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Recall: VCGen from Axiomatic 
Semantics

What is the Proof Obligation for backwards reasoning?



What if we just went forwards?

Proof Obligation:

Generate “fresh” math variables 
for every mutable program 
variable



What if we just went forwards?

Proof Obligation:



Dealing with conditional paths

Dynamic Symbolic Execution:

Static Symbolic Execution:



Dealing with conditional paths

Exercise: Generate the VC for this program. Is it true?



Formalizing DSE with 
Guards and Symbolic Formulas



Symbolic Evaluation of Expressions



Symbolic Execution of Statements (DSE)



Symbolic Execution with Branching (DSE)



Symbolic Execution of Loops

Q. What’s wrong here?



Symbolic Execution of Loops

Bounded exploration (k-limited)

Q. What are the implications?



Symbolic Execution with Loops

• Loop invariants can be used if given
• Often works better with SSE

• But we can choose to explore only partial set of paths
• K-bounded loops (often: k < 3)

• “Unsound” for verification

• Sound but “Incomplete” for bug finding when used with DSE
• DSE formulas for a given path can be solved to find a witness = test input



Recap: Soundness and Completeness

• Soundness = “Doesn’t lie” or “all claims are true”

• Completeness = “All truths are claimed”

• For Verification (claim is “program is correct”)
• Soundness: Reasoning along all possible paths (over-approximation)

• For Bug-Finding (claim is “a bug exists”)
• Soundness: Reasoning along feasible paths only (under-approximation)

• Soundness & Completeness is impossible in general (Rice’s theorem)
• Most systems are sound but incomplete (e.g. can’t prove all programs, or can’t 

find all bugs)



Symbolic Execution: A Generalization of Testing

What input values of a,b,c will cause the assert to fail?















Exercise: Generate path constraints for 
another path.



Exercise: Generate path constraints for 
another path (e.g. one that executes line 6).



Exercise: Generate path constraints for 
another path (e.g. one that executes line 6).



Symbolic Execution Tree

Exercise: How many feasible paths are in the program?
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