CONCURRENCY:

SEQUENTIAL CONSISTENCY,
DATA RACES, AND DYNAMIC ANALYSES

Lecture by Rohan Padhye
17-355/17-665/17-819: Program Analysis

Material from past lectures by Jonathan Aldrich, based in large part on slides by John
Erickson, Stephen Freund, Madan Musuvathi, Mike Bond, and Man Cao



Lecture Goals

- What is sequential consistency and why is it important?

- What is a data race, and what is data-race-free execution?

- Subtleties of data races and memory models
- Why taking advantage of “harmless races” is almost certainly a bad idea

- Lockset analysis for data race detection

- Happens-before based data race detection



SEQUENTIAL CONSISTENCY




First things First
Assigning Semantics to Concurrent Programs

intX=F=0;

X il ; t
F 1145 u

B
X;
- What does this program mean?

- Sequential Consistency [Lamport ‘79]
Program behavior = set of its thread interleavings



Recall: Semantics of WHILE,, from midterm

(E,S1) —(E',S7)
(E,S1;S2) — (E',S1;52)

small-seq-congruence

[1-
<E: SklP: 82> - <E: 82> SIS

(E,51) = (E',5))
CE, 51 || S2) = CE', 51 || 82

(E,Sy) —(E',S)
(E,81 || S2) = (E',S1 || 55

small-par-congruence-1

small-par-congruence-2

(B, skip [ skip) — (B, skip) " TP



Exercise 1:

- What are the possible final values for variables 't and 'u after
running this program, assuming sequential consistency?



Sequential Consistency Explained

int X=F=0; //F=1implies X is initialized

X 1
F i

F;
X;

F=1; t = F; (S | | x a; X = 1;
(< 9E; | [ F B; = X; | x =hq; u =; F=1;
u=X; [u:X,]\F:l, F =1; F=1; u=X;
t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

pu—
—

t=1 implies u=1



Naturalness of Sequential Consistency

- Sequential Consistency provides two crucial abstractions

« Program Order Abstraction
- Instructions execute in the order specified in the program
A:B
means “Execute A and then B”

- Shared Memory Abstraction

- Memory behaves as a global array, with reads and writes done immediately

- We implicitly assume these abstractions for sequential programs

- As we will see, we can only rely on these abstractions under certain conditions in a
concurrent context



WHAT IS A DATA RACE ?




- The term “data race” is often overloaded to mean different
things

- Precise definition is important in designing a tool



Data Race

- Two accesses conflict if

- they access the same memory location, and

- at least one of them is a write
Write X — Write X
Write X — Read X
Read X — Write X
Read X — Read X

- A data race is a pair of conflicting accesses that happen
concurrently



“Happen Concurrently”

- A and B happen concurrently if they occur in different
threads, and

- there exists a sequentially consistent execution in which they
occur one after the other

X =1, t Sk ;
F=l; u = X;
X = ;
F S ; Happen
Concurrently
t =BF;



Data races are almost always no good

- What are some consequences of a data race, even when
assuming sequential consistency?



-
Unintended Sharing

- Threads accidentally sharing data that should not be global

- Solution: Change allocation (e.g., stack var or static thread-local)
4 N\ - N\

Thread 1

temp = ..;

Data Race




Atomicity Violation

- When code that is meant to execute atomically (that is, perform a
single undivisible operation) suffers interference from some other thread

» Solution: Surround critical sections with locks

Thread 1 Thread 2

void Bank::Update(int a) void Bank: :Withdraw(int a)
{ | {

i ; int t = bal;
bal = t - a;

Data Race




Ordering Violation

- Incorrect signaling between a producer and a consumer
- Solution: Reorder operations or use synchronization (e.g., signals)

T ™

Thread 1

work = null;
CreateThread (Thread 2);—
work = new Work();

.

—> Thread 2

ConsumeWork( work );

Data Race



-
But,....

- How do you think "locks” are implemented?
- Atomic compare-and-swap (CAS)

4 ) O )

Releaselock(lock) {

AcquirelLock(lock){ lock 2NGE

while (!CAS SiiCkJ 0, 1)) {} i }
}

v - A

Data Race ?




Acceptable Concurrent Conflicting Accesses

- Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

- Innovative uses of shared memory
- Fast reads
+ Double-checked locking
» Lazy initialization
- Setting dirty flag

- Need mechanisms to distinguish these from erroneous conflicts



Solution: Programmer Annotation

- Programmer explicitly annotates variables as “synchronization”
- Java — volatile keyword
« C++ — std::atomic<> types



Data Race

- Two accesses conflict if
- they access the same memory location, and
- at least one of them is a write

- A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization

- Recall: “Concurrent” means there exists a sequentially consistent
execution in which they happen one after the other

- Equivalent definition: a pair of conflicting accesses where one
doesn’t happen before the other
> Program order

- Synchronization order
 Acquire/release, wait-notify, fork-join, volatile read/write



Exercise 2: Is there a data race?
If so, on what variable(s)?

Initially:
int data = 0;

boolean flag = false;

T1: T2:

data = 42, if (flag)
flag = true;
= i t = data;

21



e
Is there a data race?

Initially:
int data = 0;

boolean flag = false;

T1: T2
data = 42; SRy = G SR )
B s S T e T e e

22



Consider regular compiler
transformations/optimizations

Before: After:

data =427 flag = true;
flag = true; gata = tdZy

23



e
Possible behavior

Initially:
int data = 0;

boolean flag = false;

T1: T2:
flag = true;
ErCERag)

t = data;

data

42 ;

24



-
Consider regular compiler

transformations/optimizations

Before: After:
caasE Rl te g e AT e s
Eirsniga s rfaiElag)

PR P

25



e
Possible behavior

Initially:
int data = 0;

boolean flag = false;

T1l: T2:

t2 = data;
data = 42;
flag = true;

ErCERag)

26



How do we fix this?

Initially:
int data = 0;

boolean flag = false;

T1: T2:

if (flag)
t = data;

flag = true;

27



-
Using “synchronized” keyword in Java

Initially:
intrdatas =03
boolean flag = false;

T1: T2:

daba iETnsgy
synchronized (m) {
flag = true;
} boolean f£f;
synchronized (m) ({

f = flag;

28



-
... Implemented via locks

Initially:
int data = 0;

boolean flag = false;

T1: T2:

daba iETnsgy
acquire (m) ;
flag = true;

release (m) ; boolean f;
Happens-before acquire (m) ;
rebﬁongﬂp £ = flag;

release (m) ;
TR

= data;

29



-
Using “volatile” keyword in Java

Initially:
int data = 0;

volatile boolean flag = false;

data = ...;
flag = true;
Hap
Pens.
= "’”"'Onshizefore if (flag)

. = data;

30



Data Race vs Race Conditions

- Data Races != Race Conditions
« Confusing terminology

- Race Condition
- Any timing error in the program
- Due to events, device interaction, thread interleaving, ...
» Race conditions can be very bad!









Data Race vs Race Conditions

- Data Races != Race Conditions
« Confusing terminology

- Race Condition
- Any timing error in the program
- Due to events, device interaction, thread interleaving, ...
» Race conditions can be very bad!

- Data races are neither sufficient nor necessary for a race
condition

- Data race is a good symptom for a race condition



DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS




-
Advantage of Eliminating All Data Races

- Defining semantics for concurrent programs becomes
surprisingly easy

- In the presence of compiler and hardware optimizations



-
Can A Compiler Do This?

= X*5; L1: t = X*5;
=Y; T L2: u =Y,;
= X*5; L3: v = t;

t,u,v are local variables

OK for sequential programs X,Y are possibly shared

if X is not modified between L1 and L3



Can Break Sequential Consistent Semantics

Init: X=Y=0; Init: X=Y=0;

. — Y. . — YkEG.
L1: t X*5; M1: 8. L1: t X*5; M1: X 1;
L2: UNSERG; M2: Yi= 1 L2: UNSEN; M2: Y = 1
L3: v = X*5; _— L3: v = t; ¥ y

‘ -~ P ,

1

u==1=H\v==5 possiblyu==1&&v==0

Data Race



-
Can A Compiler Do This?

L1: t = X*5;
—_— L2: u =Y;
L3: v = t;

t,u,v are local variables

OK for sequential programs X,Y are possibly shared

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no dataraceonY



e
Key Observation [Adve& Hill '90 ]

- Many sequentially valid (compiler & hardware) transformations
also preserve sequential consistency

- Provided the program is data-race free

- Forms the basis for modern C++, Java semantics
data-race-free = sequential consistency
otherwise 2 weak/undefined semantics



DATA RACE DETECTION




Overview of Data Race Detection Techniques

- Static data race detection

- Dynamic data race detection

* Lock-set
- Happen-before

« Race Fuzzing



Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
« No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Example Tools:

- RCC/Java type-based

- ESC/Java "functional verification"
(theorem proving-based)



Static Data Race Detection

- Advantages:
- Reason about all inputs/interleavings
« No run-time overhead
- Adapt well-understood static-analysis techniques
- Annotations to document concurrency invariants

- Disadvantages of static:
- Undecidable...
- Tools produce “false positives” or “false negatives”
- May be slow, require programmer annotations
- May be hard to interpret results



Dynamic Data Race Detection

- Advantages
- Can avoid “false positives”
- No need for language extensions or sophisticated static analysis

- Disadvantages
« Run-time overhead (5-20x for best tools)
- Memory overhead for analysis state

- Reasons only about observed executions
 sensitive to test coverage
* (some generalization possible...)



Tradeoffs: Static vs Dynamic

- Coverage
- generalize to additional traces?
- Soundness
- all reported warnings are actually races
- Completeness
- every actual data race is reported
- Overhead

* run-time slowdown
- memory footprint

- Programmer overhead



Definition Refresh

- A data race is a pair of concurrent conflicting accesses to
unannotated locations (i.e. not locks or volatile variables)

X =1; o — |
F =1; u = X;
1.

X =wi;

F S ; Happen
Concurrently
- Problem for dynamic data race detection
- Very difficult to catch the two accesses executing concurrently



Solution

- Lockset
- Infer data races through violation of locking discipline

- Happens-before

- Infer data races by generalizing a trace to a set of traces with the same
happens-before relation



LOCKSET ALGORITHM

Eraser [Savage et.al. ‘97]



Lockset Algorithm Overview

« Checks a sufficient condition for data-race-freedom
 Consistent locking discipline

- Every data structure is protected by a single lock
- All accesses to the data structure made while holding the lock

- Example:
// Remove a received packet !Rechueue is
AcquireLock( RecvQueuelk ); consistently protected
pkt = RecvQueue.Remuverupy;; by RecvQueuelk

ReleaselLock( RecvQueuelLk );

.. // process pkt

ProcQueue is
consistently protected
by ProcQueuelLk

// Insert into processed

AcquireLock( ProcQueuelLk );
ProcQue 5
ReleaselLock( ProcQueuelk );




Inferring the Locking Discipline

- How do we know which lock protects what?

+ Asking the programmer is cumbersome

- Solution: Infer from the program
AcquireLock( A ); X is protected by}

AcquireLock( B ); A, or B, or both
X ++3

Releaselock( B ); __[ X is protected 1

ReleaseLock( A ); by B
X is protected by
B, or C, or both

AcquireLock( B );
AcquireLock( C ):
X J

ReleaselLock( C );
ReleaselLock( B );




-
LockSet Algorithm

- Two data structures:

- LocksHeld( t ) = set of locks held currently by thread t
* Initially set to Empty

- LockSet( x ) = set of locks that could potentially be protecting x
* Initially set to the universal set

- When thread t acquires lock |

- LocksHeld(t) = LocksHeld(t) U {l}
- When thread t releases lock |

- LocksHeld(t) = LocksHeld(t) — {l}

- When thread t accesses location x
- LockSet(x) = LockSet(x) n LocksHeld(t)

- Report “data race” when LockSet( x ) becomes empty



-
LockSet Algorithm

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
« Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = @

AcquireLock( SendQueuelk );
SendQueue.Enqueue (pkt);

ReleaselLock( SendQueuelk ); ﬁéngggfizk? EZEESEeueLk );

pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock( SendQueuelk );



-
LockSet Algorithm

- No warnings = no data races on the current execution
- The program followed consistent locking discipline in this execution

- Warnings does not imply a data race
- Object read-shared after thread-local initialization

-

new A(); A

w
0;

// publish A
globalA = A; |f = globalA. f;

N 4

=
]

A
A.




Maintain A State Machine Per Location

Thread T
Read /

Thread T’

Read
Read
Shared

Any Thread
Write

Any Thread
Read

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm



-
LockSet Algorithm

- State machine misses some data races

//7/ Initialize a packet N\
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock( WronglLk );
pkt = SendQueue.Top(); ~ R
pkt.Consumed = 1; // Process a packet
ReleaseLock( WronglLk ); AcquireLock( SendQueuelk );
' . pkt = SendQueue.Top();

pkt.Consumed = 1;
ReleaselLock( SendQueuelk );

L /




LockSet Algorithm

- Does not handle locations consistently protected by different
locks during a particular execution

// Remove a received packet Pkt is protected by
AcquireLock( RecvQueuelk ); RecvQueuelk

pkt = RecvQueue.RemoveTop();
ReleaseLock( RecvQueuelk );

4———_—————_____________J/

.. // process pkt L Pkt is thread local

// Insert into processed

AcquireLock( ProcQueuelLk );

ProcQueue.Insert(pkt);
ReleaseLock( ProcQueuelLk ); Pkt is protected by
ProcQueuelk




HAPPENS-BEFORE




Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication
events

- The program cannot “observe” the order of concurrent non-communicating
events

Releasel.ock Releasel.ock <:2\\*

AcquireLock AcquireLlock

x++

yre x++



-
Happens-Before Relation [Lamport '78]

- A concurrent execution is a partial-order determined by communication

events

» The program cannot “observe” the order of concurrent non-communicating

events

Releasel.ock

v

<i> Acquirelock

\ 4

Releasel.ock

4

- Both executions form the same happens-before relation

AcquireLock

y++



Constructing the Happens-Before Relation

- Program order

- Total order of thread Recepsalock
instructions
- Synchronization order () AcquireLock
- Total order of accesses to the
same synchronization (y? y++
Releasel.ock

AcquireLock




Happens-Before Relation And Data Races

- If all conflicting accesses are
ordered by happens-before ReleaseLock

- = data-race-free execution

- 2 All I!nearlzatlons of pa.rtlal—order Q o R
are valid program executions

y++
- If there exists conflicting accesses é

not ordered
X++ <%>

AcquireLock

Releasel.ock

« = adata race




IMPLEMENTING HAPPENS-
BEFORE ANALYSES




Precise
Happens -
Before

1 1 1
rel(m)
2 \ 2 2
| | acq(m) |
3 3 3
| rel(m)
4 4 \ 4




01]0 0
rel(m)

010 0

01]0 |

010 |

0|0 /
tmp = vol

410 1

Vacq(m) <

415 1

210 0
acq(m)
310 0
| rel(m)
410 0
leolzl
510 1
6] 0 |

0] 1

02

013

0| 4
acq(m)

315

| rel(m)

316

3|7



1

010 0

rel(m)
01]0 0
OO0 1
010 |
0|0 /
tmp = vol
410 1
lacq(m) <
4135 1

110 0

210 0
acq(m)

310 0

| rel(m)

410 0

leol =1

510 ]

6| 0 ]

710 ]

011

0|2

0|3

0| 4
acq(m)

315

| rel(m)

316

3| 7



01]0 0
rel(m)

010 0

010 |

010 |

0|0 /
tmp = vol

410 1

Vacq(m) <

4 5 1

210 0
acq(m)
310 0
| rel(m)
410 0
leolzl
510 1
6] 0 1

A4



010 0

rel(m)
01]0 0
0O 1
01]0 1
00 /
tmp = vol
410 1
lacq(m) s
4 135 1

1 {0 0

210 0
acq(m)

3 (0 0

| rel(m)

410 0

leol =1

510 1

6|0 |

A4

0 1

02

013

0| 4
acq(m)

305

| rel(m)

316

3|7



010 0

010 0

010 |

010 |

00 /
tmp = vol

210 |

Vacq(m) <

2 |1 1

1|0 0

110 0
acq(m)

110 0

310 1

310 1

011
0] 1
0] 1
0] 1
acq(m)
1|1
1| 2
1|2



Exercise on vector clocks and partial
ordering

o VC = [1'1, Tz,... TN]
» What is VC, € VC,?
* What is VC, U VC.?

* What are sufficient and necessary conditions
for there to be a data race between two
accesses having vector clocks VC,and VC,?



VC, VC,
241 2 A8
A B A |B

A's local time  B's local time :




VC, VC;
4 /\1 2 8
A |B A B

B-steps with B-time < 1
happen before
A’'s next step




Write-Write Check: W VC, ?

3o [4]1|? Yes
Read-Write Check: R, VC,?
0|1 | |4]1]|? Yes

O(n) time
















Ve, VCq Ly W, R,

[
u
[
[
I 1 ~ ~ - Pa ~ a ~ ~ ~

x = 0 | Write-Read Check: W;; VC,?
4] 1 418|E[5]1]?2 No
rel (m)
511 O(n) time
511 41 8 4 (1 410 01
x =1
511 41 8 4 (1 41 8 01




VectorClocks for Data-Race Detection

* Sound
- Warning = data-race exists

* Complete
- No warnings = data-race-free execution

e Performance
- slowdowns > 50x
- memory overhead

81



FUZZING TECHNIQUES




Fuzzing can also find data races

* Idea: Catch races "red handed". Loosely,
- Pause thread execution when writing to X

- If another thread reaches a statement that
reads or writes X then we have observed
concurrent conflicting accesses!

* Analysis does not care about locks or other
synchronization primitives.

- Consistent locking will make the above
condition impossible to trigger.



Race Fuzzer

e Run-time Overhead

- No overhead of tracking synchronization,
IOCkS, or vector clocks (hey, that rhymes!)

- But pausing threads forever can lead to
deadlocks

- Pausing threads for a short while (e.g.
sleep(1000)) adds overhead for every write
access, though this approach is very effective.

e Solution idea:

- Instead of "pausing” thread, just deprioritize
it in the OS scheduler



Race Fuzzing

* Randomized scheduling still depends on luck

* Can do systematic schedule exploration with a
bounded number of context switches

* Sophisticated randomized algorithms like PCT
can give probabilistic guarantees of uncovering
concurrency bugs with a bounded number of
“ordering constraints”.

* Or use heuristics, e.g. TSVD uses an initial run
to infer "likely” happens-before relationships

based on wall-clock timestamps to select
candidate “racing pairs"”.



Lecture Takeaways

* Data race: two accesses, one of which is a write,
with no happens-before relation

 Data races are subtle

- Compiler optimizations, hardware reordering make
racy program behavior hard to predict

- Better to synchronize consistently
* Lockset analysis: intuitive, fast
- But many false warnings
* Happens-before data race detection
- Sound; OK speed if carefully implemented
* Stress testing
- Sound and fast; Can catch data races red handed

- Needs assumptions to prune the space of possible
races
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Bonus slides on the Java
Memory Model (TMM)



Behaviors Allowed in JIMM

int data = flag = 0;

T1 T2
r = data;
flag=1;
while (flag == 0) {}
data =1;

assertr==0;



Behaviors Allowed in JIMM

int data = flag = 0;

T1 T2
r = data;
flag=1;
while (flag == 0) {}
data =1;

assertr==0;



Behaviors Allowed in JIMM

int data = flag = 0;

latest value
T1 T2
r = data;
flag=1;
future value while (flag == 0) {}

data = 1;

assertr==0;



Behaviors Allowed in JIMM

int data = flag = 0;

latest value
T1 T2
r = data;
flag=1;
future value while (flag == 0) {}

data = 1;

=== .
Sy : Valid due to lack

of happens-before

ordering



Behaviors Allowed in JIMM

int data = flag = 0;

latest value
T1 T2
r = data;
flag=1;
future value while (flag == 0) {}

data = 1;

assertr==0;

Assertion
failure!



Behaviors Allowed in JIMM

int data = flag = 0;

T1 T2
r = data; while (flag == 0) {}
flag = 1; data=1;
assert r==0;

Assertion
failure!



Behaviors Allowed in JIMM

int data = flag = 0;

T1 i
r = data; while (flag == 0) {}
flag = 1; data=1;
assert r == 0;

Requires returning future value or

reordering to trigger the assertion failure




Can this assert trigger in JVMs?
Do you think the JMM allows it?

intx=y=0;
T1 T2
rl =x; r2=y,
y=rl; if (r2==1){
3=y;
X=r3;
}else x=1;

assertr2==0;



The JVM and the JIMM

intx=y=0;

T1 T2
r2=y;
if (r2 == 1) {
3=y;
JMM disallows X =r3;
r2 == 1 because jelse x=1;
of causality

requirements At ea )

Vi

— Sev¢ik and Aspinall, ECOOP, 2008



The JVM and the JViSsyads

redundant read
elimination

n @

r2=y; o.
if (r2==1){
r3=r2,

X =1r3;
}else x=1;

intx=y=0;

assertr2==0;



The JVM and the JNVIBSHHRAE

redundant read
elimination

TzQ

2= y, r2 =y,
if (r2==1){ » If (r2 ==

TR aah = b

r3=r2; X=1r2;
X =r3; else x = 1;
lelse x=1;

assertr2==0;



The JVM and the )

intx=y=0;

However, in a
JVM, after
redundant read
elimination

TzQ

r2 = y, r2=y;
if (r2==1){ » If (r2 ==

r3 =r2; X =r2;
X =r3; else x = 1;
}else x=1; '
r2=y;
) S e

assertr2==0;



The JVM and the JViSsyads
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Moral: Just say no to data races

Don’t try hacks based on the memory model
- Unless you are as good as Doug Lea

Author of java.util.concurrent

 Or you have formalized the memory model rules in a tool
- And even then, are the rules right?
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