
Lecture 12–13: Hoare Logic
17-355/17-665/17-819: Program Analysis

Rohan Padhye

October 21 & 23, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Heads up: Course Projects

• Scope: ~3 weeks of effort at end of course
• Some options

• Implement a non-trivial analysis and evaluate it on some code
• Empirically evaluate an existing analysis tool
• Contribute meaningfully to an open source analysis tool
• Explore an extension to the state of the art in program analysis

• Students in the Masters version (17-665) must engage with non-
trivial codebases
• Either the analysis framework or the target program must be in active use

by the developer community

• Students in the Ph.D. version (17-819) must engage in research in
some way
• OK to extend your current research work – can be empirical as well

Logical Reasoning about Code

• So far, we’ve reasoned about code using operational
semantics
• And built program analyses that abstract those semantics

• Axiomatic semantics define meaning of a program in terms
of assertions
• Enables logic-based reasoning about code

• Enables verification
• Prove arbitrary properties about code – not just ones built into a

particular analysis
• Goes back to Turing (1949): “Checking a Large Routine”
• Hoare developed rules in the 1960s for verifying the WHILE language

Axiomatic Semantics

• An axiomatic semantics consists of:
• A language for stating assertions about programs,

• Rules for establishing the truth of assertions

• Some typical kinds of assertions:
• This program terminates

• If this program terminates, the variables x and y have the same
value throughout the execution of the program

• The array accesses are within the array bounds

• Assertions are in a logic, e.g. first-order logic
• Alternatives include temporal logic, linear logic, etc.

Assertion Language

• We’ll be a bit sloppy and mix logical and program variables like 𝑥

• We’ll treat Boolean expressions as a special case of assertions

Hoare Triple

{ P } S { Q }

• P is the precondition

• Q is the postcondition

• S is any statement (in WHILE, at least for our class)

• Semantics: if P holds in some state E and if <S; E>  E’ , then Q
holds in E’
• This is partial correctness: termination of S is not guaranteed

• Total correctness additionally implies termination, and is written [P] S [Q]

Exercise: Exploring Hoare Triples

• What are reasonable pre- or post- conditions for the
following incomplete Hoare triples?

1. { true } x := 5 { }

2. { } x : = x + 3 { x = y + 3 }

3. { } x := x * 2 + 3 { x > 1 }

4. { x = a } if (x < 0) then x := -x { }

5. { false } x := 3 { }

6. { x < 0 } while (x != 0) x := x – 1 { }

Hoare Triple

{ P } S { Q }

• P is the precondition

• Q is the postcondition

• S is any statement (in WHILE, at least for our class)

• Semantics: if P holds in some state E and if <S; E>  E’ , then Q
holds in E’
• This is partial correctness: termination of S is not guaranteed

• Total correctness additionally implies termination, and is written [P] S [Q]

Assertion Semantics

• 𝐸 ⊨ 𝑃 means P is true in E

• Rules:

Semantics of Hoare Triples
• A partial correctness assertion ⊨ 𝑃 𝑆 𝑄 is defined formally to

mean:

• How would we define total correctness [𝑃] 𝑆 [𝑄]?

• This is a good formal definition—but it doesn’t help us prove
many assertions because we have to reason about all
environments. How can we do better?

Derivation Rules for Logical Formulas

• We can define rules for proving the validity of logical
formulas
• ⊢ 𝑃 is read “we can prove 𝑃“

• Example rule:

Derivation Rules for Hoare Logic
• Judgment form ⊢ 𝑃 𝑆 𝑄 means “we can prove the Hoare triple 𝑃 𝑆 𝑄 “

• Question: What should be the rule for while b do S?

Derivation Rules for Hoare Logic

• Key point: Post-condition of loop body would need to be the
pre-condition for next iteration (assuming loop condition
continues to hold). This is the ”loop invariant”.

Soundness and Completeness

• Sound:

• Complete:

Strongest Postconditions

• Here are a number of valid Hoare Triples:
• {x = 5} x := x * 2 { true }
• {x = 5} x := x * 2 { x > 0 }
• {x = 5} x := x * 2 { x = 10 || x = 5 }
• {x = 5} x := x * 2 { x = 10 }

• Which one is best?

Strongest Postconditions

• Here are a number of valid Hoare Triples:
• {x = 5} x := x * 2 { true }
• {x = 5} x := x * 2 { x > 0 }
• {x = 5} x := x * 2 { x = 10 || x = 5 }
• {x = 5} x := x * 2 { x = 10 }

• All are true, but this one is the most useful
• x=10 is the strongest postcondition

• If {P} S {Q} and for all Q’ such that {P} S {Q’}, Q  Q’, then Q is
the strongest postcondition of S with respect to P
• check: x = 10  true
• check: x = 10  x > 0
• check: x = 10  x = 10 || x = 5
• check: x = 10  x = 10

Weakest Preconditions

• Here are a number of valid Hoare Triples:
• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• Which one is best?

Weakest Preconditions

• Here are a number of valid Hoare Triples:
• {x = 5 && y = 10} z := x / y { z < 1 }

• {x < y && y > 0} z := x / y { z < 1 }

• {y ≠ 0 && x / y < 1} z := x / y { z < 1 }
• All are true, but this one is the most useful because it allows us to invoke the

program in the most general condition

• y ≠ 0 && x / y < 1 is the weakest precondition

• If {P} S {Q} and for all P’ such that {P’} S {Q}, P’  P, then P is
the weakest precondition wp(S,Q) of S with respect to Q

Hoare Triples and Weakest
Preconditions
• Theorem: {P} S {Q} holds if and only if P  wp(S,Q)

• In other words, a Hoare Triple is still valid if the precondition is
stronger than necessary, but not if it is too weak

• Can use this to prove {P} S {Q} by computing wp(S,Q) and checking
implication.

• Question: Could we state a similar theorem for a strongest
postcondition function?
• e.g. {P} S {Q} holds if and only if sp(S,P)  Q

• A: Yes, but it’s harder to compute (see text for why)

Exercise: More Hoare Triples

Consider the following Hoare triples:

 A) { z = y + 1 } x := z * 2 { x = 4 }

 B) { y = 7 } x := y + 3 { x > 5 }

 C) { false } x := 2 / y { true }

 D) { y < 16 } x := y / 2 { x < 8 }

• Which of the Hoare triples above are valid?

• Considering the valid Hoare triples, for which ones can you write a
stronger postcondition? (Leave the precondition unchanged, and
ensure the resulting triple is still valid)

• Considering the valid Hoare triples, for which ones can you write a
weaker precondition? (Leave the postcondition unchanged, and
ensure the resulting triple is still valid)

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }

• What is the weakest precondition P?

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }

• What is the weakest precondition P?
• What is most general value of y

such that 3 + y > 0?

• y > -3

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }

• What is the weakest precondition P?

• Assignment rule
• wp(x := e, P) = [e/x] P

• Resulting triple: { [e/x] P } x := e { P }

Hoare Logic Rules

• Assignment
• { P } x := 3 { x+y > 0 }

• What is the weakest precondition P?

• Assignment rule
• wp(x := e, P) = [e/x] P

• Resulting triple: { [e/x] P } x := e { P }

• [3 / x] (x + y > 0)

• = (3) + y > 0

• = y > -3

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }

• What is the weakest precondition P?

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }

• What is the weakest precondition P?

• Assignment rule
• wp(x := e, P) = [e/x] P

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }

• What is the weakest precondition P?

• Assignment rule
• wp(x := e, P) = [e/x] P

• [3*y+z / x] (x * y – z > 0)

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }

• What is the weakest precondition P?

• Assignment rule
• wp(x := e, P) = [e/x] P

• [3*y+z / x] (x * y – z > 0)

• = (3*y+z) * y - z > 0

Hoare Logic Rules

• Assignment
• { P } x := 3*y + z { x * y - z > 0 }

• What is the weakest precondition P?

• Assignment rule
• wp(x := e, P) = [e/x] P

• [3*y+z / x] (x * y – z > 0)

• = (3*y+z) * y - z > 0

• = 3*y2 + z*y - z > 0

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }

• What is the weakest precondition P?

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }

• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• wp(x:=x+1; y:=x+y, y>5)

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }

• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• wp(x:=x+1; y:=x+y, y>5)

• = wp(x:=x+1, wp(y:=x+y, y>5))

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }

• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• wp(x:=x+1; y:=x+y, y>5)

• = wp(x:=x+1, wp(y:=x+y, y>5))

• = wp(x:=x+1, x+y>5)

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }

• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• wp(x:=x+1; y:=x+y, y>5)

• = wp(x:=x+1, wp(y:=x+y, y>5))

• = wp(x:=x+1, x+y>5)

• = x+1+y>5

Hoare Logic Rules

• Sequence
• { P } x := x + 1; y := x + y { y > 5 }

• What is the weakest precondition P?

• Sequence rule
• wp(S;T, Q) = wp(S, wp(T, Q))

• wp(x:=x+1; y:=x+y, y>5)

• = wp(x:=x+1, wp(y:=x+y, y>5))

• = wp(x:=x+1, x+y>5)

• = x+1+y>5

• = x+y>4

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }

• What is the weakest precondition P?

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }

• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q) = B  wp(S,Q) && B  wp(T,Q)

• wp(if x>0 then y:=z else y:=-z, y>5)

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }

• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q) = B  wp(S,Q) && B  wp(T,Q)

• wp(if x>0 then y:=z else y:=-z, y>5) = x>0  wp(y:=z,y>5) && x≤0 
wp(y:=-z,y>5)

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }

• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q) = B  wp(S,Q) && B  wp(T,Q)

• wp(if x>0 then y:=z else y:=-z, y>5) = x>0  wp(y:=z,y>5) && x≤0 
wp(y:=-z,y>5)

 = x>0  z > 5 && x≤0  -z > 5

Hoare Logic Rules

• Conditional
• { P } if x > 0 then y := z else y := -z { y > 5 }

• What is the weakest precondition P?

• Conditional rule
• wp(if B then S else T, Q) = B  wp(S,Q) && B  wp(T,Q)

• wp(if x>0 then y:=z else y:=-z, y>5) = x>0  wp(y:=z,y>5) && x≤0 
wp(y:=-z,y>5)

 = x>0  z > 5 && x≤0  -z > 5

 = x>0  z > 5 && x≤0  z < -5

Hoare Logic Rules

• Loops
• { P } while (i < x) f=f*i; i := i + 1 { f = x! }
• What is the weakest precondition P?

Hoare Logic Rules

• Loops
• { P } while (i < x) f=f*i; i := i + 1 { f = x! }

• What is the weakest precondition P?

• Intuition
• Must prove by induction

• Only way to generalize across number of times loop executes

• Need to guess induction hypothesis
• Base case: precondition P

• Inductive case: should be preserved by executing loop body

Proving loops correct

• First consider partial correctness
• The loop may not terminate, but if it does, the postcondition will hold

• {P} while B do S {Q}
• Find an invariant Inv such that:

• P  Inv
• The invariant is initially true

• { Inv && B } S {Inv}
• Each execution of the loop preserves the invariant

• (Inv && B)  Q
• The invariant and the loop exit condition imply the postcondition

Practice: Loop Invariants
Consider the following program:

 { N >= 0 }

i := 0;

while (i < N) do

i := N

 { i = N }

Which of the following loop invariants are correct?
For those that are incorrect, explain why.

 A) i = 0

 B) i = N

 C) N >= 0

 D) i <= N

Correctness Conditions

P  Inv

 The invariant is initially true

{ Inv && B } S {Inv}

 Loop preserves the invariant

(Inv && B)  Q

 Invariant and exit implies postcondition

Loop Example

{ N  0 }
j := 0;

s := 0;

while (j < N) do

 j := j + 1;

 s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Loop Example

{ N  0 }
j := 0;

s := 0;

while (j < N) do

 j := j + 1;

 s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

How can we find a loop invariant?

Loop Example

{ N  0 }
j := 0;

s := 0;

while (j < N) do

 j := j + 1;

 s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Replace N with j
Add information on range of j
Result: 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i])

How can we find a loop invariant?

Loop Example

{ N  0 }
j := 0;

s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
 j := j + 1;

 s := s + a[j];
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
end
{ s = (Σi | 0≤i<N • a[i]) }

{ N  0 }
j := 0;

s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
 j := j + 1;

 s := s + a[j];
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
end
{ s = (Σi | 0≤i<N • a[i]) }

Loop Example

Proof obligation #1

Proof obligation #2

Proof obligation #3&& j ≥ N

Proof Obligations

• Invariant is initially true
 { N  0 }
 j := 0;
 s := 0;
 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is initially true
 { N  0 }
 j := 0;
 s := 0;
 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
• Invariant is maintained
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
 j := j + 1;
 s := s + a[j];
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is initially true
 { N  0 }
 j := 0;
 s := 0;
 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
• Invariant is maintained
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
 j := j + 1;
 s := s + a[j];
 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
• Invariant and exit condition imply postcondition
 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N
  s = (Σi | 0≤i<N • a[i])

Proof Obligations

• Invariant is initially true
 { N  0 }

 j := 0;

 s := 0;
 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is initially true
 { N  0 }

 j := 0;

 { 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := 0;
 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is initially true

 { N  0 }

 { 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule

 j := 0;

 { 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := 0;

 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is initially true

 { N  0 }

 { 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule

 j := 0;

 { 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := 0;

 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (N  0)  (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

Proof Obligations

• Invariant is initially true

 { N  0 }

 { 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule

 j := 0;

 { 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := 0;

 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (N  0)  (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N  0)  (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0

Proof Obligations

• Invariant is initially true

 { N  0 }

 { 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule

 j := 0;

 { 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := 0;

 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (N  0)  (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N  0)  (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0

= (N  0)  (0 ≤ N) // 0=0 is true, P && true is P

Proof Obligations

• Invariant is initially true

 { N  0 }

 { 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule

 j := 0;

 { 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := 0;

 { 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (N  0)  (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N  0)  (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0

= (N  0)  (0 ≤ N) // 0=0 is true, P && true is P

= true

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 j := j + 1;

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 j := j + 1;

 {0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last element

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last element

// we have a problem – we need a[j+1] and a[j] to cancel out

Where’s the error?

• Prove array sum correct

{ N  0 }

j := 0;

s := 0;

while (j < N) do

 j := j + 1;

 s := s + a[j];

end

{ s = (Σi | 0≤i<N • a[i]) }

Where’s the error?

• Prove array sum correct

{ N  0 }

j := 0;

s := 0;

while (j < N) do

 j := j + 1;

 s := s + a[j];

end

{ s = (Σi | 0≤i<N • a[i]) }

Need to add element
before incrementing j

Corrected Code

• Prove array sum correct

{ N  0 }

j := 0;

s := 0;

while (j < N) do

 s := s + a[j];

 j := j + 1;

end

{ s = (Σi | 0≤i<N • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 s := s + a[j];

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last part of sum

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last part of sum

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s = (Σi | 0≤i<j • a[i])) // subtract a[j] from both sides

Proof Obligations

• Invariant is maintained

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

 {0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 s := s + a[j];

 {0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule

 j := j + 1;

 {0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:

 (0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

  (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last part of sum

= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

  (-1 ≤ j < N && s = (Σi | 0≤i<j • a[i])) // subtract a[j] from both sides

= true // 0 ≤ j  -1 ≤ j

Proof Obligations

• Invariant and exit condition implies postcondition

 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

  s = (Σi | 0≤i<N • a[i])

Proof Obligations

• Invariant and exit condition implies postcondition

 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

  s = (Σi | 0≤i<N • a[i])

= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])

  s = (Σi | 0≤i<N • a[i])

 // because (j ≤ N && j ≥ N) = (j = N)

Proof Obligations

• Invariant and exit condition implies postcondition

 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

  s = (Σi | 0≤i<N • a[i])

= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])

  s = (Σi | 0≤i<N • a[i])

 // because (j ≤ N && j ≥ N) = (j = N)

= 0 ≤ N && s = (Σi | 0≤i<N • a[i])  s = (Σi | 0≤i<N • a[i])

 // by substituting N for j, since j = N

Proof Obligations

• Invariant and exit condition implies postcondition

 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

  s = (Σi | 0≤i<N • a[i])

= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])

  s = (Σi | 0≤i<N • a[i])

 // because (j ≤ N && j ≥ N) = (j = N)

= 0 ≤ N && s = (Σi | 0≤i<N • a[i])  s = (Σi | 0≤i<N • a[i])

 // by substituting N for j, since j = N

= true // because P && Q  Q

Practice: Writing Proof Obligations
• For the program below and the invariant i <= N, write the proof obligations. The form of your answer should be

three mathematical implications.

 { N >= 0 }

i := 0;

while (i < N) do

i := N

 { i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition:

Invariant Intuition

• For code without loops, we are simulating execution directly
• We prove one Hoare Triple for each statement, and each statement is executed once

• For code with loops, we are doing one proof of correctness for multiple loop
iterations
• Proof must cover all iterations

• Don’t know how many there will be

• The invariant must be general yet precise
• general enough to be true for every execution

• precise enough to imply the postcondition we need

• This tension makes inferring loop invariants challenging

Can we also formalize proof obligations?

Yes, with verification condition generation
• Bonus: we can get one formula for correctness of the whole program

• Rather than segmenting into several formulas that we prove individually

Can we also formalize proof obligations?

Yes, with verification condition generation
• Bonus: we can get one formula for correctness of the whole program

• Rather than segmenting into several formulas that we prove individually

• Loops are special—as usual!

Verification Condition Generation - Summary &
Future Lectures

• Verification Conditions make axiomatic semantics practical.

• We can solve them automatically with SAT solvers

• We can compute verification conditions forward for use on unstructured

code (= assembly language). This is sometimes called symbolic execution.

• We can add extra invariants or drop paths (dropping is unsound) to

help verification condition generation scale.

• We can model exceptions, memory operations and data structures

using verification condition generation.

	Slide 1: Lecture 12–13: Hoare Logic
	Slide 2: Heads up: Course Projects
	Slide 3: Logical Reasoning about Code
	Slide 4: Axiomatic Semantics
	Slide 5: Assertion Language
	Slide 6: Hoare Triple
	Slide 7: Exercise: Exploring Hoare Triples
	Slide 8: Hoare Triple
	Slide 9: Assertion Semantics
	Slide 10: Semantics of Hoare Triples
	Slide 11: Derivation Rules for Logical Formulas
	Slide 12: Derivation Rules for Hoare Logic
	Slide 13: Derivation Rules for Hoare Logic
	Slide 14: Soundness and Completeness
	Slide 15: Strongest Postconditions
	Slide 16: Strongest Postconditions
	Slide 17: Weakest Preconditions
	Slide 18: Weakest Preconditions
	Slide 19: Hoare Triples and Weakest Preconditions
	Slide 20: Exercise: More Hoare Triples
	Slide 21: Hoare Logic Rules
	Slide 22: Hoare Logic Rules
	Slide 23: Hoare Logic Rules
	Slide 24: Hoare Logic Rules
	Slide 25: Hoare Logic Rules
	Slide 26: Hoare Logic Rules
	Slide 27: Hoare Logic Rules
	Slide 28: Hoare Logic Rules
	Slide 29: Hoare Logic Rules
	Slide 30: Hoare Logic Rules
	Slide 31: Hoare Logic Rules
	Slide 32: Hoare Logic Rules
	Slide 33: Hoare Logic Rules
	Slide 34: Hoare Logic Rules
	Slide 35: Hoare Logic Rules
	Slide 36: Hoare Logic Rules
	Slide 37: Hoare Logic Rules
	Slide 38: Hoare Logic Rules
	Slide 39: Hoare Logic Rules
	Slide 40: Hoare Logic Rules
	Slide 42: Hoare Logic Rules
	Slide 43: Hoare Logic Rules
	Slide 44: Proving loops correct
	Slide 45: Practice: Loop Invariants
	Slide 46: Loop Example
	Slide 47: Loop Example
	Slide 48: Loop Example
	Slide 49: Loop Example
	Slide 50: Loop Example
	Slide 51: Proof Obligations
	Slide 52: Proof Obligations
	Slide 53: Proof Obligations
	Slide 54: Proof Obligations
	Slide 55: Proof Obligations
	Slide 56: Proof Obligations
	Slide 57: Proof Obligations
	Slide 58: Proof Obligations
	Slide 59: Proof Obligations
	Slide 60: Proof Obligations
	Slide 61: Proof Obligations
	Slide 62: Proof Obligations
	Slide 63: Proof Obligations
	Slide 64: Proof Obligations
	Slide 65: Proof Obligations
	Slide 66: Proof Obligations
	Slide 67: Proof Obligations
	Slide 68: Where’s the error?
	Slide 69: Where’s the error?
	Slide 70: Corrected Code
	Slide 71: Proof Obligations
	Slide 72: Proof Obligations
	Slide 73: Proof Obligations
	Slide 74: Proof Obligations
	Slide 75: Proof Obligations
	Slide 76: Proof Obligations
	Slide 77: Proof Obligations
	Slide 78: Proof Obligations
	Slide 79: Proof Obligations
	Slide 80: Proof Obligations
	Slide 81: Proof Obligations
	Slide 82: Proof Obligations
	Slide 83: Practice: Writing Proof Obligations
	Slide 84: Invariant Intuition
	Slide 85: Can we also formalize proof obligations?
	Slide 86: Can we also formalize proof obligations?
	Slide 87: Verification Condition Generation - Summary & Future Lectures

