
Lecture 15: Concolic Testing
17-355/17-665/17-819: Program Analysis

Rohan Padhye

October 30, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Recap: Symbolic Execution

Verification of assert(Q):
∀𝑥 ∶ 𝑃 ⇒ 𝑄

Bug-finding of assert(Q):
∃𝑥 ∶ 𝑃 ∧ ¬𝑄

Recap: Soundness and Completeness

• Soundness = “Doesn’t lie” or “all claims are true”

• Completeness = “All truths are claimed”

• For Verification (claim is “program is correct”)
• Soundness: Reasoning along all possible paths (over-approximation)

• For Bug-Finding (claim is “a bug exists”)
• Soundness: Reasoning along feasible paths only (under-approximation)

• Soundness & Completeness is impossible in general (Rice’s theorem)
• Most systems are sound but incomplete (e.g. can’t prove all programs, or can’t

find all bugs)

Recap: Bugs and Reachability

Common trick: convert error case into reachability problem

• assert(p) → if(!p) ERROR;

• *x → if(x == NULL) { ERROR; } return *x;

• a[i] → if(i < 0 || i > a.length) { ERROR; } return a[i];

”Bug finding” is now just about finding inputs that execute every program path

Gotchas: Halting problem and infinite loops

Consider external functions

Exercise: Under what path constraints do we hit ERROR?

Consider external functions

Consider: What if we could not (or did not want to) analyze the external function?

Consider external functions

Consider: What if we could not (or did not want to) analyze the external function?

Consider external functions

Consider: What if our solver cannot handle non-linear arithmetic or modulo?

Consider external functions

Option 1: Set Σ(𝑧) to be a fresh symbolic var

Option 2: Set Σ(𝑧) to be a concrete value by
”executing” foo(y) for some y that satisfies path
constraint seen so far.

Exercise: How do these options differ in terms of under- or over-approximation?
Recall: soundness/completeness or bug finding or verification

Concolic Execution (= Concrete + Symbolic)
1. Instrument program to collect path constraints during concrete execution

(concrete + symbolic store updates simultaneously)

2. Run program with concrete inputs (initially random) to collect path
constraint g
• Sanity check: Inputs should always be a valid solution to g

3. Negate last clause in g and solve for model

4. If SAT, then get satisfying assignment as new input and repeat from 2

5. If UNSAT, then pop off last clause and repeat from 3

Concolic Execution: Example

Concolic Execution: Example

1. Input: x=0, y=1
• Path: (2*y != x)
• Next: (2*y == x) :: SAT

2. Input: x=2, y=1
• Path: (2*y == x) && (x <= y+10)
• Next: (2*y == x) && (x > y+10) :: SAT

3. Input: x=22, y=11
• Path: (2*y == x) && (x > y+10)
• Bug found!!

Concolic Execution

• Key advantage: Always have a concrete input in parallel

• When constraint cannot be modeled (e.g. external function,
features not handled by solver), replace with concrete
value.

• Soundness: Concrete replacement is a true under-
approximation

Concolic Execution: Example

1. Input: x=22, y=7
• Path: (49 != x). // y*y%50 = 49%50 = 49
• Next: (49 == x) :: SAT

2. Input: x=49, y=7
• Path: (49 == x) && (x > y+10)
• Bug found!!

Concolic Path Condition Soundness

• When is substitution sound?

Concolic Execution: Example

1. Input: x=0, y=8
• Path: (14 != x) // y*y%50 = 64%50 = 14
• Next: (14 == x) :: SAT

2. Input: x=14, y=8
• Path: (14 == x) && (x <= y+10)
• Next: (14 == x) && (x > y+10) :: SAT

3. Input: x=14, y=2
• Path: (4 != x)
• Unsoundness!

Popular Symbolic/Concolic Tools
• DART (Directed Automated Random Testing)

• CUTE (Concolic Unit Testing Engine)

• KLEE (“dynamic symbolic execution”)

• SAGE (Scalable, Automated, Guided Execution aka ”whitebox fuzzing”)

• Java PathFinder

• Angr

• PyExZ3

• Jalangi

	Slide 1: Lecture 15: Concolic Testing
	Slide 2: Recap: Symbolic Execution
	Slide 3: Recap: Soundness and Completeness
	Slide 4: Recap: Bugs and Reachability
	Slide 5: Consider external functions
	Slide 6: Consider external functions
	Slide 7: Consider external functions
	Slide 8: Consider external functions
	Slide 9: Consider external functions
	Slide 10: Concolic Execution (= Concrete + Symbolic)
	Slide 11: Concolic Execution: Example
	Slide 12: Concolic Execution: Example
	Slide 13: Concolic Execution
	Slide 14: Concolic Execution: Example
	Slide 15: Concolic Path Condition Soundness
	Slide 16: Concolic Execution: Example
	Slide 17: Popular Symbolic/Concolic Tools

