
Lecture 10: Pointer Analysis
17-355/17-665/17-819: Program Analysis

Rohan Padhye

September 30, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Extending WHILE3ADDR with Pointers

Consider Constant Propagation

Need to know that line 3 changes variable z!

Consider Constant Propagation

Points-To Analysis:
May vs. Must and Strong Updates

Points-To Analysis:
May vs. Must and Strong Updates

Pointer Analysis

• Two common relations used as abstract values
• Alias analysis: (x, y) alias pairs

• Points-to analysis: p --> q // or sets for points-to(p)

• Both have may and must versions

• Very expensive to run precisely as data-flow analysis
• Lattice is 2Var x Var. Yikes!

• Almost always needs to be inter-procedural
• (even if used for intra-procedural optimizations)

• Context-sensitivity is often important for adequate precision

Andersen’s Analysis

• Flow-insensitive analysis
• Considers only nodes of a CFG (i.e., instructions) and ignores all edges
• What? Yes, really.
• Trades-off precision for tractability
• Can be combined with context-sensitive techniques

• Key idea: cast as constraint-solving problem
• Abstract model of memory locations and points-to sets

• Let 𝑙𝑥 represent location of var 𝑥
• Let 𝑝 be the set of locations pointed-to by var 𝑝

• One subset constraint per instruction
• Invoke constraint solver. Done!

Andersen’s Analysis

Andersen’s Analysis

Example

x := 42
y := 108
q := &x
if (..)

 p := q

else
 p := &y
r = &p
s = *r
print(*s)
print(*q)

Dynamic Memory Allocation?

Dynamic Memory Allocation

Exercise

Efficiency

• O(n) constraints

• O(n) firings per copy-constraint

• O(n2) firings per assign/deref-constraint

• Worst-case O(n3) firings

• Can be solved in O(n3) time
• McAllester [SAS’99]

• O(n2) in practice
• Sridharan et al. [SAS’09]

• K-sparseness property

Field-Sensitivity

Field-Sensitivity

A field-insensitive approach just treats fields `.f` as dereferences `*`.

Field-Sensitive Analysis

Field-Sensitive Analysis

Field-Sensitive Analysis
a := new X()
b := new Y()
c := new Y()
a.f := b
a.g := c
print(a.f)

Steensgaard’s Analysis

• Problem: Quadratic-in-practice is still not ultra-scalable

• Challenge: Need ~LINEAR. How?
• Solution space of pointer analysis (e.g. points-to sets) itself is O(n2).

• Key idea: Use constant-space per pointer. Merge aliases and
alternates into the same equivalence class.
• p can point to q or r? Let’s treat q and r as the same pseudo-var and

merge everything we know about q and r.

• Points-to “sets” are basically singletons

Steensgaard’s Analysis - Example

Steensgaard’s Analysis - Example

Steensgaard’s Analysis - Exercise

Steensgaard’s Analysis

Steensgaard’s Analysis

Steensgaard’s Analysis

• Abstract locations implemented as union-find data structure
• Each union and find operation takes O(α(n)) time each

• Total algorithm running time is O(n * α(n)) ~ almost linear

• Space consumption is linear

• In practice: very scalable
• Millions of LoC

OOP: Dynamic Dispatch

	Slide 1: Lecture 10: Pointer Analysis
	Slide 2: Extending WHILE3ADDR with Pointers
	Slide 3: Consider Constant Propagation
	Slide 4: Consider Constant Propagation
	Slide 5: Points-To Analysis: May vs. Must and Strong Updates
	Slide 6: Points-To Analysis: May vs. Must and Strong Updates
	Slide 7: Pointer Analysis
	Slide 8: Andersen’s Analysis
	Slide 9: Andersen’s Analysis
	Slide 10: Andersen’s Analysis
	Slide 11: Example
	Slide 12: Dynamic Memory Allocation?
	Slide 13: Dynamic Memory Allocation
	Slide 14: Exercise
	Slide 15: Efficiency
	Slide 16: Field-Sensitivity
	Slide 17: Field-Sensitivity
	Slide 18: Field-Sensitive Analysis
	Slide 19: Field-Sensitive Analysis
	Slide 20: Field-Sensitive Analysis
	Slide 21: Steensgaard’s Analysis
	Slide 22: Steensgaard’s Analysis - Example
	Slide 25: Steensgaard’s Analysis - Example
	Slide 26: Steensgaard’s Analysis - Exercise
	Slide 27: Steensgaard’s Analysis
	Slide 28: Steensgaard’s Analysis
	Slide 29: Steensgaard’s Analysis
	Slide 30: OOP: Dynamic Dispatch

