Lecture 16:
Satisfiability Modulo Theories

17-355/17-665/17-819: Program Analysis
Rohan Padhye
October 30, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

SSD Software and Soc t | . %[illﬂ)f;l gie
th&mlu&ummmzatgﬁmmﬂaﬁﬁ

Systems D epar tm
iversity

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Sometimes we need to reason about formulas

» Verification: verification condition generation turns a Hoare triple
into a formula
« Is that formula valid (i.e. always true - the precondition always implies the
postcondition)?
« Symbolic execution: builds path conditions as execution proceeds
* Is that path condition satisfiable (i.e. potentially true given the right
inputs)?

- More applications: test generation, program synthesis, program
repair, ...

» Can tools automatically reason about formula validity or
satisfiability?

Software and Societal Carnegie.
33 D Mellon

Systems Department . .
University

First step: reduce validity to
satisfiability
e Formula validity: Vx . F(x) is true

* (x stands for the free variables of F)

« Equivalent to —3x . F(x) is false

« Equivalent to —3x . =F(x) is true
 This is asking whether —F(x) is satisfiable

Carnegie

D Software and Societal
Systems Department Me.!lon :
University

Satisfiability modulo theories

» Satisfiability is for Boolean formulas
» Variables, Boolean operators such as A v —

» Verification conditions, path conditions, etc. have other
elements
* Integer, real constants and variables
« Operations over numbers like <> + -

« We can enhance satisfiability checkers to incorporate theories

 Presburger arithmetic can prove that 2 * x = x + x

« The theory of arrays can prove that assigning x[y] to 3 and then looking
up x[y] yields 3

Carnegie

D Software and Societal
Systems Department Me!lon :
University

Satisfiability (SAT) solving

* Let's start by considering Boolean formulas: variables with A v —

* First step: convert to conjuctive normal form (CNF)
* A conjunction of disjunctions of (possibly negated) variables
(av =b) A(—avec)Aa(bvec)

e If formula is not in CNF, we transform it: use De Morgan'’s laws, the
double negative law, and the distributive laws:

—(Pv(Q) < —-PAr-Q
—(PAQ) < —-Pv-Q
———P < P
(PA(@VR) < (PAQ)v(PAR))
(Pv(@QAR)) < (PvQ)a(PVR))

Carnegie

D Software and Societal
Systems Department Mellon

University

SAT solving goal

« Prove that a formula is satisfiable by giving a satisfying assignment
« A map from formula variables to Boolean values

« Example: X v Y is satisfiable
- Asatisfying assignmentis X +» true,Y > false

« Example: X A =X is unsatisfiable
 No satisfying assignment exists

Carnegie

D Software and Societal
Systems Department Me.!lon :
University

SAT is NP-complete

« Cook-Levin theorem [1970s] proved NP-completeness

 In NP, because can verify a satisfying assignment by evaluating the
formula

« NP-hard by reduction to polynomial-time acceptance by a
nondeterministic Turing machine

 Simple solution approach: try all satisfying assignments
e Takes O(2") time for an n-variable formula

D Software and Societal Carnegle.
Systems Department Mellon

University

DPLL: Efficient SAT solving in practice

« Developed by Davis, Putnam, Logemann, and Loveland [1961]

« Still exponential in theory, but on many problems is much faster than trying all
assignments

« Key innovation #1: unit propagation
bveyA)A(Mevevd)a(—evd)A(—cv —~dv H)A(bvd)

* In this example, a appears alone. It must be true.

D Software and Societal Carnegie
Systems Department Mellon

University

DPLL: Efficient SAT solving in practice

« Developed by Davis, Putnam, Logemann, and Loveland

« Still exponential in theory, but on many problems is much faster than trying all
assignments

« Key innovation #1: unit propagation
- Key innovation #2: pure literal elimination
(bewc] A (cvd) A (—ecvd)A (—e v —d) A [beed)
« This example is simplified from the previous slide, based on unit propagation

« Note that b appears only positively. Setting b to true can only help us, not hurt
us!

D Software and Societal Carnegie.
Systems Department Mellon

University

DPLL: Efficient SAT solving in practice

Developed by Davis, Putnam, Logemann, and Loveland

« Still exponential in theory, but on many problems is much faster than trying all
assignments

Key innovation #1: unit propagation

Key innovation #2: pure literal elimination

When we are stuck, we guess (and backtrack later if necessary)
(cvd)A(—cvd) A (—cv —d)

* Let's guess that cistrue! Then we get (d) A (—d)

« We apply unit propagation to set d=true. Unfortunately the result is
so we failed to find a satisfying assignment

(true) A (false)

D Software and Societal Carnegie.
Systems Department Mellon

University

DPLL: Efficient SAT solving in practice

Developed by Davis, Putnam, Logemann, and Loveland

« Still exponential in theory, but on many problems is much faster than trying all
assignments

Key innovation #1: unit propagation
Key innovation #2: pure literal elimination

When we are stuck, we guess (and backtrack later if necessary)
(cvd)A(—cvd) A (—cv —d)
» Now let's guess that c is false! Then we get (d)
« We apply unit propagation to set d=true and the formula is satisfied

D Software and Societal Carnegie.
Systems Department Mellon

University

function DPLL(¢) The Full DPLL Algorithm

if = true then
return true
end if Heuristic: Apply unit

if ¢ contains a false clause then propagation first because it
creates more units and pure
return false . . :
. literals. Pure literal assignment
end if

only removes entire clauses.
for all unit clauses [in ¢ do
¢ «— UNIT-PROPAGATE((, @)

end for
for all literals [occurring pure in ¢ do Try both assignments of the
PURE-LITERAL-ASSIGN(] chosen literal. If we assume v
P =] i (’ q@S) is short-circuiting, then this
end for implements backtracking.

[<~ CHOOSE-LITERAL(®)

return DPLL(¢4 A 1) v DPLL(¢ A =)
end function

D Software and Societal Carnegie.
Systems Department Mellon

University

Practice: Applying DPLL

« Show how DPLL (unit propagation, pure literal elimination,

choosing a literal, backtracking) applies to the following
formula; (avb)Aa(ave)a(—ave)a(av —c)A(—av —c)A (—d)

D Software and Societal Carnegie
Systems Department Mellon

University

From SAT to SMT
<<_> fly)=a A

« We'd like to check the satisfiability of formulas like f(0) = a + 2 A
T =1y
* Includes arithmetic and the theory of unknown functions
- E.g. we assume f is some mathematical function

- We may have solvers for each theory, but how can we combine them?

« Note that separate satisfying assignments for two theories might not be
compatible!

« SMT's solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell

D Software and Societal Car negle
Systems Department Mellon

University

Nelson-Oppen replaces expressions

with variables
(@) —fw) =a ~ f(0)=a+2 N

|
<

D Software and Societa
Systems Department

Now we have formulas in two theories

« Theory of uninterpreted functions
« Theory of arithmetic

f(el) =a

82=f(f£) €ii§2—63
e3 = f(y) S
f(ed) = €5 e=a+t

r =y =Y

 Congruence closure:

Theories communicate

for all f,x, and y, if z = y then f(x) = f(y) using equalities

Software and Societal Carnegle.
Systems Department Mellon

University

Combining Theories using DPLL

« Consider the following source formula: z>0Ay =2 +1 A y > 2 v < 1)
« We can convert each subformula to a variable:
\pl A P2 A (p3 Vp4,

* Now we solve with DPLL and get a satisfying assignment: ;1 92 —p3, p4

« We ask the theories if this assignment is feasible

« The theory of arithmetic says no. p1, p2, and p4 can't all be true, because p1 and p2
together imply y > 1

« We add a clause expressing this and run DPLL again on
plL ADP2 A (p3 v pd) A (—pl v =p2 v —p4)
« One satisfying assignment is pl, p2, p3, —p4
« We check this against the theories and it succeeds

D Software and Societal Car negle
Systems Department Mellon

University

Details on equality

« Sometimes a theory doesn’t tell us an equality, but rather
that one of two equalities are true

e That's fine—we itict anrndea thic ac a farmiila and ciye jt to DPLL.
For exam (61 = 82 N el F 62) N\ (62 = 63 V 62 F 83)

« DPLL will choose which equalities are true, and we try those with
other theories.

D Software and Societal Carnegie.
Systems Department Mellon

University

SMT uses a variant of DPLL called DPLL(T)

* Tis for Theory

» Differences vs. plain DPLL

« DPLL(T) doesn't use pure literal elimination

 Variables may not be independent when they represent a formula - so setting
X to true can hurt vou. even when x is a oure literal!

 Forexample: (x >10vz <3)A(x>10vz <9) A (z<T7)
« Can'tjustset x> 10 to true, because x <7 will be false

e DPLL(T) supports adding clauses to the formula
« To represent knowledge gained from theories, as mentioned above

D Software and Societal Carnegie.
Systems Department Mellon

University

How to solve arithmetic

« Approach #1: Substitution

* If we have y = x+1, we can eliminate y by substituting it with x+1
everywhere

« High school math!

« Approach #2: Fourier-Motzkin Elimination
« Applies when we have inequalities rather than equalities
« Transform all inequalities mentioning x into A< xorx <B

« Then eliminate X, replacing the inequalities with A< B
 Detail: if there are multiple inequalities, we conjoin the cross product of them

D Software and Societal Carnegle.
Systems Department Mellon

University

Modern tooling: SMT-lib

SMT-LIB

THE SATISFIABILITY MODULO THEORIES LIBRARY

Theories

SMT-LIB logics refer to one or more theories below. Click on a theory's name to see its declaration in Version 2.x of the

format.

ArraysEx
Functional arrays with extensionality
FixedSizeBitVectors
Bit vectors with arbitrary size
Core
Core theory, defining the basic Boolean operators
FloatingPoint
Floating point numbers
Ints
Integer numbers
Reals
Real numbers
Reals_Ints
Real and integer numbers
Strings

Unicode character strinas and reaular exoressions

Software and Societal
Systems Department

SMT-
COMP

The International

Competition.
GitHub

Home

Introduction
Benchmark Submission
Publications

SMT-LIB

Previous Editions

SMT-COMP 2021

Rules

Benchmarks

Tools

Specs

Parallel & Cloud Tracks
Participants

Results

Slides

SAT Performance

Correct Score ¥ | Time Score Al Division =

0.10587024

UltimateEliminator+MatnSAT - | 0.08416589

ampire 0.02936727

0.00616228

0.00553133

0.00262204

0.00157784

0.00145186

0.00125507

0.00093358

0.00093134

0.00055932

0.00013178

cas2 0.00010454

SBs2 9.601e-05

UNSAT Performance

0.00161216 Equality+LinearAith
0.00358447 Equality+MonLinearArith
0.00424783 Ecjuality

0.00599641 QF_NonLinearintAith
0.00393864 Arith

0.00188031 QF_MonLinearRealArith
0.00059486 QF_Equality
0.0022273 QF_Linearint&ith
0.00027314 Bitvec

0.00069896 QF_Bitvec
-0.00090887 QF_Equality+MonLinearArith
-0.00228172 CIF_FRAriH
0.00015434 QF_Equality+Li
0.00020464 QF_Equality+Bitvec
0.00035558 QF_LinearHe:

¥ | Time Score A Division =

0.05633672

~Bs2 0.02120632

0.01061534

0.03589274 Equality+MNonLinearArith
0.0072311 QF_MNonLinearintArith
0.04760987 Equality+LinearAnth

Mo

S3D

Software and Societal
Systems Department

Z3 Online Demonstrator

Input

SMT-LIB 2 script

B SMT-LIB 2 Standard = & Z3 sources

Reset Execute

; Wariable declarations
(declare-fun a () Int)
(declare-fun b (O Int)
(declare-fun ¢ () Int)

; Constraints)|

(Cassert (> a @))
(assert (> b @))
(Cassert (> c @))

3 Solve

(check-sat)
(get-model)

(assert (= (+ (*aa) (* b b)) (* c c)))

ern tooling: Z3 w/ SMT-lib

Output

Z3 output

sat
(model
(define-fun ¢ () Int
15)
(define-fun b () Int
9)
(define-fun a () Int
12)

Summary

Command 23 -in -T:30
Execution time 0.083 s
Version z3-4.4.1

Carnegie

Mellon

University

	Slide 1: Lecture 16: Satisfiability Modulo Theories
	Slide 2: Sometimes we need to reason about formulas
	Slide 3: First step: reduce validity to satisfiability
	Slide 4: Satisfiability modulo theories
	Slide 5: Satisfiability (SAT) solving
	Slide 6: SAT solving goal
	Slide 7: SAT is NP-complete
	Slide 8: DPLL: Efficient SAT solving in practice
	Slide 9: DPLL: Efficient SAT solving in practice
	Slide 10: DPLL: Efficient SAT solving in practice
	Slide 11: DPLL: Efficient SAT solving in practice
	Slide 12: The Full DPLL Algorithm
	Slide 13: Practice: Applying DPLL
	Slide 14: From SAT to SMT
	Slide 15: Nelson-Oppen replaces expressions with variables
	Slide 16: Now we have formulas in two theories
	Slide 17: Combining Theories using DPLL
	Slide 18: Details on equality
	Slide 19: SMT uses a variant of DPLL called DPLL(T)
	Slide 20: How to solve arithmetic
	Slide 21: Modern tooling: SMT-lib
	Slide 22: Modern tooling: Z3 w/ SMT-lib

