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Lecture Goals

• What is sequential consistency and why is it important?

• What is a data race, and what is data-race-free execution?

• Subtleties of data races and memory models
• Why taking advantage of “harmless races” is almost certainly a bad idea

• Lockset analysis for data race detection

• Happens-before based data race detection



SEQUENTIAL CONSISTENCY



First things First
Assigning Semantics to Concurrent Programs

• What does this program mean?

• Sequential Consistency [Lamport ‘79]

Program behavior  =  set of its thread interleavings

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;  



Recall: Semantics of WHILE|| from midterm



Exercise 1: 

• What are the possible final values for variables `t` and `u` after 
running this program, assuming sequential consistency?

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;  



Sequential Consistency Explained

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;  // F = 1 implies X is initialized

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

t=1 implies u=1



Naturalness of Sequential Consistency

• Sequential Consistency provides two crucial abstractions

• Program Order Abstraction

• Instructions execute in the order specified in the program

   A ; B

                   means “Execute A and then B”

• Shared Memory Abstraction

• Memory behaves as a global array, with reads and writes done immediately

• We implicitly assume these abstractions for sequential programs
• As we will see, we can only rely on these abstractions under certain conditions in a 

concurrent context



WHAT IS A DATA RACE ?



• The term “data race” is often overloaded to mean different 
things

• Precise definition is important in designing a tool



Data Race

• Two accesses conflict if 

• they access the same memory location, and 

• at least one of them is a write
   Write X – Write X

   Write X – Read X

   Read X – Write X

   Read X – Read X

• A data race is a pair of conflicting accesses that happen 
concurrently   



“Happen Concurrently”

• A and B happen concurrently if they occur in different 
threads, and

• there exists a sequentially consistent execution in which they 
occur one after the other

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently



Data races are almost always no good

• What are some consequences of a data race, even when 
assuming sequential consistency?



Unintended Sharing

• Threads accidentally sharing data that should not be global

• Solution: Change allocation (e.g., stack var or static thread-local)

Thread 1

temp = …;
…
… = temp;

Thread 2

temp = …;
…
… = temp;

Data Race



Atomicity Violation

• When code that is meant to execute atomically (that is, perform a 

single undivisible operation) suffers interference from some other thread

• Solution: Surround critical sections with locks

Thread 1

void Bank::Update(int a) 
{
    int t = bal;
    bal = t + a;
}

Thread 2

void Bank::Withdraw(int a) 
{
    int t = bal;
    bal = t - a;
}

Data Race



Ordering Violation

• Incorrect signaling between a producer and a consumer

• Solution: Reorder operations or use synchronization (e.g., signals)

Thread 1

work = null;
CreateThread (Thread 2);
work = new Work();

Thread 2

ConsumeWork( work );

Data Race



But,….

• How do you think ”locks” are implemented?

• Atomic compare-and-swap (CAS)

AcquireLock(lock){
  while (!CAS (lock, 0, 1)) {}
}

ReleaseLock(lock) {
    lock = 0;
}

Data Race ?



Acceptable Concurrent Conflicting Accesses

• Implementing synchronization (such as locks) usually requires 
concurrent conflicting accesses to shared memory

• Innovative uses of shared memory
• Fast reads

• Double-checked locking

• Lazy initialization

• Setting dirty flag

• ...

• Need mechanisms to distinguish these from erroneous conflicts



Solution: Programmer Annotation

• Programmer explicitly annotates variables as “synchronization”
• Java – volatile keyword

• C++ – std::atomic<> types



Data Race 

• Two accesses conflict if 

• they access the same memory location, and 

• at least one of them is a write

• A data race is a pair of concurrent conflicting accesses to 
locations not annotated as synchronization 
• Recall: “Concurrent” means there exists a sequentially consistent 

execution in which they happen one after the other

• Equivalent definition: a pair of conflicting accesses where one 
doesn’t happen before the other

• Program order

• Synchronization order

• Acquire/release, wait-notify, fork-join, volatile read/write



Exercise 2: Is there a data race?
If so, on what variable(s)?

T1:

data = 42;

flag = true;

T2:

if (flag)

  t = data;

Initially:

int data = 0;

boolean flag = false;

21



Is there a data race?

T1:

data = 42;

flag = true;

T2:

if (flag)

  t = data;

Initially:

int data = 0;

boolean flag = false;

22



Consider regular compiler 
transformations/optimizations

Before:

data = 42;

flag = true;

23

After:

flag = true;

data = 42;



Possible behavior

T1:

flag = true;

data = 42;

T2:

if (flag)

  t = data;

Initially:

int data = 0;

boolean flag = false;

24



Consider regular compiler 
transformations/optimizations

Before:

if (flag)

  t = data;

25

After:

t2 = data;

if (flag)

  t = t2;



Possible behavior

T1:

data = 42;

flag = true;

T2:

t2 = data;

if (flag)

  t = t2;

Initially:

int data = 0;

boolean flag = false;

26



How do we fix this?

T1:

data = 42;

flag = true;

T2:

if (flag)

  t = data;

Initially:

int data = 0;

boolean flag = false;

27



Using “synchronized” keyword in Java

T1:

data = ...;

synchronized (m) {

  flag = true;

}

T2:

boolean f;

synchronized (m) {

  f = flag;

}

if (f)

  ... = data;

Initially:

int data = 0;

boolean flag = false;

28



… Implemented via locks

T1:

data = ...;

acquire(m);

  flag = true;

release(m);

T2:

boolean f;

acquire(m);

  f = flag;

release(m);

if (f)

  ... = data;

Initially:

int data = 0;

boolean flag = false;

29



Using “volatile” keyword in Java

T1:

data = ...;

flag = true;

T2:

if (flag)

  ... = data;

Initially:

int data = 0;

volatile boolean flag = false;

30



Data Race vs Race Conditions

• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program 

• Due to events, device interaction, thread interleaving, …

• Race conditions can be very bad!







Data Race vs Race Conditions

• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program 

• Due to events, device interaction, thread interleaving, …

• Race conditions can be very bad!

• Data races are neither sufficient nor necessary for a race 
condition
• Data race is a good symptom for a race condition 



DATA-RACE-FREEDOM SIMPLIFIES 
LANGUAGE SEMANTICS



Advantage of Eliminating All Data Races

• Defining semantics for concurrent programs becomes 
surprisingly easy

• In the presence of compiler and hardware optimizations



Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly shared

OK for sequential programs
if X is not modified between L1 and L3



Can Break Sequential Consistent Semantics

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X = 1;
M2: Y = 1;

M1: X = 1;
M2: Y = 1;

u == 1 ➔ v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

Data Race



Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly shared

OK for sequential programs
if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data race on Y



Key Observation [Adve& Hill '90 ]

• Many sequentially valid (compiler & hardware) transformations 
also preserve sequential consistency

• Provided the program is data-race free

• Forms the basis for modern C++, Java semantics

  data-race-free → sequential consistency

          otherwise → weak/undefined semantics



DATA RACE DETECTION



Overview of Data Race Detection Techniques

• Static data race detection

• Dynamic data race detection

• Lock-set

• Happen-before

• Race Fuzzing



Static Data Race Detection 

• Advantages:
• Reason about all inputs/interleavings

• No run-time overhead

• Adapt well-understood static-analysis techniques

• Annotations to document concurrency invariants

• Example Tools:
• RCC/Java  type-based

• ESC/Java  "functional verification"
    (theorem proving-based)



Static Data Race Detection

• Advantages:
• Reason about all inputs/interleavings

• No run-time overhead

• Adapt well-understood static-analysis techniques

• Annotations to document concurrency invariants

• Disadvantages of static:
• Undecidable...

• Tools produce “false positives” or “false negatives”

• May be slow, require programmer annotations

• May be hard to interpret results



Dynamic Data Race Detection

• Advantages
• Can avoid “false positives”

• No need for language extensions or sophisticated static analysis

• Disadvantages

• Run-time overhead (5-20x for best tools)

• Memory overhead for analysis state 

• Reasons only about observed executions

• sensitive to test coverage

• (some generalization possible...)



Tradeoffs: Static vs Dynamic

• Coverage
• generalize to additional traces?

• Soundness

• all reported warnings are actually races

• Completeness
• every actual data race is reported

• Overhead

• run-time slowdown

• memory footprint

• Programmer overhead



Definition Refresh

• A data race is a pair of concurrent conflicting accesses to 
unannotated locations (i.e. not locks or volatile variables)

• Problem for dynamic data race detection 
• Very difficult to catch the two accesses executing concurrently 

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently



Solution

• Lockset
• Infer data races through violation of locking discipline

• Happens-before
• Infer data races by generalizing a trace to a set of traces with the same 

happens-before relation



LOCKSET ALGORITHM
Eraser [Savage et.al. ‘97]



Lockset Algorithm Overview

• Checks a sufficient condition for data-race-freedom

• Consistent locking discipline

• Every data structure is protected by a single lock

• All accesses to the data structure made while holding the lock

• Example:
// Remove a received packet
AcquireLock( RecvQueueLk );
pkt = RecvQueue.RemoveTop();
ReleaseLock( RecvQueueLk );

… // process pkt

// Insert into processed
AcquireLock( ProcQueueLk );
ProcQueue.Insert(pkt);
ReleaseLock( ProcQueueLk );

RecvQueue is 
consistently protected 

by RecvQueueLk

ProcQueue is 
consistently protected 

by ProcQueueLk



Inferring the Locking Discipline

• How do we know which lock protects what?
• Asking the programmer is cumbersome

• Solution: Infer from the program 
AcquireLock( A );
AcquireLock( B );
x ++;
ReleaseLock( B );
ReleaseLock( A );

AcquireLock( B );
AcquireLock( C );
x ++;
ReleaseLock( C );
ReleaseLock( B );

X is protected by
A, or B, or both

X is protected by 
B, or C, or both

X is protected
 by B



LockSet Algorithm

• Two data structures:

• LocksHeld( t ) = set of locks held currently by thread t

• Initially set to Empty

• LockSet( x ) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread t acquires lock l

• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑  𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑  𝑡 ∪ {𝑙}

• When thread t releases lock l

• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑  𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑  𝑡 − {𝑙}

• When thread t accesses location x

• 𝐿𝑜𝑐𝑘𝑆𝑒𝑡  𝑥 =  𝐿𝑜𝑐𝑘𝑆𝑒𝑡  𝑥 ∩ 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑( 𝑡 )

• Report “data race” when LockSet( x ) becomes empty



LockSet Algorithm
• No warnings → no data races on the current execution

• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race

• Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0

AcquireLock( SendQueueLk );
SendQueue.Enqueue(pkt);
ReleaseLock( SendQueueLk ); // Process a packet

AcquireLock( SendQueueLk );
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock( SendQueueLk );



LockSet Algorithm
• No warnings → no data races on the current execution

• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race

• Object read-shared after thread-local initialization

A = new A();
A.f = 0;

// publish A
globalA = A; f = globalA.f;



Maintain A State Machine Per Location

Init
Local 
to T

Thread T
Read /
Write

Read
Shared

Thread T’
Read

Any Thread
Read

Thread T
Read /
Write

Shared

Any Thread
Write

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm



LockSet Algorithm

• State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock( WrongLk );
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock( WrongLk );

// Process a packet
AcquireLock( SendQueueLk );
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock( SendQueueLk );



LockSet Algorithm

• Does not handle locations consistently protected by different 
locks during a particular execution

// Remove a received packet
AcquireLock( RecvQueueLk );
pkt = RecvQueue.RemoveTop();
ReleaseLock( RecvQueueLk );

… // process pkt

// Insert into processed
AcquireLock( ProcQueueLk );
ProcQueue.Insert(pkt);
ReleaseLock( ProcQueueLk );

Pkt is protected by 
RecvQueueLk

Pkt is thread local

Pkt is protected by
ProcQueueLk



HAPPENS-BEFORE



Happens-Before Relation [Lamport '78]

• A concurrent execution is a partial-order determined by communication 
events

• The program cannot “observe” the order of concurrent non-communicating 
events

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++?



Happens-Before Relation [Lamport '78]

• A concurrent execution is a partial-order determined by communication 
events

• The program cannot “observe” the order of concurrent non-communicating 
events

• Both executions form the same happens-before relation

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++



Constructing the Happens-Before Relation

• Program order
• Total order of thread 

instructions

• Synchronization order
• Total order of accesses to the 

same synchronization

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock



Happens-Before Relation And Data Races

• If all conflicting accesses are 
ordered by happens-before

• → data-race-free execution

• → All linearizations of partial-order 
are valid program executions

• If there exists conflicting accesses 
not ordered

• → a data race

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock



IMPLEMENTING HAPPENS-
BEFORE ANALYSES



1

2

3

4

5 5

1

2

3

4

5

4

3

2

1

6 6 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 7 7

vol = 1

tmp = vol

acq(m)

Precise 
Happens-
Before 



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

2 0 0

2 0 0

2 0 0 1 3 0

0 1 0

0 1 0

1 1 0

1 2 0

1 1 1

0 0 1

0 0 1

0 0 1

0 0 1

2 2 0 1 3 0 1 1 2

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

2 2 1 1 3 0 1 1 2

vol = 1

tmp = vol

acq(m)



Exercise on vector clocks and partial 
ordering

 VC = [t1, t2,… tN]

What is VCa ⊑ VCb?

What is VCa ⊔ VCb?

What are sufficient and necessary conditions 
for there to be a data race between two 
accesses having vector clocks VCa and VCb?



4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A     B A     B A     B A     B A     B

A’s local time B’s local time



4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A     B A     B A     B A     B A     B

B-steps with B-time ≤ 1 
happen before
A’s next step



x = 0

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

Write-Write Check: Wx    VCA ?

Read-Write Check:  Rx    VCA ?

4 13 0

4 10 1

?  Yes

?  Yes

O(n) time



x = 0

4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1



x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1



x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1



x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1



x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx    VCA ? 

 

5 1 ?  No4 8

O(n) time



VectorClocks for Data-Race Detection

 Sound
– Warning  ➔  data-race exists

 Complete
– No warnings  ➔  data-race-free execution

 Performance

– slowdowns > 50x

– memory overhead

81



FUZZING TECHNIQUES



Fuzzing can also find data races

 Idea: Catch races “red handed”. Loosely,

– Pause thread execution when writing to X

– If another thread reaches a statement that 
reads or writes X then we have observed 
concurrent conflicting accesses! 

Analysis does not care about locks or other 
synchronization primitives. 

– Consistent locking will make the above 
condition impossible to trigger.



Race Fuzzer

 Run-time Overhead

– No overhead of tracking synchronization, 
locks, or vector clocks (hey, that rhymes!)

– But pausing threads forever can lead to 
deadlocks

– Pausing threads for a short while (e.g. 
sleep(1000)) adds overhead for every write 
access, though this approach is very effective.

 Solution idea:

– Instead of “pausing” thread, just deprioritize 
it in the OS scheduler



Race Fuzzing

 Randomized scheduling still depends on luck

 Can do systematic schedule exploration with a 
bounded number of context switches

 Sophisticated randomized algorithms like PCT 
can give probabilistic guarantees of uncovering 
concurrency bugs with a bounded number of 
“ordering constraints”.

Or use heuristics, e.g. TSVD uses an initial run 
to infer “likely” happens-before relationships 
based on wall-clock timestamps to select 
candidate “racing pairs”.



Lecture Takeaways

 Data race: two accesses, one of which is a write, 
with no happens-before relation
 Data races are subtle

– Compiler optimizations, hardware reordering make 
racy program behavior hard to predict

– Better to synchronize consistently
 Lockset analysis: intuitive, fast

– But many false warnings
 Happens-before data race detection

– Sound; OK speed if carefully implemented
 Stress testing

– Sound and fast; Can catch data races red handed
– Needs assumptions to prune the space of possible 

races
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Memory Model (JMM)
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Valid due to lack 
of happens-before 

ordering
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Assertion 
failure!



Behaviors Allowed in JMM

117

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Assertion 
failure!
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Requires returning future value or 
reordering to trigger the assertion failure



Can this assert trigger in JVMs?
Do you think the JMM allows it?
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
  r3 = y;
  x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
  r3 = y;
  x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

JMM disallows 
r2 == 1 because 

of causality 
requirements

 – Ševčík and Aspinall, ECOOP, 2008
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
  r3 = r2;
  x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
  r3 = r2;
  x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination

r2 = y;
If (r2 == 1)
  x = r2;
else x = 1;
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
  r3 = r2;
  x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
  x = r2;
else x = 1;
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
  r3 = r2;
  x = r3;
} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
  x = r2;
else x = 1;

Assertion 
failure 

possible!



Moral: Just say no to data races

Don’t try hacks based on the memory model

• Unless you are as good as Doug Lea

• Or you have formalized the memory model rules in a tool
• And even then, are the rules right?

Author of java.util.concurrent
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