ulate cl:(al); |

S

== & Program Analysis

A Ay
s t(>=(); “
s{atvato) /
\ N5, Y < /
> -— ropistijus. ne ¥ np€13 of /
ranl ales t of /
arie Tor # ¥in: t=0; /
8atoli = =
—1 Lic =3tatl
“uir: /1); \

- gtaee chij 137
vat n

—c g & > e
/' “;» "'ﬁfu;; séati==52 [I I , r T
pub :“"'M &;,"ﬂ“ q C I C e
-mu{;}ﬂwy SEEEATYS

200/ 2/k@ sfat % sk, Tiretest 1osg

R K atecs/ saal
| veazs,sl): 7
auy 2)

/\

= noss! te);
S ~ I =erenrks =S¥;-
— S “—ttno=/ita ts0);
—~ = fearnza (),

/sunet of = cnl
T/ for = fallcorcots %=1 121
prex‘ts inreavercfadels e//3
[Ar=oM(1) >
| Altles orraat: ((Scta(1. 20n);
& aseFeitst Fibannisgs13);
cLags T~
vt ol o
g 3 xR(0)7
=4 ¥ anderc));
=1n0);

mest A (arvel
saagte = ¢ =(0n. 4
2eS P

scittaum:

t toercy)-clavaatl.lo,118);
est s8tlh &);
18);
IA;
stiteeni(tadoantt »=rpes(1);

Why should you listen to me?

Experience - Uber Research

Interned at the programming systems
group at Uber this summer

Part of the software reliability tfeam -
group of PhDs specializing in PL and Al

Developed program analysis tools for
automating code reviews and false
positive elimination!

Experience - Microsoft Research

Research Fellow at MSR India from 2021 to Microsoft

2023 (before joining CMU) Research
Part of the Cloud Reliability team for

. Research in Software
Microsoft Azure Engineering (RISE)

Developed on Static and Dynamic
Resource Leak Detection tools for Cloud
Services

Experience - Citrix Systems

Worked as a software developer in the VPN
solutions team from 2020 to 2021

Reviewed many comments from static analysis tools
like sonarqube and coverity before pushing code to
production)

Improved existing dynamic bug finding techniques
(testing) for faster execution?

CIITIX.

sonarqube\\\

{) coverity’

What Will I Talk About Today?

My experience at Uber developing/improving program analysis tools:

1. Static Program Analysis: NullAway and NilAway
2. Program Reasoning: uReview
While the talk is focused on my work from Uber, the lessons and discussion

points are generally applicable to all program analysis techniques in
practice!

NullAway and NilAway

Simple Real World Example

109,
L128.
L164.

L166.
L1167 .
L168.
L2935
L224.
225
1226,

L2260,
L228.

type Conn interface f{

RemoteAddr

// struct net
type conn Strj
fd *netED

fune (c *connf

isEY e NoNl
rei

}

return c

v

1856
1857
1858
1859

1860
1861
1862

+

4 EREE

1856
1857
1858

1859
1860
1861
1862
1863
1864

+ + 4+

src/net/http/server.go d;

@@ -1856,7 +1856,9 @@ func isCommonNetReadError(err error) bool {

// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
if ra := c.rwc.RemoteAddr(); ra != nil {
c.remoteAddr = ra.String()
}
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
var inFlightResponse xresponse
defer func() {

panic: runtime error: invalid memory address or nil pointer dereference

Crashes In Production Cost $$$

App and service crashes can cause significant problems to users, such
as preventing riders from requesting a trip in a timely manner or
drivers from accepting rides.

Null Pointer Exceptions, which occur when a null pointer is
dereferenced in Java, are a frequent cause of crashes in Uber’s
android apps.

Similarly, Go services at Uber have withessed several runtime errors in
production because of nil panics, with effects ranging from incorrect
program behavior to app outages.

Solution: Static Analysis Tools

- Uber uses monorepos meaning all code in a specific language is stored
inside a single repository.

- This makes static analysis a very attractive option since you just need
to ensure that the entire repository is free of any null pointer
exceptions or nil panics!

- They developed two tools:
- NullAway for Java -> Annotation-based type checking for NPE’s
- NilAway for Go -> Type checking for nil panics

NullAway For Java

Built using the Java Checker Framework for pluggable type checking.

Question: What is annotation-based program analysis and how is it
related to type checking? How is it different from traditional
interprocedural analysis?

CHECKER

framework

NullAway for Java

One of the simplest annotation-based analysis. Makes use of only two
annotations:

- @NonNull: A type that can never be null
- @Nullable: A type can may or may not be null

The checker checks for two invariants:

1. No expression of @Nullable type is ever assigned to a location of

@NonNull type.
2. No expression of @Nullable type is ever dereferenced.

CHECKER

framework

NullAway In Action

Let's look at their playground: EISOP Checker Framework Live Demo

CHECKER

framework

http://eisop.uwaterloo.ca/live/#mode=display

Results of Deploying NullAway at Uber

The tool was successful deployed on all of Uber’s Java code.

NullAway identified many potential NPE bugs that were fixed by the
developers leading to significant reduction in app NPE’s logged.

Since it is very hard to annotate the entire existing code base (millions of
lines of Java code), the tool made default assumptions rendering it neither
sound nor complete.

Can we do better? CHECKER

framework

NilAway for Go

Main idea: Get rid of annotations and collect typing constraints
automatically looking for contradictions.

An example of a nilable constraint is return x, where x is an uninitialized
pointer, while the dereference, *x, is an example of a nonnil constraint.

A contradiction occurs when for a program site S, nilable(S) » nonnil(S) is
discovered to be true.

NilAway for Go
XUnsafe

nil returned from method call on return 0 of
net.conn.RemoteAddr net.Conn.RemoteAddr

A

return nil RemoteAddr () .String ()

y

return O of concrete return O of interface
implementation declaration
net.conn.RemoteAddr net.Conn.RemoteAddr

go/src/net/http/server.go:1859:17: Potential nil panic detected. Observed nil flow from
source to dereference point:

-> net/net.go:225:10: "nil” returned from “conn.RemoteAddr()’

-> net/net.go:128:2: returned from interface method "Conn.RemoteAddr

-> net/http/server.go:1859:17: “c.rwc.RemoteAddr()” called "String()

Results of Deploying NilAway at Uber

The tool was successful deployed on all of Uber’s Go code (100 million+
lines of code).

NilAway has reported over 10,000 nil panic alerts till date and has been
in production for almost 2 years now.

The tool has a precision of 60% meaning ~6,000 nil panic alerts have been
addressed by developers at Uber so far!

Questions

1.

What according to you is an acceptable level of precision for a
program analysis tool and why? How would you even measure the
precision of the tool? Feel free to take concrete examples and answer!

What are the reasons for imprecision in static analysis tools? Can you
think of ways to improve their precision? Feel free to either use
NullAway/NilAway as an example or discuss any analysis of your
choice!

uReview: Scalable & Trustworthy
GenAl for Code Reviews

Motivation
- Code reviews are a core component of software development that
help ensure the reliability, consistency, and safety of codebases across
tens of thousands of changes each week.

- Uber’s monorepos see around 65,000 PRs every month!

- When humans reviewers and the existing bug finding techniques fail to
detect code bugs, production incidents occur.

- Why not add another layer of defense against bugs?

High-Level Architecture

.
Files General

that
A Defect

need a Assistant
re}iw/
BT
Pre- Best

Piece of code

&

LLM

&

{ Review

» Practices
Assistant)
)

to review processor

-

Pluggable
Comment
Assistants

]L grader

Filter low
confidence
(grade)
comments

LLM
Duplicate Comment High quality
comment Category Code review
Filter Filter comments
Merge Prune
similar low-value or
comments poorly
into one. performing
comment
categories

uReview Comments

All the PRs raised are usually
reviewed in < 5mins

Comments are posted similar to
how a human reviewer would

Developers can provide feedback
on comments to help improve the
tool!

203
204

205
206
207
208

209
210
211
212
213
214
215

216
217

218

case pb.COMPONENT_TYPE_RING_WAYFINDING:
ringMessages, err := ringMessagesFromProto(ctx, pbComponentInput.GetSubcomponentI
nputs())
if err != nil {
return nil, err
}

if len(ringMessages) > 1 {

kentj: FYI, ringwayfinding data entity needs to be updated. Metrics logic here will be changed in t...

// the wayfinding component should have only one ring message
return nil, yarpcerrors.InvalidArgumentErrorf(_errInvalidComponentInput)
}
ringMessage := entity.RingMessage{}
if len(ringMessages) == 1 {
ringMessage = ringMessages[0]
compMetrics.EmitComponentInputMetrics(ctx, trafficName, pbComponentInput.GetId(
), entity.ComponentTypeRingBillboard, useCase, componentMetrics.ComponentInputValidMe
tadataTag)
} else {
compMetrics.EmitComponentInputMetrics(ctx, trafficName, pbComponentInput.GetId(
), entity.ComponentTypeRingBillboard, useCase, componentMetrics.ComponentInputValidMe
tadataTag)
}

ureview Not Done | ¥

The metric emitted here uses 'entity.ComponentTypeRingBillboard' instead of
‘entity.ComponentTypeRingWayfinding' This could lead to incorrect metrics being recorded.

(also applies to other locations in this diff.)

uReview GenAl comment. Please rate the usefulness of this comment:
0|1]2|3]4]15]6]7]8|9]|10

kentj Author v Done ¥

Makes sense, this is a bug.

General Defects & Best Practices Bots
)) O uber-go / guide
GDB IS A Slmple prom pT based bOT <> Code (O Issues 21 19 Pullrequests 8 3 Discussions (Actions @ Security
that asks the LLM to review code B s
and look for bugs b master

) Go to file

| style.md (3

‘g‘ martinyonatann Update BAD Example in import-alias |

Preview Code Blame 4109 lines (3119 loc) - §
> @B .github

. > B src
BPB is a rule-based bot that asks B tgnors ¢ Uber Go Style Guide

D

the LLM to reason about rules and e
code context to find violations

[CODE_OF_CONDUCT.md

)
[) CONTRIBUTING.md

[LICENSE

[Makefile

Many other bots are pluggable.. [READMEm

[style.md

How useful is uReview at Uber?

1. If you were developing a program analysis tool in the industry, how
would you measure the usefulness and impact of your tool in the
company?

How useful is uReview at Uber?

We establish usefulness using a few different metrics:

- Retrospective Detection Rate: uReview was able to detect a good fraction
of historic bugs that lead to past production incidents

- Preventable Incident Count: uReview detected many bugs before they
reached production*

- Developer Satisfaction Rate: Median developer feedback was very positive*

- Comment Addressal Rate: ~65% of the posted comments were resolved

Questions

1. Why might developers ignore uReview’s bug comments, even when
they have been shown to be useful? This phenomenon is not unique to
uReview—consider why similar challenges arise with other program
analysis tools too.

2. Imagine you are the project lead for uReview. What are some of the
lessons learnt from our discussion about problems? How would you
solve these problems?

Improving the performance of the BPB

Goal: Improve the usefulness of the BPB in Uber.

Main Problems: Missed violations and hallucinations

Why only BPB?

- Limited time for the project (~4 weeks)

- BPB does not detect bugs so it's harder to convince developers that
the comments posted need to be addressed

Solution: BPB V2.0

Spend more $$$ and perform focused reasoning on each rule for every
file in the PR

Curated best practice rules from developers with both positive and
negative examples for each rule

Implemented a self-improving RAG-based post processing step to filter
out less valuable comments generated

Reseadrch Questions

RQ1: What were the total number of comments posted by the new BPB?

RQ2: What was the quality of the new comments being posted?

RQ3: What was the addressal rate for these new set of comments?

RQ4: What was the developer feedback for the new BPB?

Quantity and Quality of Comments

RQ1: What were the total number of comments posted by the new BPB?

The BPB V2.0 posted almost the same number comments in 2 weeks of
deployment as the BPB V1.0 in its 6 months of deployment

RQ2: What was the quality of the new comments being posted?

Evaluated the results of the new bot on a manually labelled dataset of
internal PRs. Observed an 3.5x improvement in both precision and recall!

Developer Experience

RQ3: What was the addressal rate for these new set of comments?

The comment addressal rate went up by 15% for the new bot. We expect it
to go even higher as the bot collects more data and filters comments!

RQ4: What was the developer feedback for the new BPB?

The average comment score increased slightly and the feedback was
positive. The important point is the new bot facilitates collection of a lot
more data/feedback due to its volume of comments.

what’s one key takeaway for me
after working with program analysis
for all these years?

Key Takeaway

Success of a program analysis tool is defined by its impact and not
effectiveness.

Impact = Effectiveness * Applicability * Trust

Impact measures the ability of a tool to save $$$ for a company and
that's the only thing that matters at the end of the day!

Effectiveness

Usually refers to the precision and recall of the program analysis tool.

Academia usually focuses on this one aspect* but this is not the only metric
to consider when building tools.

Sometimes effectiveness is also measured in other ways:

- Time saved for developers
- Mean time between failures
- Cost of preventable incidents...

Applicability
Law of bug finding: You cannot find bugs in the code you don't analyze.
Tools have to be very applicable to increase the amount of code analyzed.

Many factors affect applicability; we should control all that we can!

(Y]

Example: RLC# vs NilAway

Trust

Developer trust is of utmost importance since they are responsible for
resolving all the alerts raised.

If the output of the tool is noisy, developers start treating all alerts as false
positives. This affects impact.

No matter how important the bug type, completeness is more important
than soundness.

DOI:10.1145/1646353.1646374

How Coverity built a bug-finding tool, and
a business, around the unlimited supply

Further Readi ng of bugs in software systems.

BY AL BESSEY, KEN BLOCK, BEN CHELF, ANDY CHOU,
BRYAN FULTON, SETH HALLEM, CHARLES HENRI-GROS,
ASYA KAMSKY, SCOTT MCPEAK, AND DAWSON ENGLER

A Few Billion
Many interesting insights and a Llnes Of

overall fun read!! code Later
Using Static Analysis

to Find Bugs in
the Real World

