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Sometimes we need to reason about formulas

• Verification: verification condition generation turns a Hoare triple 
into a formula
• Is that formula valid (i.e. always true – the precondition always implies the 

postcondition)?

• Symbolic execution: builds path conditions as execution proceeds
• Is that path condition satisfiable (i.e. potentially true given the right 

inputs)?

• More applications: test generation, program synthesis, program 
repair, …

• Can tools automatically reason about formula validity or 
satisfiability?



First step: reduce validity to 
satisfiability
• Formula validity: x . F(x) is true  

• (x stands for the free variables of F)

• Equivalent to x . F(x) is false

• Equivalent to x . F(x) is true
• This is asking whether F(x) is satisfiable



Satisfiability modulo theories

• Satisfiability is for Boolean formulas
• Variables, Boolean operators such as   

• Verification conditions, path conditions, etc. have other 
elements
• Integer, real constants and variables

• Operations over numbers like < > + -

• We can enhance satisfiability checkers to incorporate theories
• Presburger arithmetic can prove that 2 * x = x + x

• The theory of arrays can prove that assigning x[y] to 3 and then looking 
up x[y] yields 3



Satisfiability (SAT) solving

• Let’s start by considering Boolean formulas: variables with   

• First step: convert to conjuctive normal form (CNF)
• A conjunction of disjunctions of (possibly negated) variables

• If formula is not in CNF, we transform it: use De Morgan’s laws, the 
double negative law, and the distributive laws:



SAT solving goal

• Prove that a formula is satisfiable by giving a satisfying assignment
• A map from formula variables to Boolean values

• Example:                is satisfiable
• A satisfying assignment is 

• Example:                     is unsatisfiable
• No satisfying assignment exists



SAT is NP-complete

• Cook-Levin theorem [1970s] proved NP-completeness
• In NP, because can verify a satisfying assignment by evaluating the 

formula

• NP-hard by reduction to polynomial-time acceptance by a 
nondeterministic Turing machine

• Simple solution approach: try all satisfying assignments
• Takes O(2n) time for an n-variable formula



DPLL: Efficient SAT solving in practice

• Developed by Davis, Putnam, Logemann, and Loveland [1961]
• Still exponential in theory, but on many problems is much faster than trying all 

assignments

• Key innovation #1: unit propagation

• In this example, a appears alone.  It must be true.
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DPLL: Efficient SAT solving in practice

• Developed by Davis, Putnam, Logemann, and Loveland
• Still exponential in theory, but on many problems is much faster than trying all 

assignments

• Key innovation #1: unit propagation

• Key innovation #2: pure literal elimination

• This example is simplified from the previous slide, based on unit propagation

• Note that b appears only positively.  Setting b to true can only help us, not hurt 
us!



DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

• Still exponential in theory, but on many problems is much faster than trying all 
assignments

• Key innovation #1: unit propagation

• Key innovation #2: pure literal elimination

• When we are stuck, we guess (and backtrack later if necessary)

• Let’s guess that c is true!  Then we get

• We apply unit propagation to set d=true.  Unfortunately the result is 
so we failed to find a satisfying assignment



DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

• Still exponential in theory, but on many problems is much faster than trying all 
assignments

• Key innovation #1: unit propagation

• Key innovation #2: pure literal elimination

• When we are stuck, we guess (and backtrack later if necessary)

• Now let’s guess that c is false!  Then we get

• We apply unit propagation to set d=true and the formula is satisfied



The Full DPLL Algorithm

Heuristic: Apply unit 
propagation first because it 
creates more units and pure 
literals.  Pure literal assignment 
only removes entire clauses.

Try both assignments of the 
chosen literal.  If we assume  
is short-circuiting, then this 
implements backtracking.



Practice: Applying DPLL

• Show how DPLL (unit propagation, pure literal elimination, 
choosing a literal, backtracking) applies to the following 
formula:



From SAT to SMT

• We’d like to check the satisfiability of formulas like 

• Includes arithmetic and the theory of unknown functions
• E.g. we assume f is some mathematical function

• We may have solvers for each theory, but how can we combine them?
• Note that separate satisfying assignments for two theories might not be 

compatible!

• SMT’s solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell



Nelson-Oppen replaces expressions 
with variables



Now we have formulas in two theories
• Theory of uninterpreted functions

• Congruence closure: 

• Theory of arithmetic

Theories communicate 
using equalities



Combining Theories using DPLL
• Consider the following source formula:

• We can convert each subformula to a variable: 

• Now we solve with DPLL and get a satisfying assignment: 

• We ask the theories if this assignment is feasible
• The theory of arithmetic says no.  p1, p2, and p4 can’t all be true, because p1 and p2 

together imply y ≥ 1

• We add a clause expressing this and run DPLL again on

•  One satisfying assignment is 
• We check this against the theories and it succeeds



Details on equality

• Sometimes a theory doesn’t tell us an equality, but rather 
that one of two equalities are true
• That’s fine—we just encode this as a formula and give it to DPLL.  

For example:

• DPLL will choose which equalities are true, and we try those with 
other theories.



SMT uses a variant of DPLL called DPLL(T)

• T is for Theory

• Differences vs. plain DPLL
• DPLL(T) doesn’t use pure literal elimination

• Variables may not be independent when they represent a formula – so setting 
x to true can hurt you, even when x is a pure literal!

• For example:
• Can’t just set x > 10 to true, because x < 7 will be false

• DPLL(T) supports adding clauses to the formula
• To represent knowledge gained from theories, as mentioned above



How to solve arithmetic

• Approach #1: Substitution
• If we have y = x+1, we can eliminate y by substituting it with x+1 

everywhere

• High school math!

• Approach #2: Fourier-Motzkin Elimination
• Applies when we have inequalities rather than equalities

• Transform all inequalities mentioning x into A ≤ x or x ≤ B

• Then eliminate X, replacing the inequalities with A ≤ B
• Detail: if there are multiple inequalities, we conjoin the cross product of them



Modern tooling: SMT-lib



Modern tooling: Z3 w/ SMT-lib
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