
Lecture 2:
Abstract Syntax and
Program Semantics

17-355/17-665/17-819: Program Analysis

Rohan Padhye

August 28 and September 2, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Administrivia

• HW1 will be out tonight – CodeQL. Due next Thursday (Sep 4).
• Lots of references online

• Recitation will have some practice problems

• Submit via Gradescope.

• Office hours are up on website

• Lecture notes/slides on website

• Read after class; useful for HW and exams (won’t always have slides)

• Text PDF updates frequently (usually before class); get latest copy

• For now, ignore 2.2, 2.4, 3.1.3 (WHILE3ADDR) – We’ll cover it next week

• Please bring paper/pen for in-class exercises

Learning Goals

• Recognize the basic WHILE demonstration language and define
its abstract syntax.

• Describe the function of an AST and outline the principles behind
AST walkers for simple bug-finding analyses

• Define the meaning of programs using operational semantics

• Read and write inference rules and derivation trees

• Use big- and small-step semantics to show how WHILE programs
evaluate

• Use structural induction to prove things about program
semantics

Recap: Concrete vs. Abstract Syntax

• A tree representation of source code based on the language grammar.

• Concrete syntax: The rules by which programs can be expressed as
strings of characters
• E.g. “if (x * (a + b)) { foo(a); }”
• Use finite automata and context-free grammars, automatic lexer/parser generators

• Abstract syntax: a subset of the parse tree of the program.
• Only care about statements, expressions and their relationship with constituent

operands.

• Don’t care about parenthesis, semicolons, keywords, etc.

• (The intuition is fine for this course; take compilers if you want to learn
how to parse for real.)

The WHILE language – Example program

y := x;
z := 1;
if y > 0 then
 while y > 1 do
 z := z * y;
 y := y – 1
else
 skip

• Sample program computes z = x!
using y as a temp variable.

• WHILE uses assignment
statements, if-then-else, while
loops.

• All vars are integers.
• Expressions only arithmetic (for

vars) or relational (for conditions).
• No I/O statements. Inputs and

outputs are implicit.
• Later on, we may use extensions with

explicit `read x` and `print x`.

WHILE abstract syntax
We’ll use these meta-variables
frequently for ease of notation

Exercise: Building an AST
y := x;
z := 1;

if y > 0 then
 while y > 1 do

 z := z * y;

 y := y – 1

else

 skip

Our first static analysis: AST walking

• One way to find “bugs” is to walk the AST, looking for
particular patterns.
• Traverse the AST, look for nodes of a particular type

• Check the neighborhood of the node for the pattern in question.

• Basically, a glorified “grep” that knows about the syntax but not
semantics of a language.

Example: shifting by more than 31 bits.

Assume we want to find code patterns of the following form:

x << -3

z >> 35

For 32-bit integer vars, these operations may signal unintended typos, since it
doesn’t makes sense to shift by a number outside the range (0, 32).

Example: shifting by more than 31 bits.

For each instruction I in the program

 if I is a shift instruction

 if (type of I’s left operand is int

 && I’s right operand is a constant

 && value of constant < 0 or > 31)

 warn(“Shifting by less than 0 or more
 than 31 is meaningless”)

Our first static analysis: AST walking

• One way to find “bugs” is to walk the AST, looking for particular
patterns.
• Traverse the AST, look for nodes of a particular type
• Check the neighborhood of the node for the pattern in question.

• Various frameworks, some more language-specific than others.
• Tradeoffs between language agnosticism and semantic information available.
• Consider “grep”: very language agnostic, not very smart.
• Python’s ”astor” package designed for Python ASTs. Clean API; highly specific.

• One common architecture based on Visitor pattern:
• class Visitor has a visitX method for each type of AST node X
• Default Visitor code just descends the AST, visiting each node
• To do something interesting for AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative
logic programming, or query languages.

CodeQL
• A language for querying

code. Developed by
GitHub.

• Supports many common
languages.

• Library of common
programming patterns
and optimizations.

Back to WHILE

Questions to answer

• What is the “meaning” of a given WHILE expression/statement ?

• How would we go about evaluating WHILE expressions and
statements?

• How are the evaluator and the meaning related?

Three canonical approaches

• Operational semantics
• How would I execute this?

• Interpreter

• Axiomatic semantics
• What is true after I execute this?

• Symbolic Execution

• Denotational semantics
• What function is this trying to compute?

• Mathematical modeling

Operational Semantics

• Specifies how expressions and statements should be evaluated
depending on the form of the expression.
• 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.

• 4 + 2 is evaluated by adding integers 4 and 2 to get 6.

• Rule can be generalized for an expression containing only literals: n1 + n2

• a1 + a2 is evaluated by:

• First evaluating expression a1 to value n1

• Then evaluating expression a2 to integer n2

• The result of the evaluation is the literal representing n1 + n2

• Here, evaluation order is being defined as left-to-right (post-order AST traversal)

• Operational semantics abstracts the execution of a concrete interpreter.

Big-Step Semantics

• Uses down-arrow ⇓ notation to denote evaluation to normal form.

• 𝑎 ⇓ 𝑛 is a judgment that expression 𝑎 is evaluated to value 𝑛

• For example: 4 + 2 + 9 ⇓ 15

• You can think of this as a logical proposition.
• The semantics of a language determines what judgments are provable.

Inference Rules

• A notation for defining semantics.

• If ALL of the premises above the line can be proved true, then the
conclusion holds as well.

Let’s Formalize the tiny ADD language

• Specifies how expressions and statements should be evaluated
depending on the form of the expression.
• 0, 1, 2, . . . don’t evaluate any further.

• They are normal forms or values.

• 4 + 2 is evaluated by adding integers 4 and 2 to get 6.

• Rule can be generalized for an expression containing only literals: n1 + n2

• a1 + a2 is evaluated by:

• First evaluating expression a1 to value n1

• Then evaluating expression a2 to integer n2

• The result of the evaluation is the literal representing n1 + n2

• Here, evaluation order is being defined as left-to-right (post-order AST traversal)

• Operational semantics abstracts the execution of a concrete interpreter.

Big-step semantics for ADD

Derivation trees
• Let’s derive (4 + 2) + 9 ⇓ 15 from the rules

• The derivation provides a proof of (4 + 2) + 9 ⇓ 15 using only
axioms and inference rules.

Operational Semantics of WHILE

• The meaning of WHILE expressions depend on the values of variables
• What does 𝑥+5 mean? It depends on 𝑥.
• If 𝑥 = 8 at some point, we expect 𝑥+5 to mean 13

• The value of integer variables at a given moment is abstracted as a
function:

𝐸 ∶ 𝑉𝑎𝑟 → 𝑍

• We will augment our notation of big-step evaluation to include state:

𝐸, 𝑎 ⇓ 𝑛

• So, if 𝑥 ↦ 8 ∈ 𝐸, then 𝐸, 𝑥 + 5 ⇓ 13

Big-Step Semantics for WHILE expressions

• Similarly for other arithmetic and boolean expressions

States propagate in derivations

• Let 𝐸1 = {𝑥 ↦ 4}. What will 𝑥 ∗ 2 − 6 evaluate to in this state?

⊢ ⟨E1, 𝑥 ∗ 2 − 6⟩ ⇓ 2 (this evaluation is provable via a well-formed derivation)

Big-Step Semantics for WHILE statements

• Statements do not evaluate to values.

• However, statements can have side-effects.

• Notation for statement evaluations: 𝐸, 𝑆 ⇓ 𝐸′

Big-Step Semantics for WHILE statements

Big-Step Semantics for WHILE statements

• Exercise: Write the rule “big-while” for

Big-Step Semantics for WHILE
statements

Big-Step Semantics for WHILE
statements

Alternate formulation (equivalent to previous slide):

Big-Step Semantics: Discussion

• Rules suggest an AST interpreter
• Recursively evaluate operands, then current node (post-order

traversal)

• Disadvantages:
• Cannot reason about non-terminating loops, e.g. while true do skip

• Does not model intermediate states
• Needed for semantics of concurrent execution models (e.g. Java threads)

Small-Step Operational Semantics

• Each step is an atomic rewrite of the program

• Execution is a sequence of (possibly infinite) steps
• ⟨E1, (𝑥 ∗ 2) − 6⟩ → ⟨𝐸1, 4 ∗ 2 − 6⟩ → ⟨𝐸1, 8 − 6⟩ → 2

• Small arrow notation for single step:

𝐸, 𝑎 →𝑎 𝑎′

𝐸, 𝑏 →𝑏 𝑏′
𝐸, 𝑆 → ⟨𝐸′, 𝑆′⟩

(the subscripts on the arrows can be omitted when context is clear)

Small-Step Operational Semantics
• First define a multi-step notation: 𝐸, 𝑆 →∗ ⟨𝐸′, 𝑆′⟩

• A terminating evaluation of a program P from initial state Ein is:
𝐸𝑖𝑛 , 𝑃 →∗ ⟨𝐸𝑜𝑢𝑡 , 𝑠𝑘𝑖𝑝⟩

Small-Step Semantics for WHILE expressions

• Axioms are similar:

Small-Step Semantics for WHILE expressions

• Compound expressions

Small-Step Semantics for WHILE statements

Small-Step Semantics for WHILE statements

Small-Step Semantics for WHILE statements

• Exercise: Write the rule “small-while” for

Small-Step Semantics for WHILE statements

Provability

• Given some operational semantics, 𝐸, 𝑎 ⇓ 𝑛 is
provable if there exists a well-formed derivation with
𝐸, 𝑎 ⇓ 𝑛 as its conclusion
“well-formed” = “every step in the derivation is a valid
instance of one of the rules of inference for this opsem
system”

⊢ 𝐸, 𝑎 ⇓ 𝑛 “it is provable that 𝐸, 𝑎 ⇓ 𝑛 ”

Proofs over semantics

• Once we have defined semantics clearly, we can now reason
about programs rigorously via proofs by structural induction.

• But first, recall mathematical induction:
• To prove ∀𝑛 ∶ 𝑃(𝑛) by induction on natural numbers

• Base case: show that 𝑃(0) holds

• Inductive case: show that ∀𝑚 ∶ 𝑃 𝑚 ⇒ 𝑃(𝑚 + 1)

Proofs by Structural Induction

• To prove ∀𝑎 ∈ 𝐴𝑒𝑥𝑝: 𝑃(𝑎) by induction on structure of syntax
• Base cases: show that 𝑃(𝑥) and 𝑃(𝑛) holds

• Inductive cases: show that
• 𝑃 𝑎1 ∧ 𝑃(𝑎2) ⇒ 𝑃(𝑎1 + 𝑎2)

• 𝑃 𝑎1 ∧ 𝑃(𝑎2) ⇒ 𝑃(𝑎1 ∗ 𝑎2)

• 𝑃 𝑎1 ∧ 𝑃(𝑎2) ⇒ 𝑃(𝑎1/𝑎2)

Proofs by Structural Induction

Proofs by Structural Induction
• Prove that small-step and big-step semantics of expressions produce

equivalent results.

• Can be proved via structural induction over syntax. (Exercise)

Proofs by Structural Induction
• Prove that WHILE is deterministic. That is, if the program

terminates, it evaluates to a unique value.

Rule for while is recursive;
doesn’t depend only on

subexpressions

• Can prove for expressions via induction over syntax, but not for
statements.

• But there’s still a way.

Structural Induction over Derivations
To prove:

Next time

• WHILE3ADDR: A 3-address-code representation of WHILE

• Control-flow graphs

• Introduction to data-flow analysis

	Slide 1: Lecture 2: Abstract Syntax and Program Semantics
	Slide 2: Administrivia
	Slide 3: Learning Goals
	Slide 4: Recap: Concrete vs. Abstract Syntax
	Slide 5: The While language – Example program
	Slide 6: While abstract syntax
	Slide 7: Exercise: Building an AST
	Slide 8: Our first static analysis: AST walking
	Slide 9: Example: shifting by more than 31 bits.
	Slide 10: Example: shifting by more than 31 bits.
	Slide 11: Our first static analysis: AST walking
	Slide 12: CodeQL
	Slide 13: Back to While
	Slide 14: Questions to answer
	Slide 15: Three canonical approaches
	Slide 16: Operational Semantics
	Slide 17: Big-Step Semantics
	Slide 18: Inference Rules
	Slide 19: Let’s Formalize the tiny ADD language
	Slide 20: Big-step semantics for ADD
	Slide 21: Derivation trees
	Slide 22: Operational Semantics of WHILE
	Slide 23: Big-Step Semantics for WHILE expressions
	Slide 24: States propagate in derivations
	Slide 25: Big-Step Semantics for WHILE statements
	Slide 26: Big-Step Semantics for WHILE statements
	Slide 27: Big-Step Semantics for WHILE statements
	Slide 28: Big-Step Semantics for WHILE statements
	Slide 29: Big-Step Semantics for WHILE statements
	Slide 30: Big-Step Semantics: Discussion
	Slide 31: Small-Step Operational Semantics
	Slide 32: Small-Step Operational Semantics
	Slide 33: Small-Step Semantics for WHILE expressions
	Slide 34: Small-Step Semantics for WHILE expressions
	Slide 35: Small-Step Semantics for WHILE statements
	Slide 36: Small-Step Semantics for WHILE statements
	Slide 37: Small-Step Semantics for WHILE statements
	Slide 38: Small-Step Semantics for WHILE statements
	Slide 39: Provability
	Slide 40: Proofs over semantics
	Slide 41: Proofs by Structural Induction
	Slide 42: Proofs by Structural Induction
	Slide 43: Proofs by Structural Induction
	Slide 44: Proofs by Structural Induction
	Slide 45: Structural Induction over Derivations
	Slide 46: Next time

