
Lecture 14: Symbolic Execution
17-355/17-665/17-819: Program Analysis

Rohan Padhye

October 28, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Recall: VCGen from Axiomatic
Semantics

What is the Proof Obligation for backwards reasoning?

What if we just went forwards?

Proof Obligation:

Generate “fresh” math variables
for every mutable program
variable

What if we just went forwards?

Proof Obligation:

Dealing with conditional paths

Dynamic Symbolic Execution:

Static Symbolic Execution:

Dealing with conditional paths

Exercise: Generate the VC for this program. Is it true?

Formalizing DSE with
Guards and Symbolic Formulas

Symbolic Evaluation of Expressions

Symbolic Execution of Statements (DSE)

Symbolic Execution with Branching (DSE)

Symbolic Execution of Loops

Q. What’s wrong here?

Symbolic Execution of Loops

Bounded exploration (k-limited)

Q. What are the implications?

Symbolic Execution with Loops

• Loop invariants can be used if given
• Often works better with SSE

• But we can choose to explore only partial set of paths
• K-bounded loops (often: k < 3)

• “Unsound” for verification

• Sound but “Incomplete” for bug finding when used with DSE
• DSE formulas for a given path can be solved to find a witness = test input

Recap: Soundness and Completeness

• Soundness = “Doesn’t lie” or “all claims are true”

• Completeness = “All truths are claimed”

• For Verification (claim is “program is correct”)
• Soundness: Reasoning along all possible paths (over-approximation)

• For Bug-Finding (claim is “a bug exists”)
• Soundness: Reasoning along feasible paths only (under-approximation)

• Soundness & Completeness is impossible in general (Rice’s theorem)
• Most systems are sound but incomplete (e.g. can’t prove all programs, or can’t

find all bugs)

Symbolic Execution: A Generalization of Testing

What input values of a,b,c will cause the assert to fail?

Exercise: Generate path constraints for
another path.

Exercise: Generate path constraints for
another path (e.g. one that executes line 6).

Exercise: Generate path constraints for
another path (e.g. one that executes line 6).

Symbolic Execution Tree

Exercise: How many feasible paths are in the program?

	Slide 1: Lecture 14: Symbolic Execution
	Slide 2: Recall: VCGen from Axiomatic Semantics
	Slide 3: What if we just went forwards?
	Slide 4: What if we just went forwards?
	Slide 5: Dealing with conditional paths
	Slide 6: Dealing with conditional paths
	Slide 7: Formalizing DSE with Guards and Symbolic Formulas
	Slide 8: Symbolic Evaluation of Expressions
	Slide 9: Symbolic Execution of Statements (DSE)
	Slide 10: Symbolic Execution with Branching (DSE)
	Slide 11: Symbolic Execution of Loops
	Slide 12: Symbolic Execution of Loops
	Slide 13: Symbolic Execution with Loops
	Slide 14: Recap: Soundness and Completeness
	Slide 15: Symbolic Execution: A Generalization of Testing
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Symbolic Execution Tree

