
Lecture 9: Context-Sensitive
Analysis

17-355/17-665/17-819: Program Analysis

Rohan Padhye

September 25, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Recap: Interprocedural CFG

3: return 𝑦

1: fun 𝑑𝑜𝑢𝑏𝑙𝑒(𝑥)

2: 𝑦 ≔ 2 ∗ 𝑥

4: fun 𝑚𝑎𝑖𝑛()

7: z := 10 / w

5: 𝑧 ≔ 5

local

6: 𝑤 ≔ 𝑑𝑜𝑢𝑏𝑙𝑒(𝑧)
returnw

call

8: 𝑧 ≔ 0

9: 𝑤 ≔ 𝑑𝑜𝑢𝑏𝑙𝑒(𝑧)
call

10: …

local
returnw

𝑓𝑍 return 𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑥
𝜎 = 𝑣 ↦ 𝜎 𝑣 𝑣 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑠} ∪ {𝑥 ↦ 𝜎(𝑦)}

𝑓𝑍 𝑥 ≔ 𝑔 𝑦 𝑙𝑜𝑐𝑎𝑙 𝜎 = 𝜎 \ ({𝑥} ∪ 𝐺𝑙𝑜𝑏𝑎𝑙𝑠)

𝑓𝑍 𝑥 ≔ 𝑔 𝑦 𝑐𝑎𝑙𝑙 𝜎 = 𝑣 ↦ 𝜎 𝑣 𝑣 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑠} ∪ {𝑓𝑜𝑟𝑚𝑎𝑙 𝑔 ↦ 𝜎 𝑦 }

Problems with Interprocedural CFG

• Merges (joins) information across call sites to same function

• Loses precision

• Models infeasible paths (call from one site and return to
another)

• Can we “remember” where to return data-flow values?

Context-Sensitive Analysis Example

Key idea: Separate analyses for functions called in
different ”contexts”.

(“context” = some statically definable condition)

Context-Sensitive Analysis Example

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

Line 6 {x->N} {x->N, y->N}

Line 9 {x->Z} {x->Z, y->Z}

Context-Sensitive Analysis Example

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, T> T {w->Z, Z->Z}

<double, N> {x->N} {x->N, y->N}

<double, Z> {x->Z} {x->Z, y->Z}

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, T> T {w->Z, Z->Z}

<double, N> {x->N} {x->N, y->N}

<double, Z> {x->Z} {x->Z, y->Z}

Works for non-recursive contexts!

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, []> T {w->Z, Z->Z}

<double, [6]> {x->N} {x->N, y->N}

<double, [9]> {x->Z} {x->Z, y->Z}

Works for non-recursive contexts!

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, []> T {w->Z, Z->Z}

<double, [6]> {x->N} {x->N, y->N}

<double, [9]> {x->Z} {x->Z, y->Z}

Works for non-recursive contexts!

Recursion makes this a bit harder
fun factorial(n) {
 if n == 0 then
 return 1
 else
 return n * factorial(n-1)
}

fun main() {
 x := factorial(5)
}

1: fun main():
2: z := 5
3: x := factorial(z)
4: halt

6: fun factorial(n):
7: one := 1
8: result := one
9: if n = 0 goto 13
10: prev := n - one
11: temp := factorial(prev)
12: result := n * temp
13: return result

Exercise: Work out why this is a problem
with both value-based contexts and call-strings based contexts

Recursion makes this a bit harder
fun factorial(n) {
 if n == 0 then
 return 1
 else
 return n * factorial(n-1)
}

fun main() {
 x := factorial(5)
}

1: fun main():
2: x := 5
3: result := factorial(x)
4: print result
5: halt

6: fun factorial(n):
7: one := 1
8: result := one
9: if n = 0 goto 13
10: prev := n - one
11: temp := factorial(prev)
12: result := n * temp
13: return result

Exercise: Work out why this is a problem
with both value-based contexts and call-strings based contexts

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, T> T …

<factorial, N> N …

<factorial, T> T …

Recursion makes this a bit harder
fun factorial(n) {
 if n == 0 then
 return 1
 else
 return n * factorial(n-1)
}

fun main() {
 x := factorial(5)
}

1: fun main():
2: x := 5
3: result := factorial(x)
4: print result
5: halt

6: fun factorial(n):
7: one := 1
8: result := one
9: if n = 0 goto 13
10: prev := n - one
11: temp := factorial(prev)
12: result := n * temp
13: return result

Exercise: Work out why this is a problem
with both value-based contexts and call-strings based contexts

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, []> T …

<factorial, [3]> N …

<factorial, [3, 11]> T …

…

Key Idea: Worklist of Contexts

Key Idea: Worklist of Contexts

Key Idea: Worklist of Contexts

Key Idea: Worklist of Contexts

On Termination and Complexity

• Add to worklist C x H times (C = #contexts, H = lattice height)

• After each analysis, propagate result to N callers

• O(C x N x H) intraprocedural analyses

• = O(E x H) where E is #edges in context-sensitive call graph

• Is C finite???

Types of Context-Sensitivity

• No context sensitivity

• Call strings

• Value contexts

• k-limited call strings

• k-limited value contexts

Limited Context-Sensitivity
No context-sensitivity

K-call-string context-sensitivity

Value-based context-sensitivity

In Practice

• Value contexts = same precision as arbitrary-length call strings
• Only former guaranteed to terminate, but still very expensive

• If flow functions are distributive, more efficient algorithms exist
(e.g. IFDS)

• K-call strings is often used for general analyses

	Slide 1: Lecture 9: Context-Sensitive Analysis
	Slide 2: Recap: Interprocedural CFG
	Slide 3: Problems with Interprocedural CFG
	Slide 4: Context-Sensitive Analysis Example
	Slide 5: Context-Sensitive Analysis Example
	Slide 6: Context-Sensitive Analysis Example
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Recursion makes this a bit harder
	Slide 11: Recursion makes this a bit harder
	Slide 12: Recursion makes this a bit harder
	Slide 13: Key Idea: Worklist of Contexts
	Slide 14: Key Idea: Worklist of Contexts
	Slide 15: Key Idea: Worklist of Contexts
	Slide 16: Key Idea: Worklist of Contexts
	Slide 17
	Slide 19: On Termination and Complexity
	Slide 20: Types of Context-Sensitivity
	Slide 21: Limited Context-Sensitivity
	Slide 22: In Practice

