
CONCURRENCY:
SEQUENTIAL CONSISTENCY,
DATA RACES, AND DYNAMIC ANALYSES

Lecture by Rohan Padhye
17-355/17-665/17-819: Program Analysis

Material from past lectures by Jonathan Aldrich, based in large part on slides by John
Erickson, Stephen Freund, Madan Musuvathi, Mike Bond, and Man Cao

Lecture Goals

• What is sequential consistency and why is it important?

• What is a data race, and what is data-race-free execution?

• Subtleties of data races and memory models
• Why taking advantage of “harmless races” is almost certainly a bad idea

• Lockset analysis for data race detection

• Happens-before based data race detection

SEQUENTIAL CONSISTENCY

First things First
Assigning Semantics to Concurrent Programs

• What does this program mean?

• Sequential Consistency [Lamport ‘79]

Program behavior = set of its thread interleavings

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;

Recall: Semantics of WHILE|| from midterm

Exercise 1:

• What are the possible final values for variables `t` and `u` after
running this program, assuming sequential consistency?

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;

Sequential Consistency Explained

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0; // F = 1 implies X is initialized

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

t=1 implies u=1

Naturalness of Sequential Consistency

• Sequential Consistency provides two crucial abstractions

• Program Order Abstraction

• Instructions execute in the order specified in the program

 A ; B

 means “Execute A and then B”

• Shared Memory Abstraction

• Memory behaves as a global array, with reads and writes done immediately

• We implicitly assume these abstractions for sequential programs
• As we will see, we can only rely on these abstractions under certain conditions in a

concurrent context

WHAT IS A DATA RACE ?

• The term “data race” is often overloaded to mean different
things

• Precise definition is important in designing a tool

Data Race

• Two accesses conflict if

• they access the same memory location, and

• at least one of them is a write
 Write X – Write X

 Write X – Read X

 Read X – Write X

 Read X – Read X

• A data race is a pair of conflicting accesses that happen
concurrently

“Happen Concurrently”

• A and B happen concurrently if they occur in different
threads, and

• there exists a sequentially consistent execution in which they
occur one after the other

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Data races are almost always no good

• What are some consequences of a data race, even when
assuming sequential consistency?

Unintended Sharing

• Threads accidentally sharing data that should not be global

• Solution: Change allocation (e.g., stack var or static thread-local)

Thread 1

temp = …;
…
… = temp;

Thread 2

temp = …;
…
… = temp;

Data Race

Atomicity Violation

• When code that is meant to execute atomically (that is, perform a

single undivisible operation) suffers interference from some other thread

• Solution: Surround critical sections with locks

Thread 1

void Bank::Update(int a)
{
 int t = bal;
 bal = t + a;
}

Thread 2

void Bank::Withdraw(int a)
{
 int t = bal;
 bal = t - a;
}

Data Race

Ordering Violation

• Incorrect signaling between a producer and a consumer

• Solution: Reorder operations or use synchronization (e.g., signals)

Thread 1

work = null;
CreateThread (Thread 2);
work = new Work();

Thread 2

ConsumeWork(work);

Data Race

But,….

• How do you think ”locks” are implemented?

• Atomic compare-and-swap (CAS)

AcquireLock(lock){
 while (!CAS (lock, 0, 1)) {}
}

ReleaseLock(lock) {
 lock = 0;
}

Data Race ?

Acceptable Concurrent Conflicting Accesses

• Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

• Innovative uses of shared memory
• Fast reads

• Double-checked locking

• Lazy initialization

• Setting dirty flag

• ...

• Need mechanisms to distinguish these from erroneous conflicts

Solution: Programmer Annotation

• Programmer explicitly annotates variables as “synchronization”
• Java – volatile keyword

• C++ – std::atomic<> types

Data Race

• Two accesses conflict if

• they access the same memory location, and

• at least one of them is a write

• A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization
• Recall: “Concurrent” means there exists a sequentially consistent

execution in which they happen one after the other

• Equivalent definition: a pair of conflicting accesses where one
doesn’t happen before the other

• Program order

• Synchronization order

• Acquire/release, wait-notify, fork-join, volatile read/write

Exercise 2: Is there a data race?
If so, on what variable(s)?

T1:

data = 42;

flag = true;

T2:

if (flag)

 t = data;

Initially:

int data = 0;

boolean flag = false;

21

Is there a data race?

T1:

data = 42;

flag = true;

T2:

if (flag)

 t = data;

Initially:

int data = 0;

boolean flag = false;

22

Consider regular compiler
transformations/optimizations

Before:

data = 42;

flag = true;

23

After:

flag = true;

data = 42;

Possible behavior

T1:

flag = true;

data = 42;

T2:

if (flag)

 t = data;

Initially:

int data = 0;

boolean flag = false;

24

Consider regular compiler
transformations/optimizations

Before:

if (flag)

 t = data;

25

After:

t2 = data;

if (flag)

 t = t2;

Possible behavior

T1:

data = 42;

flag = true;

T2:

t2 = data;

if (flag)

 t = t2;

Initially:

int data = 0;

boolean flag = false;

26

How do we fix this?

T1:

data = 42;

flag = true;

T2:

if (flag)

 t = data;

Initially:

int data = 0;

boolean flag = false;

27

Using “synchronized” keyword in Java

T1:

data = ...;

synchronized (m) {

 flag = true;

}

T2:

boolean f;

synchronized (m) {

 f = flag;

}

if (f)

 ... = data;

Initially:

int data = 0;

boolean flag = false;

28

… Implemented via locks

T1:

data = ...;

acquire(m);

 flag = true;

release(m);

T2:

boolean f;

acquire(m);

 f = flag;

release(m);

if (f)

 ... = data;

Initially:

int data = 0;

boolean flag = false;

29

Using “volatile” keyword in Java

T1:

data = ...;

flag = true;

T2:

if (flag)

 ... = data;

Initially:

int data = 0;

volatile boolean flag = false;

30

Data Race vs Race Conditions

• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program

• Due to events, device interaction, thread interleaving, …

• Race conditions can be very bad!

Data Race vs Race Conditions

• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program

• Due to events, device interaction, thread interleaving, …

• Race conditions can be very bad!

• Data races are neither sufficient nor necessary for a race
condition
• Data race is a good symptom for a race condition

DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS

Advantage of Eliminating All Data Races

• Defining semantics for concurrent programs becomes
surprisingly easy

• In the presence of compiler and hardware optimizations

Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly shared

OK for sequential programs
if X is not modified between L1 and L3

Can Break Sequential Consistent Semantics

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X = 1;
M2: Y = 1;

M1: X = 1;
M2: Y = 1;

u == 1 ➔ v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

Data Race

Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly shared

OK for sequential programs
if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data race on Y

Key Observation [Adve& Hill '90]

• Many sequentially valid (compiler & hardware) transformations
also preserve sequential consistency

• Provided the program is data-race free

• Forms the basis for modern C++, Java semantics

 data-race-free → sequential consistency

 otherwise → weak/undefined semantics

DATA RACE DETECTION

Overview of Data Race Detection Techniques

• Static data race detection

• Dynamic data race detection

• Lock-set

• Happen-before

• Race Fuzzing

Static Data Race Detection

• Advantages:
• Reason about all inputs/interleavings

• No run-time overhead

• Adapt well-understood static-analysis techniques

• Annotations to document concurrency invariants

• Example Tools:
• RCC/Java type-based

• ESC/Java "functional verification"
 (theorem proving-based)

Static Data Race Detection

• Advantages:
• Reason about all inputs/interleavings

• No run-time overhead

• Adapt well-understood static-analysis techniques

• Annotations to document concurrency invariants

• Disadvantages of static:
• Undecidable...

• Tools produce “false positives” or “false negatives”

• May be slow, require programmer annotations

• May be hard to interpret results

Dynamic Data Race Detection

• Advantages
• Can avoid “false positives”

• No need for language extensions or sophisticated static analysis

• Disadvantages

• Run-time overhead (5-20x for best tools)

• Memory overhead for analysis state

• Reasons only about observed executions

• sensitive to test coverage

• (some generalization possible...)

Tradeoffs: Static vs Dynamic

• Coverage
• generalize to additional traces?

• Soundness

• all reported warnings are actually races

• Completeness
• every actual data race is reported

• Overhead

• run-time slowdown

• memory footprint

• Programmer overhead

Definition Refresh

• A data race is a pair of concurrent conflicting accesses to
unannotated locations (i.e. not locks or volatile variables)

• Problem for dynamic data race detection
• Very difficult to catch the two accesses executing concurrently

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Solution

• Lockset
• Infer data races through violation of locking discipline

• Happens-before
• Infer data races by generalizing a trace to a set of traces with the same

happens-before relation

LOCKSET ALGORITHM
Eraser [Savage et.al. ‘97]

Lockset Algorithm Overview

• Checks a sufficient condition for data-race-freedom

• Consistent locking discipline

• Every data structure is protected by a single lock

• All accesses to the data structure made while holding the lock

• Example:
// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

RecvQueue is
consistently protected

by RecvQueueLk

ProcQueue is
consistently protected

by ProcQueueLk

Inferring the Locking Discipline

• How do we know which lock protects what?
• Asking the programmer is cumbersome

• Solution: Infer from the program
AcquireLock(A);
AcquireLock(B);
x ++;
ReleaseLock(B);
ReleaseLock(A);

AcquireLock(B);
AcquireLock(C);
x ++;
ReleaseLock(C);
ReleaseLock(B);

X is protected by
A, or B, or both

X is protected by
B, or C, or both

X is protected
 by B

LockSet Algorithm

• Two data structures:

• LocksHeld(t) = set of locks held currently by thread t

• Initially set to Empty

• LockSet(x) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread t acquires lock l

• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 ∪ {𝑙}

• When thread t releases lock l

• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 − {𝑙}

• When thread t accesses location x

• 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 = 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 ∩ 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑(𝑡)

• Report “data race” when LockSet(x) becomes empty

LockSet Algorithm
• No warnings → no data races on the current execution

• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race

• Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0

AcquireLock(SendQueueLk);
SendQueue.Enqueue(pkt);
ReleaseLock(SendQueueLk); // Process a packet

AcquireLock(SendQueueLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(SendQueueLk);

LockSet Algorithm
• No warnings → no data races on the current execution

• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race

• Object read-shared after thread-local initialization

A = new A();
A.f = 0;

// publish A
globalA = A; f = globalA.f;

Maintain A State Machine Per Location

Init
Local
to T

Thread T
Read /
Write

Read
Shared

Thread T’
Read

Any Thread
Read

Thread T
Read /
Write

Shared

Any Thread
Write

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm

LockSet Algorithm

• State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock(WrongLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(WrongLk);

// Process a packet
AcquireLock(SendQueueLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(SendQueueLk);

LockSet Algorithm

• Does not handle locations consistently protected by different
locks during a particular execution

// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

Pkt is protected by
RecvQueueLk

Pkt is thread local

Pkt is protected by
ProcQueueLk

HAPPENS-BEFORE

Happens-Before Relation [Lamport '78]

• A concurrent execution is a partial-order determined by communication
events

• The program cannot “observe” the order of concurrent non-communicating
events

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++?

Happens-Before Relation [Lamport '78]

• A concurrent execution is a partial-order determined by communication
events

• The program cannot “observe” the order of concurrent non-communicating
events

• Both executions form the same happens-before relation

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++

Constructing the Happens-Before Relation

• Program order
• Total order of thread

instructions

• Synchronization order
• Total order of accesses to the

same synchronization

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

Happens-Before Relation And Data Races

• If all conflicting accesses are
ordered by happens-before

• → data-race-free execution

• → All linearizations of partial-order
are valid program executions

• If there exists conflicting accesses
not ordered

• → a data race

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

IMPLEMENTING HAPPENS-
BEFORE ANALYSES

1

2

3

4

5 5

1

2

3

4

5

4

3

2

1

6 6 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 7 7

vol = 1

tmp = vol

acq(m)

Precise
Happens-
Before

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

2 0 0

2 0 0

2 0 0 1 3 0

0 1 0

0 1 0

1 1 0

1 2 0

1 1 1

0 0 1

0 0 1

0 0 1

0 0 1

2 2 0 1 3 0 1 1 2

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

2 2 1 1 3 0 1 1 2

vol = 1

tmp = vol

acq(m)

Exercise on vector clocks and partial
ordering

 VC = [t1, t2,… tN]

What is VCa ⊑ VCb?

What is VCa ⊔ VCb?

What are sufficient and necessary conditions
for there to be a data race between two
accesses having vector clocks VCa and VCb?

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

A’s local time B’s local time

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

B-steps with B-time ≤ 1
happen before
A’s next step

x = 0

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 13 0

4 10 1

? Yes

? Yes

O(n) time

x = 0

4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1

x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1

x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx VCA ?

5 1 ? No4 8

O(n) time

VectorClocks for Data-Race Detection

 Sound
– Warning ➔ data-race exists

 Complete
– No warnings ➔ data-race-free execution

 Performance

– slowdowns > 50x

– memory overhead

81

FUZZING TECHNIQUES

Fuzzing can also find data races

 Idea: Catch races “red handed”. Loosely,

– Pause thread execution when writing to X

– If another thread reaches a statement that
reads or writes X then we have observed
concurrent conflicting accesses!

Analysis does not care about locks or other
synchronization primitives.

– Consistent locking will make the above
condition impossible to trigger.

Race Fuzzer

 Run-time Overhead

– No overhead of tracking synchronization,
locks, or vector clocks (hey, that rhymes!)

– But pausing threads forever can lead to
deadlocks

– Pausing threads for a short while (e.g.
sleep(1000)) adds overhead for every write
access, though this approach is very effective.

 Solution idea:

– Instead of “pausing” thread, just deprioritize
it in the OS scheduler

Race Fuzzing

 Randomized scheduling still depends on luck

 Can do systematic schedule exploration with a
bounded number of context switches

 Sophisticated randomized algorithms like PCT
can give probabilistic guarantees of uncovering
concurrency bugs with a bounded number of
“ordering constraints”.

Or use heuristics, e.g. TSVD uses an initial run
to infer “likely” happens-before relationships
based on wall-clock timestamps to select
candidate “racing pairs”.

Lecture Takeaways

 Data race: two accesses, one of which is a write,
with no happens-before relation
 Data races are subtle

– Compiler optimizations, hardware reordering make
racy program behavior hard to predict

– Better to synchronize consistently
 Lockset analysis: intuitive, fast

– But many false warnings
 Happens-before data race detection

– Sound; OK speed if carefully implemented
 Stress testing

– Sound and fast; Can catch data races red handed
– Needs assumptions to prune the space of possible

races

Key References

 Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About
Shared Variables or Memory Models", CACM 2012.

 Leslie Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System", CACM 1978.

 Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types
for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

 Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu, "Finding and
Reproducing Heisenbugs in Concurrent Programs", OSDI 2008.

 Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

 S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References

 Friedemann Mattern, "Virtual Time and Global States of
Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

 Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

 Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

 Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

 Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

 Cormac Flanagan and Stephen N. Freund, "The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References

 John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk
Olynyk, "Effective Data-Race Detection for the Kernel", OSDI
2010.

 Madanlal Musuvathi, Sebastian Burckhardt, Pravesh Kothari, and
Santosh Nagarakatte, "A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs", ASPLOS 2010.

 Michael D. Bond, Katherine E. Coons, Kathryn S. McKinley, "PACER:
proportional detection of data races", PLDI 2010.

 Cormac Flanagan and Stephen N. Freund, "Adversarial memory for
detecting destructive races", PLDI 2010.

 Koushik Sen. “Race directed random testing of concurrent
programs”. PLDI 2010.

 Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. “Efficient scalable thread-safety-violation detection:
finding thousands of concurrency bugs during testing”, SOSP 2019.

Bonus slides on the Java
Memory Model (JMM)

Behaviors Allowed in JMM

112

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Behaviors Allowed in JMM

113

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Behaviors Allowed in JMM

114

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Behaviors Allowed in JMM

115

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Valid due to lack
of happens-before

ordering

Behaviors Allowed in JMM

116

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Assertion
failure!

Behaviors Allowed in JMM

117

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Assertion
failure!

Behaviors Allowed in JMM

118

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Requires returning future value or
reordering to trigger the assertion failure

Can this assert trigger in JVMs?
Do you think the JMM allows it?

119

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
 r3 = y;
 x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

The JVM and the JMM

120

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
 r3 = y;
 x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

JMM disallows
r2 == 1 because

of causality
requirements

 – Ševčík and Aspinall, ECOOP, 2008

The JVM and the JMM

121

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
 r3 = r2;
 x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

The JVM and the JMM

122

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
 r3 = r2;
 x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
If (r2 == 1)
 x = r2;
else x = 1;

The JVM and the JMM

123

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
 r3 = r2;
 x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
 x = r2;
else x = 1;

The JVM and the JMM

124

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
 r3 = r2;
 x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
 x = r2;
else x = 1;

Assertion
failure

possible!

Moral: Just say no to data races

Don’t try hacks based on the memory model

• Unless you are as good as Doug Lea

• Or you have formalized the memory model rules in a tool
• And even then, are the rules right?

Author of java.util.concurrent

	Slide 1: ConcurRency: Sequential Consistency, DATA RACES, and DYNAMIC ANALYSES
	Slide 2: Lecture Goals
	Slide 3: Sequential Consistency
	Slide 4: First things First Assigning Semantics to Concurrent Programs
	Slide 5: Recall: Semantics of WHILE|| from midterm
	Slide 6: Exercise 1:
	Slide 7: Sequential Consistency Explained
	Slide 8: Naturalness of Sequential Consistency
	Slide 9: What is a Data Race ?
	Slide 10
	Slide 11: Data Race
	Slide 12: “Happen Concurrently”
	Slide 13: Data races are almost always no good
	Slide 14: Unintended Sharing
	Slide 15: Atomicity Violation
	Slide 16: Ordering Violation
	Slide 17: But,….
	Slide 18: Acceptable Concurrent Conflicting Accesses
	Slide 19: Solution: Programmer Annotation
	Slide 20: Data Race
	Slide 21: Exercise 2: Is there a data race? If so, on what variable(s)?
	Slide 22: Is there a data race?
	Slide 23: Consider regular compiler transformations/optimizations
	Slide 24: Possible behavior
	Slide 25: Consider regular compiler transformations/optimizations
	Slide 26: Possible behavior
	Slide 27: How do we fix this?
	Slide 28: Using “synchronized” keyword in Java
	Slide 29: … Implemented via locks
	Slide 30: Using “volatile” keyword in Java
	Slide 31: Data Race vs Race Conditions
	Slide 32
	Slide 33
	Slide 34: Data Race vs Race Conditions
	Slide 35: Data-Race-Freedom simplifies language Semantics
	Slide 36: Advantage of Eliminating All Data Races
	Slide 37: Can A Compiler Do This?
	Slide 38: Can Break Sequential Consistent Semantics
	Slide 39: Can A Compiler Do This?
	Slide 40: Key Observation [Adve& Hill '90]
	Slide 41: Data Race Detection
	Slide 42: Overview of Data Race Detection Techniques
	Slide 43: Static Data Race Detection
	Slide 44: Static Data Race Detection
	Slide 45: Dynamic Data Race Detection
	Slide 46: Tradeoffs: Static vs Dynamic
	Slide 47: Definition Refresh
	Slide 48: Solution
	Slide 49: Lockset Algorithm
	Slide 50: Lockset Algorithm Overview
	Slide 51: Inferring the Locking Discipline
	Slide 52: LockSet Algorithm
	Slide 53: LockSet Algorithm
	Slide 54: LockSet Algorithm
	Slide 55: Maintain A State Machine Per Location
	Slide 56: LockSet Algorithm
	Slide 57: LockSet Algorithm
	Slide 58: Happens-Before
	Slide 59: Happens-Before Relation [Lamport '78]
	Slide 60: Happens-Before Relation [Lamport '78]
	Slide 61: Constructing the Happens-Before Relation
	Slide 62: Happens-Before Relation And Data Races
	Slide 64: IMPLEMENTING HAPPENS-BEFORE ANALYSES
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Exercise on vector clocks and partial ordering
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: VectorClocks for Data-Race Detection
	Slide 103: Fuzzing Techniques
	Slide 104: Fuzzing can also find data races
	Slide 105: Race Fuzzer
	Slide 106: Race Fuzzing
	Slide 107: Lecture Takeaways
	Slide 108: Key References
	Slide 109: Key References
	Slide 110: Key References
	Slide 111: Bonus slides on the Java Memory Model (JMM)
	Slide 112: Behaviors Allowed in JMM
	Slide 113: Behaviors Allowed in JMM
	Slide 114: Behaviors Allowed in JMM
	Slide 115: Behaviors Allowed in JMM
	Slide 116: Behaviors Allowed in JMM
	Slide 117: Behaviors Allowed in JMM
	Slide 118: Behaviors Allowed in JMM
	Slide 119: Can this assert trigger in JVMs? Do you think the JMM allows it?
	Slide 120: The JVM and the JMM
	Slide 121: The JVM and the JMM
	Slide 122: The JVM and the JMM
	Slide 123: The JVM and the JMM
	Slide 124: The JVM and the JMM
	Slide 125: Moral: Just say no to data races

