Find Bugs in
Concurrent Programs

Ao (Leo) Li

uuuuuuuuuu

mailto:aoli@cs.cmu.edu
mailto:aoli@cs.cmu.edu

Who am |

e Ao(Leo) Li

e PhD candidate at S3D/SCS advised by Rohan
Padhye and Vyas Sekar

e Make complex concurrent and distributed systems |
easier to debug and test. | focus on both potent
algorithmic efficiency and real-world practicality.

{«} antithesis Google B% Microsoft amazon

Will this program crash?

static int balance = 100;

vold withdraw(int amount) {
1T (balance >= amount) {
balance -= amount;

}
}

Thread tl
Thread t2
tl.start();
t2.start();
tl.join();
t2.join();
assert balance >= 0; // can this assert fail?

new Thread(() -> withdraw(100)):;

void main() {
= new Thread(() -> withdraw(100));

It depends because this is a concurrent program.

What is Concurrency?

e Multiple components (threads, processes, machines) executing
simultaneously.

e Components interact through shared memory, message passing, etc.
e Non-determinism: the exact order of interactions is unpredictable.

e Hard to debug and test.

Concurrency Bugs and Race Conditions

e Definition: some undesirable behavior that only manifests under certain
orderings of component interactions.

e Data Race1
e Atomicity Violation
e Order Violation

e Deadlock

1: Not everyone agrees that all data races are race conditions. See John Regehr's post: Race Condition vs. Data Race

https://blog.regehr.org/archives/490
https://blog.regehr.org/archives/490

Data Race (in Java)

A data race occurs when two threads access the same memory location
concurrently, and at least one of the accesses is a write.

(@ae)]
i
o NO)

Thread 1: Thread 2:

Possible outcomes: (r1,r2) = (1, 0), (0, 1), (0, 0), and (1, 1).

Why data races can be problematic?

Each core writes to its local cache/buffer before updating the main memory.

One thread may not see the most recent writes from another thread.

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5
[AA [AA [AA [AA | AA
Wl] Wl ' Wl ' Wl |] Wl bl
I iR : ER l iR l ER I iR
wl i Wl i wl | Wl i wl i
Shared Memory

Figure from: https://research.swtch.com/hwmm.

Bonus: will data race happen on a single core machine?

Answer: Yes! https://aoli.al/blogs/data-race/

https://research.swtch.com/hwmm
https://research.swtch.com/hwmm
https://aoli.al/blogs/data-race/
https://aoli.al/blogs/data-race/

Why data races can be problematic? (Contd

Data races

Different threads of execution are always allowed to access (read and modify) different memory locations concurrently,
with no interference and no synchronization requirements.

Two expression evaluations conflict if one of them modifies a memory location or starts/ends the lifetime of an object in
a memory location, and the other one reads or modifies the same memory location or starts/ends the lifetime of an
object occupying storage that overlaps with the memory location.

A program that has two conflicting evaluations has a data race unless

« both evaluations execute on the same thread or in the same signal handler, or
» both conflicting evaluations are atomic operations (see std: :atomic), or
« one of the conflicting evaluations happens-before another (see std: :memory order).

If a data race occurs, the behavior of the program is undefined.

Example 17.4-1. Incorrectly Synchronized Programs May Exhibit Surprising Behavior

The semantics of the Java programming language allow compilers and microprocessors to perform optimizations

behaviors.

Consider, for example, the example program traces shown in Table 17.4-A. This program uses local variables r1

Table 17.4-A. Surprising results caused by statement reordering - original code

How to Detect Data Races?

Thread 1: Thread 2:

1 memory write operation(Thread 1, &balance); 1 memory read operation(Thread 2, &balance);

e Get context for the memory location being accessed.
e Compare current thread's vector clock with last access.

= Vector clock is a data structure to understand if two operations are ordered
or concurrent.

e If there's a previous access from a different thread AND the vector clock show
they are not ordered AND at least one is a write.

= Report adatarace

Time, Clocks, and the Ordering of Events in a Distributed System by Leslie Lamport: https://lamport.azurewebsites.net/pubs/time-clocks.pdf

https://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://lamport.azurewebsites.net/pubs/time-clocks.pdf

How to Detect Data Races? (Cont'd)

e Static Solutions

= OxCaml

s Rust Borrow Checker

= [nfer (RacerD)
e Dynamic Solutions

= ThreadSanitizer (TSan)
» Go Race Detector
» Helgrind (Valgrind)

10

How to Write Data Race Free Code?

e Use (safe) Rust &

error[E0502]: cannot borrow s as mutable because it is also borrowed as immutable
—> rust-borrow-checker.rs:4:14

|
31 let r1 = §&s;

| -- immutable borrow occurs here
4 | let r2 = &mut s;

| ANAAAN ‘mutable borrow occurs here
5 | println!("{}, and {}", ri1, r2);

|

-- immutable borrow later used here

e Use atomic operations.

static AtomicInteger balance = 100;

*This is simplified syntax.

e Use locks.

lock.lock();
if (balance >= amount) {...}
lock.unlock();

11

Data Race (Revisit)

a 0;
b 0;

Thread 1:

rl = a;

r2 = a;

1T (rl == r2) {
b = 2;

}

Willrl =r2 =r3 =2 be possible?

Yes

Thread 2:

12

Data Race (Revisit)

a 0;
b 0;

Thread 1:

rl = a;
if (rl1 '=0) {
b = 42;

Willrl =r2 =42 be possible?

No, but why?

r2 = b;
if (r2 '= 0)
a = 42;

{

Thread 2:

13

The Java Memory Model

Defines how threads in a Java program interact through memory and what
behaviors are allowed in concurrent execution.

e Eachread can only see writes that happen before them. Reads cannot see
writes through data races.

e Synchronization order is consistent with program order and mutual exclusion.

e The execution obeys intra-thread consistency.

e The execution obeys synchronization-order consistency. (A read cannot see a
write that is "synchronized" after it.)

e The execution obeys happens-before consistency. (A read cannot see a write
that happens after it.)

i'\'c) JOK / JDK-7170145
0 1 C1 doesn't respect the JMM with volatile field loads

14

https://dl.acm.org/doi/10.1145/1040305.1040336
https://dl.acm.org/doi/10.1145/1040305.1040336

Litmus lesting

Small tests to verify specification behaviors or potential bugs.

litmusTest ({
object : LitmusIIOutcome () { var x , y =0, 0 }
P A

thread { x

thread { vy
spec {

accept (0 , 1

accept (1 , ©

1

(

1; rl
1; r2

y }
X }

accept (1 ,

interesting , 0)

}
}

e Accept: sequentially consistent outcomes
e Interesting: weak but tolerable outcomes
e Forbidden: weak intolerable outcomes

15

Litmus Testing is Stress Testing

e Run the litmus test many times (millions or more).
e Runthe same tests on different cores.

e Use different compiler optimizations.

o LitmusKt: Concurrency Stress Testing for Kotlin

e Java Concurrency Stress (jcstress)

Concurrency Bugs and Race Conditions

e Definition: some undesirable behavior that only manifests under certain
orderings of component interactions.

e Data Race [4
e Atomicity Violation
e Order Violation

e Deadlock

17

Atomicity Violation

static AtomicInteger balance
void withdraw(int amount) {

if (balance >= amount) {
balance -= amount;

}
}

Two threads callwithdraw(100):
Thread 1
rl = load(balance) // 100

if (rl >= 100) store(balance, 100 - 100)

= 100;

Thread 2

r2 = load(balance) // 100

if (r2 >= 100) store(balance, 0 -

The withdraw operation is not atomic.

The desired serializability among multiple memory accesses is violated.

Shared balance

100

100

0

-100

18

Atomicity Violation: the Fix

2 static ReentrantLock lock = new ReentrantLock();

4 lock.lock();

8 lock.unlock();

Why don't we put locks everywhere?

Performance overhead:; deadlocks: ...

19

Order Violation

vold fastWithdraw(int amount) {
int oldBalance = balance;
new Thread(() -> withdraw(amount/2)).start();
new Thread(() -> withdraw(amount - amount/2)).start();
assert(balance == oldBalance - amount); // can this assert fail?

Main thread Thread A Thread B

old = balance // 100 — —

start(A) ready —
start(B) ready ready
assert(balance == old - amount) — (not run yet) — (not run yet)

— withdraw(amount/2) // balance: 50 —

— withdraw(amount-amount/2) // balance: 0

ne assert may observe balance as 100 (or 50).

ne desired order between two (groups of) memory accesses is flipped.

20

Order Violation: the Fix

Thread t1 = new Thread(() -> withdraw(amount/2));
tl.start();

tl.join(); // Blocked until tl1 finishes

Thread t2 = new Thread(() -> withdraw(amount - amount/2));
t2.start();

t2.join(); // Blocked until t2 finishes

coOoNdOUT B~ W

Better fix? Did we introduce unnecessary ordering?

21

Atomicity/Order Violation v.s. Data Race

e Datarace

= Two memory operations ... same time....one is write

= Objective (not always a bug)

= Can be detected through language/runtime checks

e Atomicity/order violation

= Desired order/serializability ... is violated

= Subjective (always a bug)

= Detection depends on application requirements/specifications

Learning from mistakes: a comprehensive study on real world concurrency bug characteristics Lu et al. ASPLOS '08

22

https://dl.acm.org/doi/10.1145/1346281.1346323
https://dl.acm.org/doi/10.1145/1346281.1346323

How to Find Atomicity/Order Violation Bugs?

vold fastWithdraw(int amount) {
int oldBalance = balance;

new Thread(() -> withdraw(amount/2)).start();
new Thread(() -> withdraw(amount - amount/2)).start();
assert(balance == oldBalance - amount); // can this assert fail?

}

Some possible interleavings
e withdraw(amount/2) »withdraw(amount - amount/2) — assert

e withdraw(amount - amount/2) »withdraw(amount/2) —» assert
e assert —»withdraw(amount/2) »withdraw(amount - amount/2)
e withdraw(amount/2) » assert -»withdraw(amount - amount/2)

Concurrency testing: test a concurrent program under different interleavings.

23

Approach 1: Simple/Stress Testing

volid fastWithdrawTest() {
for (int i = 0; i < 1000; i++) {
balance = 100;
fastWithdraw(100);
}
}

e Runthe program many times.

e Hope to hit the buggy interleaving.

e Pros:
= Easy to implement; no modification to the program; ...
e Cons:

= Non-deterministic; not efficient; ...

24

Approach 2: Directed Yielding

4 Thread.sleep(1000);

e Insert sleep/locks to enforce certain interleavings.
e IMUnit, ThreadWeaver, CalFuzzer, ...

e Pros:
= Good for experts who know what interleavings to test
e Cons:

= Spurious deadlocks; manual efforts

25

Approach 3: Controlled Concurrency
lesting

o Systematically explore different interleavings.
e Shuttle (Rust), Coyote (C#), Fray (JVM), ...
e Pros:
= Good coverage; can find deep bugs; ...
e Cons:

» High overhead; hard to implement; ...

26

Fray: CCT for the JVM

e Deterministic controlled concurrency testing.

e Easy to use and general purpose.

e Support various concurrency testing algorithms.

e Gradle/Maven plugin + Jetbrains debugger.
e Coreldea: Sequential Execution + Control

e https://github.com/cmu-pasta/fray

27

https://github.com/cmu-pasta/fray
https://github.com/cmu-pasta/fray

Thread 1:

ri=AtomicRead(b)
if(ri>=amount)
r2=AtomicRead(b)

void withdraw(int amount) {
if (balance >= a) {
b -= a;
}
}

$

Thread 1:

a,[b]. lock()
ri=AtomicRead(b)
a,[bl.unlock();
if(ri>=amount)
@,.[b]l.lock()
rl=AtomicRead(b)
@, [bl.unlock();

28

Thread 1:

ri=AtomicRead(b)
if(ril>=amount)
r2=AtomicRead(b)

Thread 2:

ri=AtomicRead(b)
if(ril>=amount)
r2=AtomicRead(b)

Thread 1:

3.[bl.lock()

rl=AtomicRead(b)

@.[bl.unlock();

if(rl>=amount)
3,[b]. lock()
rl=AtomicRead(b)
@.[bl.unlock();

Thread 2:

b] . lock()
ri=AtomicRead(b)
@,[bl.unlock();
if(ril>=amount)
3,[b]. lock()
rl=AtomicRead(b)

3,[b]l.unlock();

$

29

Thread 1:

m) @ [b].lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by Fray

@y
@,[b]: Held by Fray

Thread 2:

mp &5,[b].lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

30

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
b]: Available

@y
@,[b]: Held by Fray

Thread 2:

mp &5,[b].lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

31

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by T1

@y
@,[b]: Held by Fray

Thread 2:

mp &5,[b].lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

32

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by Fray

@y
@,[b]: Held by T1

Thread 2:

mp &5,[b].lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

rl=balance

33

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by Fray

@y
@,[b]: Held by Fray

Thread 2:

mp &5,[b].lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

rl=balance

34

=

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by Fray

@y
@,[b]: Held by Fray

Thread 2:

mp &5,[b].lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

rl=balance

35

=

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by Fray

@y
@,[b]: Available

Thread 2:

=) &@,[b]. lock()
rl=AtomicRead(b)
@,[bl.unlock();
if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

rl=balance

36

=

Thread 1:

@,[bl.lock()
ri1=AtomicRead(b)
@.[bl.unlock();
if(ri>=amount)
@,[bl. lock()
rl=AtomicRead(b)
@, [bl.unlock();

Lock Status:
bl: Held by Fray

@y
@,[b]: Held by T2

Thread 2:

@,[b].lock()

=) r1=AtomicRead(b)

@,[bl.unlock();

if(ri>=amount)
@,[bl. lock()
ri1=AtomicRead(b)
@,[bl.unlock();

Thread 1 Thread 2

rl=balance

37

=

Thread 1:

@,[b]. lock()
ri=AtomicRead(b)
@, [bl.unlock();
if(ri>=amount)
@,[b]. lock()
rl1=AtomicRead(b)
@,[bl.unlock();

Lock Status:
bl: Held by Fray

A, [
@,[b]: Held by T2

Thread 2:
@,[b]. lock()
=) &,[b].unlock();

if(ri>=amount)
@,[b].lock()

ri=AtomicRead(b)

rl=AtomicRead(b)
@,[b]l.unlock();

Thread 1

Thread 2

38

=

Thread 1:

@,[b]. lock()
ri=AtomicRead(b)
@, [bl.unlock();
if(ri>=amount)
@,[b]. lock()
rl1=AtomicRead(b)
@,[bl.unlock();

Lock Status:
bl: Held by Fray

!
S3,[b]: Held by Fray

Thread 2:
@,[b]. lock()
@,[bl.unlock();

=) if(ri>=amount)
@,[b].lock()

ri=AtomicRead(b)

rl=AtomicRead(b)
@,[b]l.unlock();

Thread 1

Thread 2

39

=

Thread 1:

@,[b]. lock()
ri=AtomicRead(b)
@, [bl.unlock();
if(ri>=amount)
@,[b]. lock()
rl1=AtomicRead(b)
@,[bl.unlock();

Lock Status:
bl: Held by Fray

!
S3,[b]: Held by Fray

—

Thread 2:

@,[b]. lock()

ri=AtomicRead(b)

@,[bl.unlock();
if(ri>=amount)
@,[b].lock()

rl=AtomicRead(b)
@,[b]l.unlock();

Thread 1

Thread 2

40

Concurrency lesting Algorithms

e Question: what thread interleaving shall we test?

e Soll. Exhaustive Testing
e Sol2. Random Walk

e \What will you do?

41

Probabilistic Concurrency Testing (PCT)

e Empirical Observation: many concurrency bugs can be triggered with only
small number of context switches (bug depth).

= A context switch is when program execution switches from one thread to
another.

e |dea: only explore interleavings with small number of context switches.

A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs

42

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/asplos277-pct.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/asplos277-pct.pdf

Partial Order Aware Conc. Testing (POS)

Thread 1: Thread 2:

balance = 100; total account = 1;

e 2 possible interleavings:

= pbalance=100- total account=1
= total account=1-balance=100

e Do we need to explore all of them?

e |dea: only explore interleavings that are semantically non-equivalent.

Partial Order Aware Concurrency Sampling

43

https://www.cs.columbia.edu/~junfeng/papers/pos-cav18.pdf
https://www.cs.columbia.edu/~junfeng/papers/pos-cav18.pdf

Other Concurrency lesting Algorithms
(&%)

e Greybox Fuzzing for Concurrency Testing (ASPLOS '24)
e Selectively Uniform Concurrency Testing (ASPLOS '25)

e Feedback-guided Adaptive Testing of Distributed Systems Designs (NSDI '26)

44

Want to Learn More?

e Distributed System Testing

= Jepsen

= Greybox Fuzzing of Distributed Systems CCS
'23

e Model checking and verification

s TLA+
= P Framework

e Testing Distributed Systems

45

https://jepsen.io/
https://dl.acm.org/doi/10.1145/3576915.3623097
https://dl.acm.org/doi/10.1145/3576915.3623097
https://lamport.azurewebsites.net/tla/tla.html
https://p-org.github.io/P/whatisP/
https://asatarin.github.io/testing-distributed-systems/
https://jepsen.io/
https://dl.acm.org/doi/10.1145/3576915.3623097
https://dl.acm.org/doi/10.1145/3576915.3623097
https://lamport.azurewebsites.net/tla/tla.html
https://p-org.github.io/P/whatisP/
https://asatarin.github.io/testing-distributed-systems/

Find Bugs in
Concurrent Programs

Ao (Leo) Li

22222222222

mailto:aoli@cs.cmu.edu
mailto:aoli@cs.cmu.edu

