\vdash c_i\leadsto c_{i+1})$ and $\alpha(c_i)\sqsubseteq \sigma_{n_i}$ and $f\llbracket P[n_i]\rrbracket(\sigma_{n_i})=\sigma_{n_{i+1}})\Rightarrow \alpha(c_{i+1})\sqsubseteq \sigma_{n_{i+1}}$

Proof of local soundness of the above flow function:

Assume $f_P c_i = E_i, n_i$ and $\alpha(E_i) \sqsubseteq \sigma_{n_i}$

Then $c_{i+1} = E_i[a \mapsto m], n_i + 1$ for some m such that $E_i(b) * E_i(c) = m$ since $n_{i+1} = n_i + 1$ by rule step-arith

Now $\alpha(c_{i+1}) = \alpha(E_i[a \mapsto m]) = \alpha(E_i)[a \mapsto \alpha_s(m)]$ by the definitions of α and α_s

Case
$$m \in \{2k : k \in \mathbb{Z}\}$$

Then
$$\alpha_s(m) = V$$
 and $E_i(b)$ is even or $E_i(c)$ is even

Thus
$$(\alpha_s(E_i(b)) = V \land \alpha_s(E_i(c)) \neq \bot) \lor (\alpha_s(E_i(c)) = V \land \alpha_s(E_i(b)) \neq \bot)$$

Since
$$\alpha(E_i) \sqsubseteq \sigma_{n_i}$$
, we get

$$(\alpha_s(E_i(b)) = V \sqsubseteq_s \sigma_{n_i}(b) \land \alpha_s(E_i(c)) \neq \bot \sqsubseteq_s \sigma_{n_i}(c)) \lor (\alpha_s(E_i(c)) = V \sqsubseteq_s \sigma_{n_i}(c) \land \alpha_s(E_i(b)) \neq \bot \sqsubseteq_s \sigma_{n_i}(b))$$

From this we get $(\sigma_{n_i}(b) \in \{V, \top\} \land \sigma_{n_i}(c) \neq \bot) \lor (\sigma_{n_i}(c) \in \{V, \top\} \land \sigma_{n_i}(b) \neq \bot)$

$$\therefore \sigma_{n_{i+1}} = f_P[\![a := b * c]\!](\sigma_{n_i}) = \begin{cases} \sigma_{n_i}[a \mapsto V] & \text{if } (\sigma_{n_i}(b) = V \land \sigma_{n_i}(c) \neq \bot) \lor \\ & (\sigma_{n_i}(c) = V \land \sigma_{n_i}(b) \neq \bot) \end{cases}$$
$$\sigma_{n_i}[a \mapsto \top] \quad \text{otherwise}$$

Since
$$\sqsubseteq$$
 is defined point-wise, $\alpha(E_i) \sqsubseteq \sigma_{n_i}$, $V \sqsubseteq_s V$, and $V \sqsubseteq_s \top$, we get $\alpha(c_{i+1}) = \alpha(E_i)[a \mapsto V] \sqsubseteq \sigma_{n_{i+1}}$

Case
$$m \in \{2k+1 : k \in \mathbb{Z}\}$$

[Similar to the previous case and left up to the reader to prove as an exercise]