Program Analysis Recitation 2 September 5, 2025

Operational Semantics

Operational semantics provides a way of understanding what a program means by mimicking, at a high level,
the operation of a computer executing the program. Operational semantics falls under two broad classes:
big-step operational semantics, which specifies the entire operation of a given expression or statement; and
small-step operational semantics, which specifies the operation of the program one step at a time. Both are
powerful tools for verifying the correctness and other desired properties of programs.

Exercises
1. Use the big-step operational semantics rules for the WHILE language to write a well-formed derivation

with (E,y := 3;if y > 1 then z := y else z := 2) || E[y — 3;z — 3] as its conclusion. Make sure to
indicate which rule you used to prove each premise or conclusion.
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2. For homework 2, you will be partially proving that if a statement terminates, then the big- and small-
step semantics for WHILE will obtain equivalent results; i.e.,

VS € Stmt.VE, E' € Var — Z.(E,S) —* (F', skip) < (E,S) | E’

You will prove this by induction on the structure of derivations for each direction of <.

For your homework proof, you are only required to show

e The base case(s).

¢ The inductive case for align and for let using the semantics developed in question 1 of the home-
work.

You may assume that this property holds for arithmetic and boolean expressions, i.e., you may assume
the following hold:
Va € AExp.Vn € Z.(E,a) =, n <= (E,a) {4 n (1)

VP € BExp.Vb € {true,false}.(E,P) »; b < (E,P) ;b (2
You may also assume the small-step if congruence of (E, S) —* (E’, S’):

(E,P) —; P’
(E,if P then S; else Sp) —* (E,if P’ then S) else Ss) 3)

For this exercise, you will prove the following representative inductive case:

VS € Stmt.VE, E' € Var +— Z.(E,if P then S; else Sy) || E' <= (F,if PthenS) else S3) —* (F’, skip)

We prove each direction of < separately. We proceed by induction on derivations of program evalua-
tion. We define a partial order over derivations D; < D if D, is a sub-derivation of D (thatis D; isa
premise of D).

Proof obligation for =: We will first prove that (E,S) | E' = (E,S) —* (E’, skip). In other words, if
there exists a derivation D :: (E,S) |} E’, we want to show that there exists a derivation of (E, S) —*
(E', skip).

Inductive Hypothesis: Our inductive hypothesisis thatif D’ :: (Eq, S") |} Es (for aribtrary D', S’, Ey, Es)
is a sub-derivation of D, then there also exists a derivation of (Ey,S’) —* (FE9, skip). In other words,
given D’ exists, we can assume that (E1,5") | E; = (Ey,5") —* (Es, skip).

Base Case (skip): Let D :: (E, skip) |} E’. By inversion, we know that D must end with the big-skip rule,
which gives us £ = E’. And, by the multi-reflexive rule for —*, we have that (E, skip) —* (E, skip).
Since E and E’ are equal, we have proved that (F, skip) |} E' = (E, skip) —* (E’, skip) as required.

Inductive Case (if): In this case, we have D :: (E,if P then S; else So) || E’. We want to show that
there exists a derivation for (E, if P then S; else Sa) —* (E’, skip). By inversion, there are two cases
for the previous rule applied to D, big-if-true and big-if-false.

Case 1 big-if-true: We have:

(E,P) | true D' (E,S1) | E’
D := (E,if P then S; else S3) |} F’

big-if-true
g-if- )

Using the induction hypothesis on sub-derivation D’, we also have:

(E,S1) —* (F', skip) (5)



By (2) we have that (E, P) |, true = (E, P) —} true, and using this result with (3) we have:

(E,P) —; true
(E,if P then S; else S3) —* (E,if true then S; else Sa) (6)

By the small-if-true rule, we also have:
(E,if true then S else S3) — (F, S1) (7)
By (5), (7), and the multi-inductive rule of —*, we can then derive:

(E,if true then Sy else So) — (E,S1) (E,S1) —* (E',skip)
(E,if true then S; else Sy) —* (E', skip) (8)

By (6), (8), and the transitive property of —*, we are finally able to derive:
(E,if P then S; else Sy) —* (F', skip)

Case 2 big-if-false: Similar to above, using corresponding rules for the false case.
Thus, we have shown that (F, if P then S; else So) | E' = (E,if P then S else So) —* (E', skip).

Proof obligation for <: We will now prove that (E,S) | E' < (E,S) —* (E’, skip). In other words,
if there exists a derivation D :: (E,S) —* (F’, skip), we want to show that there exists a derivation of
(E,S) | E'.

Inductive Hypothesis: Our inductive hypothesis is that if D" :: (Ey,S’) —* (E», skip) (for aribtrary
D', S’ Ey, Es) is a sub-derivation of D, then there also exists a derivation of (Ey,S5") || F>. In other
words, given D’ exists, we can assume that (E1,S’) =* (Ey, skip) = (F1,5") | E».

Base Case (skip): Let D :: (E,skip) —* (E’,skip). By inversion, we know that no small-step rule
for skip exists. This derivation is only possible using the multi-reflexive rule for —*, which gives us
E = E'. And, by the big-step rule, we have that (F, skip) || E. Since E and E’ are equal, we have
proved that (E, skip) —* (F’, skip) = (E, skip) || E’ as required.

Inductive Case (if): In this case, we have D :: (E,if P then S; else Sp) —* (E’, skip). We want to
show that there exists a derivation for (E,if P then S; else S3) | E’ By inversion of rules we know
that this derivation must use transitive applications of the multi-inductive rule, eq. (3), and either the
small-if-true or small-if-false rules. We can discuss the true and false cases separately.

Case 1: By inversion and use of transitive applications of —*, the derivation for the true case will be of
the form:

Dp :: (E, P) —7 true Dg, = (E,S1) —* (E’, skip)
(if P then S else S;) —* (F,if true then Sj else S;) (F,if true then S else Sy) —* (F’, skip)
(E,if P then S else Sy) —* (E', skip)

)
Using Dp from (9) and the result from (2), we have that:

(E, P) |y true (10)

Using Dg, from (9) and the induction hypothesis, we have that:

(E,S1) | E (11)



Using (10), (11), and the big-step rule, we have the required derivation:

(E,P) |} true (E,S1) || E/
(E,if P then S; else S3) |} F’

big-if-true

Case 2: The false case is similar to above, substituting S for S.
Thus, we have shown that (E, if P then S; else Sy) —* (E’, skip) = (E,if P then S; else S3) | F'.



