
Lecture 16:
Satisfiability Modulo Theories

17-355/17-665/17-819: Program Analysis

Rohan Padhye

October 30, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sometimes we need to reason about formulas

• Verification: verification condition generation turns a Hoare triple
into a formula
• Is that formula valid (i.e. always true – the precondition always implies the

postcondition)?

• Symbolic execution: builds path conditions as execution proceeds
• Is that path condition satisfiable (i.e. potentially true given the right

inputs)?

• More applications: test generation, program synthesis, program
repair, …

• Can tools automatically reason about formula validity or
satisfiability?

First step: reduce validity to
satisfiability
• Formula validity: x . F(x) is true

• (x stands for the free variables of F)

• Equivalent to x . F(x) is false

• Equivalent to x . F(x) is true
• This is asking whether F(x) is satisfiable

Satisfiability modulo theories

• Satisfiability is for Boolean formulas
• Variables, Boolean operators such as   

• Verification conditions, path conditions, etc. have other
elements
• Integer, real constants and variables

• Operations over numbers like < > + -

• We can enhance satisfiability checkers to incorporate theories
• Presburger arithmetic can prove that 2 * x = x + x

• The theory of arrays can prove that assigning x[y] to 3 and then looking
up x[y] yields 3

Satisfiability (SAT) solving

• Let’s start by considering Boolean formulas: variables with   

• First step: convert to conjuctive normal form (CNF)
• A conjunction of disjunctions of (possibly negated) variables

• If formula is not in CNF, we transform it: use De Morgan’s laws, the
double negative law, and the distributive laws:

SAT solving goal

• Prove that a formula is satisfiable by giving a satisfying assignment
• A map from formula variables to Boolean values

• Example: is satisfiable
• A satisfying assignment is

• Example: is unsatisfiable
• No satisfying assignment exists

SAT is NP-complete

• Cook-Levin theorem [1970s] proved NP-completeness
• In NP, because can verify a satisfying assignment by evaluating the

formula

• NP-hard by reduction to polynomial-time acceptance by a
nondeterministic Turing machine

• Simple solution approach: try all satisfying assignments
• Takes O(2n) time for an n-variable formula

DPLL: Efficient SAT solving in practice

• Developed by Davis, Putnam, Logemann, and Loveland [1961]
• Still exponential in theory, but on many problems is much faster than trying all

assignments

• Key innovation #1: unit propagation

• In this example, a appears alone. It must be true.

X X X

DPLL: Efficient SAT solving in practice

• Developed by Davis, Putnam, Logemann, and Loveland
• Still exponential in theory, but on many problems is much faster than trying all

assignments

• Key innovation #1: unit propagation

• Key innovation #2: pure literal elimination

• This example is simplified from the previous slide, based on unit propagation

• Note that b appears only positively. Setting b to true can only help us, not hurt
us!

DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

• Still exponential in theory, but on many problems is much faster than trying all
assignments

• Key innovation #1: unit propagation

• Key innovation #2: pure literal elimination

• When we are stuck, we guess (and backtrack later if necessary)

• Let’s guess that c is true! Then we get

• We apply unit propagation to set d=true. Unfortunately the result is
so we failed to find a satisfying assignment

DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

• Still exponential in theory, but on many problems is much faster than trying all
assignments

• Key innovation #1: unit propagation

• Key innovation #2: pure literal elimination

• When we are stuck, we guess (and backtrack later if necessary)

• Now let’s guess that c is false! Then we get

• We apply unit propagation to set d=true and the formula is satisfied

The Full DPLL Algorithm

Heuristic: Apply unit
propagation first because it
creates more units and pure
literals. Pure literal assignment
only removes entire clauses.

Try both assignments of the
chosen literal. If we assume 
is short-circuiting, then this
implements backtracking.

Practice: Applying DPLL

• Show how DPLL (unit propagation, pure literal elimination,
choosing a literal, backtracking) applies to the following
formula:

From SAT to SMT

• We’d like to check the satisfiability of formulas like

• Includes arithmetic and the theory of unknown functions
• E.g. we assume f is some mathematical function

• We may have solvers for each theory, but how can we combine them?
• Note that separate satisfying assignments for two theories might not be

compatible!

• SMT’s solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell

Nelson-Oppen replaces expressions
with variables

Now we have formulas in two theories
• Theory of uninterpreted functions

• Congruence closure:

• Theory of arithmetic

Theories communicate
using equalities

Combining Theories using DPLL
• Consider the following source formula:

• We can convert each subformula to a variable:

• Now we solve with DPLL and get a satisfying assignment:

• We ask the theories if this assignment is feasible
• The theory of arithmetic says no. p1, p2, and p4 can’t all be true, because p1 and p2

together imply y ≥ 1

• We add a clause expressing this and run DPLL again on

• One satisfying assignment is
• We check this against the theories and it succeeds

Details on equality

• Sometimes a theory doesn’t tell us an equality, but rather
that one of two equalities are true
• That’s fine—we just encode this as a formula and give it to DPLL.

For example:

• DPLL will choose which equalities are true, and we try those with
other theories.

SMT uses a variant of DPLL called DPLL(T)

• T is for Theory

• Differences vs. plain DPLL
• DPLL(T) doesn’t use pure literal elimination

• Variables may not be independent when they represent a formula – so setting
x to true can hurt you, even when x is a pure literal!

• For example:
• Can’t just set x > 10 to true, because x < 7 will be false

• DPLL(T) supports adding clauses to the formula
• To represent knowledge gained from theories, as mentioned above

How to solve arithmetic

• Approach #1: Substitution
• If we have y = x+1, we can eliminate y by substituting it with x+1

everywhere

• High school math!

• Approach #2: Fourier-Motzkin Elimination
• Applies when we have inequalities rather than equalities

• Transform all inequalities mentioning x into A ≤ x or x ≤ B

• Then eliminate X, replacing the inequalities with A ≤ B
• Detail: if there are multiple inequalities, we conjoin the cross product of them

Modern tooling: SMT-lib

Modern tooling: Z3 w/ SMT-lib

	Slide 1: Lecture 16: Satisfiability Modulo Theories
	Slide 2: Sometimes we need to reason about formulas
	Slide 3: First step: reduce validity to satisfiability
	Slide 4: Satisfiability modulo theories
	Slide 5: Satisfiability (SAT) solving
	Slide 6: SAT solving goal
	Slide 7: SAT is NP-complete
	Slide 8: DPLL: Efficient SAT solving in practice
	Slide 9: DPLL: Efficient SAT solving in practice
	Slide 10: DPLL: Efficient SAT solving in practice
	Slide 11: DPLL: Efficient SAT solving in practice
	Slide 12: The Full DPLL Algorithm
	Slide 13: Practice: Applying DPLL
	Slide 14: From SAT to SMT
	Slide 15: Nelson-Oppen replaces expressions with variables
	Slide 16: Now we have formulas in two theories
	Slide 17: Combining Theories using DPLL
	Slide 18: Details on equality
	Slide 19: SMT uses a variant of DPLL called DPLL(T)
	Slide 20: How to solve arithmetic
	Slide 21: Modern tooling: SMT-lib
	Slide 22: Modern tooling: Z3 w/ SMT-lib

