Lecture 6: Data-Flow Analysis Algorithm:

Termination, Complexity, and Fixed Point

17-355/17-665/17-819: Program Analysis
Rohan Padhye
September 16, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

SSD Software and Soc t | . %[illﬂ)f;l gie
th&mlu&ummmzatgﬁmmﬂaﬁﬁ

Systems D epar tm
iversity

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Worklist Algorithm [Kildall"73]

worklist = J
for Node n in cfg

input [n] = output[n] = L
add n to worklist
input [0] = initialDataflowInformation

while worklist i1s not empty
take a Node n off the worklist
output [n] flow(n, input[n])

for Node 7j in succs (n)
newlInput = input[j] w output[n]
if newInput # input|[j]
input [J] = newInput
add J to worklist

| .
D Software and Societal Cal'negle
Systems Department Mellon

University

Ascending Chains & Lattice Height

Ascending Chain A sequence oy, is an ascending chain iff n < m implies o,, °
Om
We can define the height of an ascending chain, and of a lattice, in order to bound the number
of new analysis values we can compute at each program point:

Height of an Ascend- An ascending chain oy has finite height h if it contains A + 1
ing Chain distinct elements.

Height of a Lattice A lattice (L, =) has finite height h if there is an ascending
chain in the lattice of height h, and no ascending chain in

the lattice has height greater than h

Carnegie

D Software and Societal
Systems Department Me.!lon :
University

Worklist Algorithm [Kildall"73]

worklist = J
for Node n in cfg

input [n] = output[n] = L
add n to worklist
input [0] = initialDataflowInformation

O(c *xn *h)+0(c xe *h)
while| worklist is not empty | O(n *h) =0(c *(e+n) *h)

take a Node n off the worklist

output [n] flow(n, input[n])| 0(c)

for Node 7J in succs (n)| 0(e = h) in total (across the while loop)

newInput = |input[]j] uw output[n] | 0(c)

1f newInput # input/|[j]
input [j] = newInput |9(® xh)
add] to worklist

| .
Software and Societal Car negie
Systems Department Mellon

University

Worklist Algorithm [Kildall"73]

worklist = J
for Node n in cfg

input [n] = output[n] = L
add n to worklist
input [0] = initialDataflowInformation

while worklist i1s not empty
take a Node n off the worklist
output [n] flow(n, input[n])

for Node 7j in succs (n)
newlInput = input[j] w output[n]
if newInput # input|[j]
input [J] = newInput
add J to worklist

| .
D Software and Societal Cal'negle
Systems Department Mellon

University

Worklist Algorithm [Kam & Ullman’76]

worklist = (J

for Node n in cfg More obviously computes the fixed point
input [n] = output[n] = L
add n to worklist

output [programStart] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
input [n] = Ugepreds(n) output [k]
newOutput = flow(n, input[n])
1f newOutput # output[n]
output [n] = newOutput
for Node j in succs (n)
add j to worklist

D Software and Societal Carnegle
Systems Department Mellon

University

Recall: Fixed point of Flow Functions

f:
(09, 01,02, .., Op) 3 (0'g,0'1,0'5,...,0)

'y = 0y
Fixed point! 0’1 = felx =101 (00)
(09, 01, O, ..., 03) = [,(0g, 01, 02, ..., Op) o'y = fzly = 0](o1)
0-,3 = 0y LI O~
Correctness theorem: a4 = f,lif x =10 goto 7] z(a3)

If data-flow analysis is well designed™®, then
any fixed point of the analysis is sound.

o'g = f,lif x = 10 goto 7] ;(03)
0'9 = frllx = yl(oe)

D Software and Societal Carnegie.
Systems Department Mellon

* Lattice has finite height and flow functions are monotonic.

University

Monotonicity of Flow Functions

Monotonicity A function f is monotonic iff o1 = o2 implies f(o1) E f(02)

For Zero-Analysis:

Case fz]x :=0](0) =olz— Z]:

Case fz[z :=y](o) = o[z — o(y)]: Exercise!

| .
Software and Societal Car negie
Systems Department Mellon

University

Worklist Algorithm [Kam & Ullman’76]

worklist = (J
for Node n in cfg Can prove termination using induction!

input [n] = output[n] = L (assuming monotonic flow functions)
add n to worklist
output [programStart] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
input [n] = Ugepreds(n) output [k]
newOutput = flow(n, input[n])
1f newOutput # output[n]
output [n] = newOutput
for Node j in succs (n)
add j to worklist

D Software and Societal Carnegle
Systems Department Mellon

University

Successive applications for the whole-
program flow function results in an
ascending chainie. s c F)

F
Base case: (L,L4,...,1) - (0’1; 0"2; e) U’n)

F
14 !/ 14
Inductive case: (01, 02, «e+) O-n) - (O- 1,0 25,0 n)

Since the height of the composite lattice of tuples (ay, 01, 75, ..., ay) is finite,
the algorithm terminates! Max number of steps is the height of the composite
lattice, which is n x height of the ¢ lattice, as before.

D Software and Societal Carnegle
Systems Department Mellon

University

Fixed Point

Let 7 ({o1, 02,0p|)) = {01, 0%,cr|’P|> be a composite flow
function for program P, such that:

Vi<i<|P|: o,

L] 7Pl

jEpreds(i)

|
Q

L fIPL(oy) | oo

jepreds(1)

o1

where op is the initial dataflow information. Then, a

dataflow analysis result ¥ = (o1, 02,0p|) is a fixed point
ifft 7(X) = X.

| .
Software and Societal Car negie
Systems Department Mellon

University

Worklist Algorithm Terminates at Fixed Point

At the fixed point, we therefore have the following equations satisfied:

op E o1

‘v’ieP:(|_| f[[P[j]](Jj)) C o

jepreds(t)

The worklist algorithm shown above computes a fixed point when it terminates. We can prove
this by showing that the following loop invariant is maintained:

Vi . (35 € preds(i) such that f[P[j]](c;) & 0;) = i € worklist

D Software and Societal Carnegle
Systems Department Mellon

University

	Slide 1: Lecture 6: Data-Flow Analysis Algorithm: Termination, Complexity, and Fixed Point
	Slide 2: Worklist Algorithm [Kildall’73]
	Slide 3: Ascending Chains & Lattice Height
	Slide 4: Worklist Algorithm [Kildall’73]
	Slide 5: Worklist Algorithm [Kildall’73]
	Slide 6: Worklist Algorithm [Kam & Ullman’76]
	Slide 7: Recall: Fixed point of Flow Functions
	Slide 8: Monotonicity of Flow Functions
	Slide 9: Worklist Algorithm [Kam & Ullman’76]
	Slide 10: Successive applications for the whole-program flow function results in an ascending chain i.e., Σ ⊑ F(Σ)
	Slide 11: Fixed Point
	Slide 12: Worklist Algorithm Terminates at Fixed Point

