
Program Analysis Recitation 2 September 5, 2025

Operational Semantics

Operational semantics provides a way of understanding what a program means by mimicking, at a high level,
the operation of a computer executing the program. Operational semantics falls under two broad classes:
big-step operational semantics, which specifies the entire operation of a given expression or statement; and
small-step operational semantics, which specifies the operation of the program one step at a time. Both are
powerful tools for verifying the correctness and other desired properties of programs.

Exercises

1. Use the big-step operational semantics rules for the WHILE language to write a well-formed derivation
with ⟨E, y := 3; if y > 1 then z := y else z := 2⟩ ⇓ E[y 7→ 3; z 7→ 3] as its conclusion. Make sure to
indicate which rule you used to prove each premise or conclusion.



2. For homework 2, you will be partially proving that if a statement terminates, then the big- and small-
step semantics for WHILE will obtain equivalent results; i.e.,

∀S ∈ Stmt.∀E,E′ ∈ Var 7→ Z.⟨E,S⟩ →∗ ⟨E′, skip⟩ ⇐⇒ ⟨E,S⟩ ⇓ E′

You will prove this by induction on the structure of derivations for each direction of ⇐⇒ .

For your homework proof, you are only required to show

• The base case(s).

• The inductive case for assign and for let using the semantics developed in question 1 of the
homework.

You may assume that this property holds for arithmetic and boolean expressions, i.e., you may assume
the following hold:

∀a ∈ AExp.∀n ∈ Z.⟨E, a⟩ →∗
a n ⇐⇒ ⟨E, a⟩ ⇓a n (1)

∀P ∈ BExp.∀b ∈ {true, false}.⟨E,P ⟩ →∗
b b ⇐⇒ ⟨E,P ⟩ ⇓b b (2)

You may also assume the small-step if congruence of ⟨E,S⟩ →∗ ⟨E′, S′⟩:

⟨E,P ⟩ →∗
b P ′

⟨E, if P then S1 else S2⟩ →∗ ⟨E, if P ′ then S1 else S2⟩ (3)

For this exercise, you will prove the following representative inductive case:

∀S ∈ Stmt.∀E,E′ ∈ Var 7→ Z.⟨E, ifP then S1 else S2⟩ ⇓ E′ ⇐⇒ ⟨E, ifP then S1 else S2⟩ →∗ ⟨E′, skip⟩


