
Find Bugs in
Concurrent Programs

Ao (Leo) Li

August 2025

aoli@cs.cmu.edu

1

mailto:aoli@cs.cmu.edu
mailto:aoli@cs.cmu.edu

Who am I
• Ao (Leo) Li

• PhD candidate at S3D/SCS advised by Rohan
Padhye and Vyas Sekar

• Make complex concurrent and distributed systems
easier to debug and test. I focus on both
algorithmic ef�ciency and real-world practicality.

Ao (Leo) Li

2

Will this program crash?
static int balance = 100;

void withdraw(int amount) {
if (balance >= amount) {

balance -= amount;
}

}

void main() {
Thread t1 = new Thread(() -> withdraw(100));
Thread t2 = new Thread(() -> withdraw(100));
t1.start();
t2.start();
t1.join();
t2.join();
assert balance >= 0; // can this assert fail?

}

It depends because this is a concurrent program.
3

What is Concurrency?
• Multiple components (threads, processes, machines) executing

simultaneously.

• Components interact through shared memory, message passing, etc.

• Non-determinism: the exact order of interactions is unpredictable.

• Hard to debug and test.

4

Concurrency Bugs and Race Conditions
• De�nition: some undesirable behavior that only manifests under certain

orderings of component interactions.

• Data Race
1

• Atomicity Violation

• Order Violation

• Deadlock

• ...

1: Not everyone agrees that all data races are race conditions. See John Regehr's post: Race Condition vs. Data Race

5

https://blog.regehr.org/archives/490
https://blog.regehr.org/archives/490

Data Race (in Java)
A data race occurs when two threads access the same memory location
concurrently, and at least one of the accesses is a write.

a = 0;
b = 0;

Thread 1:

a = 1;
r1 = b;

Thread 2:

b = 1;
r2 = a;

Possible outcomes: (r1, r2) = (1, 0), (0, 1), (0, 0), and (1, 1).

6

Why data races can be problematic?
Each core writes to its local cache/buffer before updating the main memory.

One thread may not see the most recent writes from another thread.

Figure from: .https://research.swtch.com/hwmm

Bonus: will data race happen on a single core machine?

Answer: Yes! https://aoli.al/blogs/data-race/

7

https://research.swtch.com/hwmm
https://research.swtch.com/hwmm
https://aoli.al/blogs/data-race/
https://aoli.al/blogs/data-race/

Why data races can be problematic? (Cont'd)

8

How to Detect Data Races?
Thread 1:

memory_write_operation(Thread 1, &balance);1
balance = 0;2

Thread 2:

memory_read_operation(Thread 2, &balance);1
if (balance > 100) {...}2

• Get context for the memory location being accessed.

• Compare current thread's vector clock with last access.

▪ Vector clock is a data structure to understand if two operations are ordered
or concurrent.

• If there's a previous access from a different thread AND the vector clock show
they are not ordered AND at least one is a write.

▪ Report a data race

Time, Clocks, and the Ordering of Events in a Distributed System by Leslie Lamport: https://lamport.azurewebsites.net/pubs/time-clocks.pdf 9

https://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://lamport.azurewebsites.net/pubs/time-clocks.pdf

How to Detect Data Races? (Cont'd)
• Static Solutions

▪ OxCaml

▪ Rust Borrow Checker

▪ Infer (RacerD)

• Dynamic Solutions

▪ ThreadSanitizer (TSan)

▪ Go Race Detector

▪ Helgrind (Valgrind)

10

How to Write Data Race Free Code?
• Use (safe) Rust

• Use atomic operations.

*This is simpli�ed syntax.

• Use locks.

static AtomicInteger balance = 100;

lock.lock();
if (balance >= amount) {...}
lock.unlock();

11

Data Race (Revisit)
a = 0;
b = 0;

Thread 1:

r1 = a;
r2 = a;
if (r1 == r2) {
b = 2;

}

Thread 2:

r3 = b;
a = r3

Will r1 = r2 = r3 = 2 be possible?

Yes

12

Data Race (Revisit)
a = 0;
b = 0;

Thread 1:

r1 = a;
if (r1 != 0) {
b = 42;

}

Thread 2:

r2 = b;
if (r2 != 0) {
a = 42;

}

Will r1 = r2 = 42 be possible?

No, but why?

13

De�nes how threads in a Java program interact through memory and what
behaviors are allowed in concurrent execution.

The Java Memory Model

• Each read can only see writes that happen before them. Reads cannot see
writes through data races.

• Synchronization order is consistent with program order and mutual exclusion.
• The execution obeys intra-thread consistency.
• The execution obeys synchronization-order consistency. (A read cannot see a

write that is "synchronized" after it.)
• The execution obeys happens-before consistency. (A read cannot see a write

that happens after it.)

14

https://dl.acm.org/doi/10.1145/1040305.1040336
https://dl.acm.org/doi/10.1145/1040305.1040336

Litmus Testing
Small tests to verify speci�cation behaviors or potential bugs.

• Accept: sequentially consistent outcomes
• Interesting: weak but tolerable outcomes
• Forbidden: weak intolerable outcomes

litmusTest ({
object : LitmusIIOutcome () { var x , y = 0, 0 }

}) {
thread { x = 1; r1 = y }
thread { y = 1; r2 = x }
spec {

accept (0 , 1)
accept (1 , 0)
accept (1 , 1)
interesting (0 , 0)

}
}

15

Litmus Testing is Stress Testing
• Run the litmus test many times (millions or more).

• Run the same tests on different cores.

• Use different compiler optimizations.

• LitmusKt: Concurrency Stress Testing for Kotlin

• Java Concurrency Stress (jcstress)

• ...

16

Concurrency Bugs and Race Conditions
• De�nition: some undesirable behavior that only manifests under certain

orderings of component interactions.

• Data Race

• Atomicity Violation

• Order Violation

• Deadlock

• ...

17

Atomicity Violation

Two threads call withdraw(100):

static AtomicInteger balance = 100;
void withdraw(int amount) {

if (balance >= amount) {
balance -= amount;

}
}

Thread 1 Thread 2 Shared balance

r1 = load(balance) // 100 — 100

— r2 = load(balance) // 100 100

if (r1 >= 100) store(balance, 100 - 100) — 0

— if (r2 >= 100) store(balance, 0 - 100) -100

The withdraw operation is not atomic.

The desired serializability among multiple memory accesses is violated.

18

Atomicity Violation: the Fix
static ReentrantLock lock = new ReentrantLock();

lock.lock();

lock.unlock();

static AtomicInteger balance = 100;1
2

void withdraw(int amount) {3
4

if (balance >= amount) {5
balance -= amount;6

}7
8

}9

Why don't we put locks everywhere?

Performance overhead; deadlocks; ...

19

Order Violation
void fastWithdraw(int amount) {

int oldBalance = balance;
new Thread(() -> withdraw(amount/2)).start();
new Thread(() -> withdraw(amount - amount/2)).start();
assert(balance == oldBalance - amount); // can this assert fail?

}

Main thread Thread A Thread B

old = balance // 100 — —

start(A) ready —

start(B) ready ready

assert(balance == old - amount) — (not run yet) — (not run yet)

— withdraw(amount/2) // balance: 50 —

— — withdraw(amount-amount/2) // balance: 0

The assert may observe balance as 100 (or 50).

The desired order between two (groups of) memory accesses is �ipped.
20

Order Violation: the Fix
Thread t1 = new Thread(() -> withdraw(amount/2));
t1.start();
t1.join(); // Blocked until t1 finishes
Thread t2 = new Thread(() -> withdraw(amount - amount/2));
t2.start();
t2.join(); // Blocked until t2 finishes

void fastWithdraw(int amount) {1
int oldBalance = balance; 2

3
4
5
6
7
8

assert(balance == oldBalance - amount); // can this assert fail?9
}10

Better �x? Did we introduce unnecessary ordering?

21

Atomicity/Order Violation v.s. Data Race
• Data race

• Atomicity/order violation

▪ Two memory operations ... same time ... one is write

▪ Objective (not always a bug)

▪ Can be detected through language/runtime checks

▪ Desired order/serializability ... is violated

▪ Subjective (always a bug)

▪ Detection depends on application requirements/speci�cations

Learning from mistakes: a comprehensive study on real world concurrency bug characteristics Lu et al. ASPLOS '08
22

https://dl.acm.org/doi/10.1145/1346281.1346323
https://dl.acm.org/doi/10.1145/1346281.1346323

How to Find Atomicity/Order Violation Bugs?

Some possible interleavings

void fastWithdraw(int amount) {
int oldBalance = balance;
new Thread(() -> withdraw(amount/2)).start();
new Thread(() -> withdraw(amount - amount/2)).start();
assert(balance == oldBalance - amount); // can this assert fail?

}

• withdraw(amount/2)→ withdraw(amount - amount/2) → assert

• withdraw(amount - amount/2) → withdraw(amount/2) → assert

• assert→ withdraw(amount/2) → withdraw(amount - amount/2)

• withdraw(amount/2)→ assert → withdraw(amount - amount/2)

Concurrency testing: test a concurrent program under different interleavings.

23

Approach 1: Simple/Stress Testing

• Run the program many times.

• Hope to hit the buggy interleaving.

• Pros:

• Cons:

void fastWithdrawTest() {
for (int i = 0; i < 1000; i++) {

balance = 100;
fastWithdraw(100);

}
}

▪ Easy to implement; no modi�cation to the program; ...

▪ Non-deterministic; not ef�cient; ...

24

Approach 2: Directed Yielding

• Insert sleep/locks to enforce certain interleavings.

• IMUnit, ThreadWeaver, CalFuzzer, ...

• Pros:

• Cons:

Thread.sleep(1000);

void fastWithdraw(int amount) {1
int oldBalance = balance; 2
new Thread(() -> withdraw(amount/2)).start();3

4
new Thread(() -> withdraw(amount - amount/2)).start();5
assert(balance == oldBalance - amount); // can this assert fail?6

}7

▪ Good for experts who know what interleavings to test

▪ Spurious deadlocks; manual efforts
25

Approach 3: Controlled Concurrency
Testing
• Systematically explore different interleavings.

• Shuttle (Rust), Coyote (C#), Fray (JVM), ...

• Pros:

• Cons:

▪ Good coverage; can �nd deep bugs; ...

▪ High overhead; hard to implement; ...

26

Fray: CCT for the JVM
• Deterministic controlled concurrency testing.

• Easy to use and general purpose.

• Support various concurrency testing algorithms.

• Gradle/Maven plugin + Jetbrains debugger.

• Core Idea: Sequential Execution + Control

• https://github.com/cmu-pasta/fray

27

https://github.com/cmu-pasta/fray
https://github.com/cmu-pasta/fray

28

29

30

31

32

33

34

35

36

37

38

39

40

Concurrency Testing Algorithms
• Question: what thread interleaving shall we test?

• Sol1. Exhaustive Testing

• Sol2. Random Walk

• What will you do?

41

Probabilistic Concurrency Testing (PCT)
• Empirical Observation: many concurrency bugs can be triggered with only

small number of context switches (bug depth).

▪ A context switch is when program execution switches from one thread to
another.

• Idea: only explore interleavings with small number of context switches.

A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs

42

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/asplos277-pct.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/asplos277-pct.pdf

Partial Order Aware Conc. Testing (POS)
Thread 1:

balance = 100;

Thread 2:

total_account = 1;

• 2 possible interleavings:

▪ balance=100 → total_account=1
▪ total_account=1 → balance=100

• Do we need to explore all of them?

• Idea: only explore interleavings that are semantically non-equivalent.

Partial Order Aware Concurrency Sampling

43

https://www.cs.columbia.edu/~junfeng/papers/pos-cav18.pdf
https://www.cs.columbia.edu/~junfeng/papers/pos-cav18.pdf

Other Concurrency Testing Algorithms
()
• Greybox Fuzzing for Concurrency Testing (ASPLOS '24)

• Selectively Uniform Concurrency Testing (ASPLOS '25)

• Feedback-guided Adaptive Testing of Distributed Systems Designs (NSDI '26)

44

Want to Learn More?
• Distributed System Testing

▪

▪

• Model checking and veri�cation

▪

▪

•

Jepsen
Greybox Fuzzing of Distributed Systems CCS
'23

TLA+
P Framework

Testing Distributed Systems

45

https://jepsen.io/
https://dl.acm.org/doi/10.1145/3576915.3623097
https://dl.acm.org/doi/10.1145/3576915.3623097
https://lamport.azurewebsites.net/tla/tla.html
https://p-org.github.io/P/whatisP/
https://asatarin.github.io/testing-distributed-systems/
https://jepsen.io/
https://dl.acm.org/doi/10.1145/3576915.3623097
https://dl.acm.org/doi/10.1145/3576915.3623097
https://lamport.azurewebsites.net/tla/tla.html
https://p-org.github.io/P/whatisP/
https://asatarin.github.io/testing-distributed-systems/

Find Bugs in
Concurrent Programs

Ao (Leo) Li

October 2025

aoli@cs.cmu.edu

46

mailto:aoli@cs.cmu.edu
mailto:aoli@cs.cmu.edu

