Lecture 6: Data-Flow Analysis Algorithm:
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Worklist Algorithm [Kildall"73]

worklist = J
for Node n in cfg

input [n] = output[n] = L
add n to worklist
input [0] = initialDataflowInformation

while worklist i1s not empty
take a Node n off the worklist
output [n] flow(n, input[n])

for Node 7j in succs (n)
newlInput = input[j] w output[n]
if newInput # input|[j]
input [J] = newInput
add J to worklist
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Ascending Chains & Lattice Height

Ascending Chain A sequence oy, is an ascending chain iff n < m implies o,, °
Om
We can define the height of an ascending chain, and of a lattice, in order to bound the number
of new analysis values we can compute at each program point:

Height of an Ascend- An ascending chain oy has finite height h if it contains A + 1
ing Chain distinct elements.

Height of a Lattice A lattice (L, =) has finite height h if there is an ascending
chain in the lattice of height h, and no ascending chain in

the lattice has height greater than h
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Worklist Algorithm [Kildall"73]

worklist = J
for Node n in cfg

input [n] = output[n] = L
add n to worklist
input [0] = initialDataflowInformation

O(c *xn *h)+0(c xe *h)
while| worklist is not empty | O(n *h) =0(c *(e+n) *h)

take a Node n off the worklist

output [n] flow(n, input[n])| 0(c)

for Node 7J in succs (n)| 0(e = h) in total (across the while loop)

newInput = |input[]j] uw output[n] | 0(c)

1f newInput # input/|[j]
input [j] = newInput |9(® xh)
add ] to worklist
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Worklist Algorithm [Kildall"73]

worklist = J
for Node n in cfg

input [n] = output[n] = L
add n to worklist
input [0] = initialDataflowInformation

while worklist i1s not empty
take a Node n off the worklist
output [n] flow(n, input[n])
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newlInput = input[j] w output[n]
if newInput # input|[j]
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Worklist Algorithm [Kam & Ullman’76]

worklist = (J

for Node n in cfg More obviously computes the fixed point
input [n] = output[n] = L
add n to worklist

output [programStart] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
input [n] = Ugepreds(n) output [k]
newOutput = flow(n, input[n])
1f newOutput # output[n]
output [n] = newOutput
for Node j in succs (n)
add j to worklist
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Recall: Fixed point of Flow Functions

f:
(09, 01,02, .., Op) 3 (0'g,0'1,0'5,...,0)

'y = 0y
Fixed point! 0’1 = felx =101 (00)
(09, 01, O, ..., 03) = [,(0g, 01, 02, ..., Op) o'y = fzly = 0](o1)
0-,3 = 0y LI O~
Correctness theorem: a4 = f,lif x =10 goto 7] z(a3)

If data-flow analysis is well designed™®, then
any fixed point of the analysis is sound.

o'g = f,lif x = 10 goto 7] ;(03)
0'9 = frllx = yl(oe)
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Monotonicity of Flow Functions

Monotonicity A function f is monotonic iff o1 = o2 implies f(o1) E f(02)

For Zero-Analysis:

Case fz]x :=0](0) =olz— Z]:

Case fz[z :=y](o) = o[z — o(y)]: Exercise!
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Worklist Algorithm [Kam & Ullman’76]

worklist = (J
for Node n in cfg Can prove termination using induction!

input [n] = output[n] = L (assuming monotonic flow functions)
add n to worklist
output [programStart] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
input [n] = Ugepreds(n) output [k]
newOutput = flow(n, input[n])
1f newOutput # output[n]
output [n] = newOutput
for Node j in succs (n)
add j to worklist
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Successive applications for the whole-
program flow function results in an
ascending chainie. s c F)

F
Base case: (L,L4,...,1) - (0’1; 0"2; e ) U’n)

F
14 !/ 14
Inductive case: (01, 02, «e+ ) O-n) - (O- 1,0 25,0 n)

Since the height of the composite lattice of tuples (ay, 01, 75, ..., ay) is finite,
the algorithm terminates! Max number of steps is the height of the composite
lattice, which is n x height of the ¢ lattice, as before.
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Fixed Point

Let 7 ({o1, 02, ....0p|)) = {01, 0%, ....cr|’P|> be a composite flow
function for program P, such that:

Vi<i<|P|: o,

L] 7Pl

jEpreds(i)

|
Q

L fIPL(oy) | oo

jepreds(1)

o1

where op is the initial dataflow information. Then, a

dataflow analysis result ¥ = (o1, 02, ....0p|) is a fixed point
ifft 7(X) = X.
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Worklist Algorithm Terminates at Fixed Point

At the fixed point, we therefore have the following equations satisfied:

op E o1

‘v’ieP:( |_| f[[P[j]](Jj)) C o

jepreds(t)

The worklist algorithm shown above computes a fixed point when it terminates. We can prove
this by showing that the following loop invariant is maintained:

Vi . (35 € preds(i) such that f[P[j]](c;) & 0;) = i € worklist
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