CONCURRENCY:

SEQUENTIAL CONSISTENCY,
DATA RACES, AND DYNAMIC ANALYSES

Lecture by Rohan Padhye
17-355/17-665/17-819: Program Analysis

Material from past lectures by Jonathan Aldrich, based in large part on slides by John
Erickson, Stephen Freund, Madan Musuvathi, Mike Bond, and Man Cao

Lecture Goals

- What is sequential consistency and why is it important?

- What is a data race, and what is data-race-free execution?

- Subtleties of data races and memory models
- Why taking advantage of “harmless races” is almost certainly a bad idea

- Lockset analysis for data race detection

- Happens-before based data race detection

SEQUENTIAL CONSISTENCY

First things First
Assigning Semantics to Concurrent Programs

intX=F=0;

X il ; t
F 1145 u

B
X;
- What does this program mean?

- Sequential Consistency [Lamport ‘79]
Program behavior = set of its thread interleavings

Recall: Semantics of WHILE,, from midterm

(E,S1) —(E',S7)
(E,S1;S2) — (E',S1;52)

small-seq-congruence

[1-
<E: SklP: 82> - <E: 82> SIS

(E,51) = (E',5))
CE, 51 || S2) = CE', 51 || 82

(E,Sy) —(E',S)
(E,81 || S2) = (E',S1 || 55

small-par-congruence-1

small-par-congruence-2

(B, skip [skip) — (B, skip) " TP

Exercise 1:

- What are the possible final values for variables 't and 'u after
running this program, assuming sequential consistency?

Sequential Consistency Explained

int X=F=0; //F=1implies X is initialized

X 1
F i

F;
X;

F=1; t = F; (S | | x a; X = 1;
(< 9E; | [F B; = X; | x =hq; u =; F=1;
u=X; [u:X,]\F:l, F =1; F=1; u=X;
t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

pu—
—

t=1 implies u=1

Naturalness of Sequential Consistency

- Sequential Consistency provides two crucial abstractions

« Program Order Abstraction
- Instructions execute in the order specified in the program
A:B
means “Execute A and then B”

- Shared Memory Abstraction

- Memory behaves as a global array, with reads and writes done immediately

- We implicitly assume these abstractions for sequential programs

- As we will see, we can only rely on these abstractions under certain conditions in a
concurrent context

WHAT IS A DATA RACE ?

- The term “data race” is often overloaded to mean different
things

- Precise definition is important in designing a tool

Data Race

- Two accesses conflict if

- they access the same memory location, and

- at least one of them is a write
Write X — Write X
Write X — Read X
Read X — Write X
Read X — Read X

- A data race is a pair of conflicting accesses that happen
concurrently

“Happen Concurrently”

- A and B happen concurrently if they occur in different
threads, and

- there exists a sequentially consistent execution in which they
occur one after the other

X =1, t Sk ;
F=l; u = X;
X = ;
F S ; Happen
Concurrently
t =BF;

Data races are almost always no good

- What are some consequences of a data race, even when
assuming sequential consistency?

-
Unintended Sharing

- Threads accidentally sharing data that should not be global

- Solution: Change allocation (e.g., stack var or static thread-local)
4 N\ - N\

Thread 1

temp = ..;

Data Race

Atomicity Violation

- When code that is meant to execute atomically (that is, perform a
single undivisible operation) suffers interference from some other thread

» Solution: Surround critical sections with locks

Thread 1 Thread 2

void Bank::Update(int a) void Bank: :Withdraw(int a)
{ | {

i ; int t = bal;
bal = t - a;

Data Race

Ordering Violation

- Incorrect signaling between a producer and a consumer
- Solution: Reorder operations or use synchronization (e.g., signals)

T ™

Thread 1

work = null;
CreateThread (Thread 2);—
work = new Work();

.

—> Thread 2

ConsumeWork(work);

Data Race

-
But,....

- How do you think "locks” are implemented?
- Atomic compare-and-swap (CAS)

4) O)

Releaselock(lock) {

AcquirelLock(lock){ lock 2NGE

while (!CAS SiiCkJ 0, 1)) {} i }
}

v - A

Data Race ?

Acceptable Concurrent Conflicting Accesses

- Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

- Innovative uses of shared memory
- Fast reads
+ Double-checked locking
» Lazy initialization
- Setting dirty flag

- Need mechanisms to distinguish these from erroneous conflicts

Solution: Programmer Annotation

- Programmer explicitly annotates variables as “synchronization”
- Java — volatile keyword
« C++ — std::atomic<> types

Data Race

- Two accesses conflict if
- they access the same memory location, and
- at least one of them is a write

- A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization

- Recall: “Concurrent” means there exists a sequentially consistent
execution in which they happen one after the other

- Equivalent definition: a pair of conflicting accesses where one
doesn’t happen before the other
> Program order

- Synchronization order
 Acquire/release, wait-notify, fork-join, volatile read/write

Exercise 2: Is there a data race?
If so, on what variable(s)?

Initially:
int data = 0;

boolean flag = false;

T1: T2:

data = 42, if (flag)
flag = true;
= i t = data;

21

e
Is there a data race?

Initially:
int data = 0;

boolean flag = false;

T1: T2
data = 42; SRy = G SR)
B s S T e T e e

22

Consider regular compiler
transformations/optimizations

Before: After:

data =427 flag = true;
flag = true; gata = tdZy

23

e
Possible behavior

Initially:
int data = 0;

boolean flag = false;

T1: T2:
flag = true;
ErCERag)

t = data;

data

42 ;

24

-
Consider regular compiler

transformations/optimizations

Before: After:
caasE Rl te g e AT e s
Eirsniga s rfaiElag)

PR P

25

e
Possible behavior

Initially:
int data = 0;

boolean flag = false;

T1l: T2:

t2 = data;
data = 42;
flag = true;

ErCERag)

26

How do we fix this?

Initially:
int data = 0;

boolean flag = false;

T1: T2:

if (flag)
t = data;

flag = true;

27

-
Using “synchronized” keyword in Java

Initially:
intrdatas =03
boolean flag = false;

T1: T2:

daba iETnsgy
synchronized (m) {
flag = true;
} boolean f£f;
synchronized (m) ({

f = flag;

28

-
... Implemented via locks

Initially:
int data = 0;

boolean flag = false;

T1: T2:

daba iETnsgy
acquire (m) ;
flag = true;

release (m) ; boolean f;
Happens-before acquire (m) ;
rebﬁongﬂp £ = flag;

release (m) ;
TR

= data;

29

-
Using “volatile” keyword in Java

Initially:
int data = 0;

volatile boolean flag = false;

data = ...;
flag = true;
Hap
Pens.
= "’”"'Onshizefore if (flag)

. = data;

30

Data Race vs Race Conditions

- Data Races != Race Conditions
« Confusing terminology

- Race Condition
- Any timing error in the program
- Due to events, device interaction, thread interleaving, ...
» Race conditions can be very bad!

Data Race vs Race Conditions

- Data Races != Race Conditions
« Confusing terminology

- Race Condition
- Any timing error in the program
- Due to events, device interaction, thread interleaving, ...
» Race conditions can be very bad!

- Data races are neither sufficient nor necessary for a race
condition

- Data race is a good symptom for a race condition

DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS

-
Advantage of Eliminating All Data Races

- Defining semantics for concurrent programs becomes
surprisingly easy

- In the presence of compiler and hardware optimizations

-
Can A Compiler Do This?

= X*5; L1: t = X*5;
=Y; T L2: u =Y,;
= X*5; L3: v = t;

t,u,v are local variables

OK for sequential programs X,Y are possibly shared

if X is not modified between L1 and L3

Can Break Sequential Consistent Semantics

Init: X=Y=0; Init: X=Y=0;

. — Y. . — YkEG.
L1: t X*5; M1: 8. L1: t X*5; M1: X 1;
L2: UNSERG; M2: Yi= 1 L2: UNSEN; M2: Y = 1
L3: v = X*5; _— L3: v = t; ¥ y

‘ -~ P ,

1

u==1=H\v==5 possiblyu==1&&v==0

Data Race

-
Can A Compiler Do This?

L1: t = X*5;
—_— L2: u =Y;
L3: v = t;

t,u,v are local variables

OK for sequential programs X,Y are possibly shared

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no dataraceonY

e
Key Observation [Adve& Hill '90]

- Many sequentially valid (compiler & hardware) transformations
also preserve sequential consistency

- Provided the program is data-race free

- Forms the basis for modern C++, Java semantics
data-race-free = sequential consistency
otherwise 2 weak/undefined semantics

DATA RACE DETECTION

Overview of Data Race Detection Techniques

- Static data race detection

- Dynamic data race detection

* Lock-set
- Happen-before

« Race Fuzzing

Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
« No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Example Tools:

- RCC/Java type-based

- ESC/Java "functional verification"
(theorem proving-based)

Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
« No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Disadvantages of static:
- Undecidable...
- Tools produce “false positives” or “false negatives”
- May be slow, require programmer annotations
- May be hard to interpret results

Dynamic Data Race Detection

- Advantages
- Can avoid “false positives”
- No need for language extensions or sophisticated static analysis

- Disadvantages
« Run-time overhead (5-20x for best tools)
- Memory overhead for analysis state

- Reasons only about observed executions
 sensitive to test coverage
* (some generalization possible...)

Tradeoffs: Static vs Dynamic

- Coverage
- generalize to additional traces?
- Soundness
- all reported warnings are actually races
- Completeness
- every actual data race is reported
- Overhead

* run-time slowdown
- memory footprint

- Programmer overhead

Definition Refresh

- A data race is a pair of concurrent conflicting accesses to
unannotated locations (i.e. not locks or volatile variables)

X =1; o — |
F =1; u = X;
1.

X =wi;

F S ; Happen
Concurrently
- Problem for dynamic data race detection
- Very difficult to catch the two accesses executing concurrently

Solution

- Lockset
- Infer data races through violation of locking discipline

- Happens-before

- Infer data races by generalizing a trace to a set of traces with the same
happens-before relation

LOCKSET ALGORITHM

Eraser [Savage et.al. ‘97]

Lockset Algorithm Overview

« Checks a sufficient condition for data-race-freedom
 Consistent locking discipline

- Every data structure is protected by a single lock
- All accesses to the data structure made while holding the lock

- Example:
// Remove a received packet !Rechueue is
AcquireLock(RecvQueuelk); consistently protected
pkt = RecvQueue.Remuverupy;; by RecvQueuelk

ReleaselLock(RecvQueuelLk);

.. // process pkt

ProcQueue is
consistently protected
by ProcQueuelLk

// Insert into processed

AcquireLock(ProcQueuelLk);
ProcQue 5
ReleaselLock(ProcQueuelk);

Inferring the Locking Discipline

- How do we know which lock protects what?

+ Asking the programmer is cumbersome

- Solution: Infer from the program
AcquireLock(A); X is protected by}

AcquireLock(B); A, or B, or both
X ++3

Releaselock(B); __[X is protected 1

ReleaseLock(A); by B
X is protected by
B, or C, or both

AcquireLock(B);
AcquireLock(C):
X J

ReleaselLock(C);
ReleaselLock(B);

-
LockSet Algorithm

- Two data structures:

- LocksHeld(t) = set of locks held currently by thread t
* Initially set to Empty

- LockSet(x) = set of locks that could potentially be protecting x
* Initially set to the universal set

- When thread t acquires lock |

- LocksHeld(t) = LocksHeld(t) U {l}
- When thread t releases lock |

- LocksHeld(t) = LocksHeld(t) — {l}

- When thread t accesses location x
- LockSet(x) = LockSet(x) n LocksHeld(t)

- Report “data race” when LockSet(x) becomes empty

-
LockSet Algorithm

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
« Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = @

AcquireLock(SendQueuelk);
SendQueue.Enqueue (pkt);

ReleaselLock(SendQueuelk); ﬁéngggfizk? EZEESEeueLk);

pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(SendQueuelk);

-
LockSet Algorithm

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
- Object read-shared after thread-local initialization

-

new A(); A

w
0;

// publish A
globalA = A; |f = globalA. f;

N 4

=
]

A
A.

Maintain A State Machine Per Location

Thread T
Read /

Thread T’

Read
Read
Shared

Any Thread
Write

Any Thread
Read

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm

-
LockSet Algorithm

- State machine misses some data races

//7/ Initialize a packet N\
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock(WronglLk);
pkt = SendQueue.Top(); ~ R
pkt.Consumed = 1; // Process a packet
ReleaseLock(WronglLk); AcquireLock(SendQueuelk);
' . pkt = SendQueue.Top();

pkt.Consumed = 1;
ReleaselLock(SendQueuelk);

L /

LockSet Algorithm

- Does not handle locations consistently protected by different
locks during a particular execution

// Remove a received packet Pkt is protected by
AcquireLock(RecvQueuelk); RecvQueuelk

pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueuelk);

4———_—————_____________J/

.. // process pkt L Pkt is thread local

// Insert into processed

AcquireLock(ProcQueuelLk);

ProcQueue.Insert(pkt);
ReleaseLock(ProcQueuelLk); Pkt is protected by
ProcQueuelk

HAPPENS-BEFORE

Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication
events

- The program cannot “observe” the order of concurrent non-communicating
events

Releasel.ock Releasel.ock <:2*

AcquireLock AcquireLlock

x++

yre x++

-
Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication

events

» The program cannot “observe” the order of concurrent non-communicating

events

Releasel.ock

v

<i> Acquirelock

\ 4

Releasel.ock

4

- Both executions form the same happens-before relation

AcquireLock

y++

Constructing the Happens-Before Relation

- Program order

- Total order of thread Recepsalock
instructions
- Synchronization order () AcquireLock
- Total order of accesses to the
same synchronization (y? y++
Releasel.ock

AcquireLock

Happens-Before Relation And Data Races

- If all conflicting accesses are
ordered by happens-before ReleaseLock

- = data-race-free execution

- 2 All I!nearlzatlons of pa.rtlal—order Q o R
are valid program executions

y++
- If there exists conflicting accesses é

not ordered
X++ <%>

AcquireLock

Releasel.ock

« = adata race

IMPLEMENTING HAPPENS-
BEFORE ANALYSES

Precise
Happens -
Before

1 1 1
rel(m)
2 \ 2 2
| | acq(m) |
3 3 3
| rel(m)
4 4 \ 4

01]0 0
rel(m)

010 0

01]0 |

010 |

0|0 /
tmp = vol

410 1

Vacq(m) <

415 1

210 0
acq(m)
310 0
| rel(m)
410 0
leolzl
510 1
6] 0 |

0] 1

02

013

0| 4
acq(m)

315

| rel(m)

316

3|7

1

010 0

rel(m)
01]0 0
OO0 1
010 |
0|0 /
tmp = vol
410 1
lacq(m) <
4135 1

110 0

210 0
acq(m)

310 0

| rel(m)

410 0

leol =1

510]

6| 0]

710]

011

0|2

0|3

0| 4
acq(m)

315

| rel(m)

316

3| 7

01]0 0
rel(m)

010 0

010 |

010 |

0|0 /
tmp = vol

410 1

Vacq(m) <

4 5 1

210 0
acq(m)
310 0
| rel(m)
410 0
leolzl
510 1
6] 0 1

A4

010 0

rel(m)
01]0 0
0O 1
01]0 1
00 /
tmp = vol
410 1
lacq(m) s
4 135 1

1 {0 0

210 0
acq(m)

3 (0 0

| rel(m)

410 0

leol =1

510 1

6|0 |

A4

0 1

02

013

0| 4
acq(m)

305

| rel(m)

316

3|7

010 0

010 0

010 |

010 |

00 /
tmp = vol

210 |

Vacq(m) <

2 |1 1

1|0 0

110 0
acq(m)

110 0

310 1

310 1

011
0] 1
0] 1
0] 1
acq(m)
1|1
1| 2
1|2

Exercise on vector clocks and partial
ordering

o VC = [1'1, Tz,... TN]
» What is VC, € VC,?
* What is VC, U VC.?

* What are sufficient and necessary conditions
for there to be a data race between two
accesses having vector clocks VC,and VC,?

VC, VC,
241 2 A8
A B A |B

A's local time B's local time :

VC, VC;
4 /\1 2 8
A |B A B

B-steps with B-time < 1
happen before
A’'s next step

Write-Write Check: W VC, ?

3o [4]1|? Yes
Read-Write Check: R, VC,?
0|1 | |4]1]|? Yes

O(n) time

Ve, VCq Ly W, R,

[
u
[
[
I 1 ~ ~ - Pa ~ a ~ ~ ~

x = 0 | Write-Read Check: W;; VC,?
4] 1 418|E[5]1]?2 No
rel (m)
511 O(n) time
511 41 8 4 (1 410 01
x =1
511 41 8 4 (1 41 8 01

VectorClocks for Data-Race Detection

* Sound
- Warning = data-race exists

* Complete
- No warnings = data-race-free execution

e Performance
- slowdowns > 50x
- memory overhead

81

FUZZING TECHNIQUES

Fuzzing can also find data races

* Idea: Catch races "red handed". Loosely,
- Pause thread execution when writing to X

- If another thread reaches a statement that
reads or writes X then we have observed
concurrent conflicting accesses!

* Analysis does not care about locks or other
synchronization primitives.

- Consistent locking will make the above
condition impossible to trigger.

Race Fuzzer

e Run-time Overhead

- No overhead of tracking synchronization,
IOCkS, or vector clocks (hey, that rhymes!)

- But pausing threads forever can lead to
deadlocks

- Pausing threads for a short while (e.g.
sleep(1000)) adds overhead for every write
access, though this approach is very effective.

e Solution idea:

- Instead of "pausing” thread, just deprioritize
it in the OS scheduler

Race Fuzzing

* Randomized scheduling still depends on luck

* Can do systematic schedule exploration with a
bounded number of context switches

* Sophisticated randomized algorithms like PCT
can give probabilistic guarantees of uncovering
concurrency bugs with a bounded number of
“ordering constraints”.

* Or use heuristics, e.g. TSVD uses an initial run
to infer "likely” happens-before relationships

based on wall-clock timestamps to select
candidate “racing pairs"”.

Lecture Takeaways

* Data race: two accesses, one of which is a write,
with no happens-before relation

 Data races are subtle

- Compiler optimizations, hardware reordering make
racy program behavior hard to predict

- Better to synchronize consistently
* Lockset analysis: intuitive, fast
- But many false warnings
* Happens-before data race detection
- Sound; OK speed if carefully implemented
* Stress testing
- Sound and fast; Can catch data races red handed

- Needs assumptions to prune the space of possible
races

Key References

Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About
Shared Variables or Memory Models", CACM 2012.

Leslie Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System", CACM 1978.

Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types
for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Tulian Neamtiu, "Finding and
Reproducing Heisenbugs in Concurrent Programs"”, OSDI 2008.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References

Friedemann Mattern, "Virtual Time and Global States of
Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

Cormac Flanagan and Stephen N. Freund, " The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References

e John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk
Olynyk, "Effective Data-Race Detection for the Kernel", OSDI
2010.

e Madanlal Musuvathi, Sebastian Burckhardt, Pravesh Kothari, and
Santosh Nagarakatte, "A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs", ASPLOS 2010.

e Michael D. Bond, Katherine E. Coons, Kathryn S. McKinley, "PACER:
proportional detection of data races", PLDI 2010.

e Cormac Flanagan and Stephen N. Freund, " Adversarial memory for
detecting destructive races", PLDI 2010.

 Koushik Sen. "Race directed random testing of concurrent
programs”. PLDI 2010.

e Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. "Efficient scalable thread-safety-violation detection:
finding thousands of concurrency bugs during testing”, SOSP 2019.

Bonus slides on the Java
Memory Model (TMM)

Behaviors Allowed in JIMM

int data = flag = 0;

T1 T2
r = data;
flag=1;
while (flag == 0) {}
data =1;

assertr==0;

Behaviors Allowed in JIMM

int data = flag = 0;

T1 T2
r = data;
flag=1;
while (flag == 0) {}
data =1;

assertr==0;

Behaviors Allowed in JIMM

int data = flag = 0;

latest value
T1 T2
r = data;
flag=1;
future value while (flag == 0) {}

data = 1;

assertr==0;

Behaviors Allowed in JIMM

int data = flag = 0;

latest value
T1 T2
r = data;
flag=1;
future value while (flag == 0) {}

data = 1;

=== .
Sy : Valid due to lack

of happens-before

ordering

Behaviors Allowed in JIMM

int data = flag = 0;

latest value
T1 T2
r = data;
flag=1;
future value while (flag == 0) {}

data = 1;

assertr==0;

Assertion
failure!

Behaviors Allowed in JIMM

int data = flag = 0;

T1 T2
r = data; while (flag == 0) {}
flag = 1; data=1;
assert r==0;

Assertion
failure!

Behaviors Allowed in JIMM

int data = flag = 0;

T1 i
r = data; while (flag == 0) {}
flag = 1; data=1;
assert r == 0;

Requires returning future value or

reordering to trigger the assertion failure

Can this assert trigger in JVMs?
Do you think the JMM allows it?

intx=y=0;
T1 T2
rl =x; r2=y,
y=rl; if (r2==1){
3=y;
X=r3;
}else x=1;

assertr2==0;

The JVM and the JIMM

intx=y=0;

T1 T2
r2=y;
if (r2 == 1) {
3=y;
JMM disallows X =r3;
r2 == 1 because jelse x=1;
of causality

requirements At ea)

Vi

— Sev¢ik and Aspinall, ECOOP, 2008

The JVM and the JViSsyads

redundant read
elimination

n @

r2=y; o.
if (r2==1){
r3=r2,

X =1r3;
}else x=1;

intx=y=0;

assertr2==0;

The JVM and the JNVIBSHHRAE

redundant read
elimination

TzQ

2= y, r2 =y,
if (r2==1){ » If (r2 ==

TR aah = b

r3=r2; X=1r2;
X =r3; else x = 1;
lelse x=1;

assertr2==0;

The JVM and the)

intx=y=0;

However, in a
JVM, after
redundant read
elimination

TzQ

r2 = y, r2=y;
if (r2==1){ » If (r2 ==

r3 =r2; X =r2;
X =r3; else x = 1;
}else x=1; '
r2=y;
) S e

assertr2==0;

The JVM and the JViSsyads

redundant read
intx=y=0;

elimination
T1 T2 ’
rl=x; r2=y, r2=y;
y=rl; if (r2 = JJ{" HUZ
o A =r2;
X =r3; eIsex=1;

}else x=1; ‘

r2=y;

Assertion =1
: assertr2 ==0; Xz
failure

possible!

Moral: Just say no to data races

Don’t try hacks based on the memory model
- Unless you are as good as Doug Lea

Author of java.util.concurrent

 Or you have formalized the memory model rules in a tool
- And even then, are the rules right?

	Slide 1: ConcurRency: Sequential Consistency, DATA RACES, and DYNAMIC ANALYSES
	Slide 2: Lecture Goals
	Slide 3: Sequential Consistency
	Slide 4: First things First Assigning Semantics to Concurrent Programs
	Slide 5: Recall: Semantics of WHILE|| from midterm
	Slide 6: Exercise 1:
	Slide 7: Sequential Consistency Explained
	Slide 8: Naturalness of Sequential Consistency
	Slide 9: What is a Data Race ?
	Slide 10
	Slide 11: Data Race
	Slide 12: “Happen Concurrently”
	Slide 13: Data races are almost always no good
	Slide 14: Unintended Sharing
	Slide 15: Atomicity Violation
	Slide 16: Ordering Violation
	Slide 17: But,….
	Slide 18: Acceptable Concurrent Conflicting Accesses
	Slide 19: Solution: Programmer Annotation
	Slide 20: Data Race
	Slide 21: Exercise 2: Is there a data race? If so, on what variable(s)?
	Slide 22: Is there a data race?
	Slide 23: Consider regular compiler transformations/optimizations
	Slide 24: Possible behavior
	Slide 25: Consider regular compiler transformations/optimizations
	Slide 26: Possible behavior
	Slide 27: How do we fix this?
	Slide 28: Using “synchronized” keyword in Java
	Slide 29: … Implemented via locks
	Slide 30: Using “volatile” keyword in Java
	Slide 31: Data Race vs Race Conditions
	Slide 32
	Slide 33
	Slide 34: Data Race vs Race Conditions
	Slide 35: Data-Race-Freedom simplifies language Semantics
	Slide 36: Advantage of Eliminating All Data Races
	Slide 37: Can A Compiler Do This?
	Slide 38: Can Break Sequential Consistent Semantics
	Slide 39: Can A Compiler Do This?
	Slide 40: Key Observation [Adve& Hill '90]
	Slide 41: Data Race Detection
	Slide 42: Overview of Data Race Detection Techniques
	Slide 43: Static Data Race Detection
	Slide 44: Static Data Race Detection
	Slide 45: Dynamic Data Race Detection
	Slide 46: Tradeoffs: Static vs Dynamic
	Slide 47: Definition Refresh
	Slide 48: Solution
	Slide 49: Lockset Algorithm
	Slide 50: Lockset Algorithm Overview
	Slide 51: Inferring the Locking Discipline
	Slide 52: LockSet Algorithm
	Slide 53: LockSet Algorithm
	Slide 54: LockSet Algorithm
	Slide 55: Maintain A State Machine Per Location
	Slide 56: LockSet Algorithm
	Slide 57: LockSet Algorithm
	Slide 58: Happens-Before
	Slide 59: Happens-Before Relation [Lamport '78]
	Slide 60: Happens-Before Relation [Lamport '78]
	Slide 61: Constructing the Happens-Before Relation
	Slide 62: Happens-Before Relation And Data Races
	Slide 64: IMPLEMENTING HAPPENS-BEFORE ANALYSES
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Exercise on vector clocks and partial ordering
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: VectorClocks for Data-Race Detection
	Slide 103: Fuzzing Techniques
	Slide 104: Fuzzing can also find data races
	Slide 105: Race Fuzzer
	Slide 106: Race Fuzzing
	Slide 107: Lecture Takeaways
	Slide 108: Key References
	Slide 109: Key References
	Slide 110: Key References
	Slide 111: Bonus slides on the Java Memory Model (JMM)
	Slide 112: Behaviors Allowed in JMM
	Slide 113: Behaviors Allowed in JMM
	Slide 114: Behaviors Allowed in JMM
	Slide 115: Behaviors Allowed in JMM
	Slide 116: Behaviors Allowed in JMM
	Slide 117: Behaviors Allowed in JMM
	Slide 118: Behaviors Allowed in JMM
	Slide 119: Can this assert trigger in JVMs? Do you think the JMM allows it?
	Slide 120: The JVM and the JMM
	Slide 121: The JVM and the JMM
	Slide 122: The JVM and the JMM
	Slide 123: The JVM and the JMM
	Slide 124: The JVM and the JMM
	Slide 125: Moral: Just say no to data races

