Lecture 2:
Abstract Syntax and
Program Semantics

17-355/17-665/17-819: Program Analysis
Rohan Padhye
August 28 and September 2, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues
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Administrivia

HW1 will be out tonight - CodeQL. Due next Thursday (Sep 4).
« Lots of references online

 Recitation will have some practice problems
« Submit via Gradescope.

Office hours are up on website

Lecture notes/slides on website

« Read after class; useful for HW and exams (won't always have slides)
« Text PDF updates frequently (usually before class); get latest copy
« For now, ignore 2.2, 2.4, 3.1.3 (WHILESADDR) - We'll cover it next week

Please bring paper/pen for in-class exercises
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Learning Goals

« Recognize the basic WHILE demonstration language and define
its abstract syntax.

 Describe the function of an AST and outline the principles behind
AST walkers for simple bug-finding analyses

 Define the meaning of programs using operational semantics
« Read and write inference rules and derivation trees

 Use big- and small-step semantics to show how WHILE programs
evaluate

 Use structural induction to prove things about program
semantics
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Recap: Concrete vs. Abstract Syntax

* A tree representation of source code based on the language grammar.

« Concrete syntax: The rules by which programs can be expressed as
strings of characters
« E.g."if (x *(a+ b)) {foo(a); }"
« Use finite automata and context-free grammars, automatic lexer/parser generators
- Abstract syntax: a subset of the parse tree of the program.

« Only care about statements, expressions and their relationship with constituent
operands.

- Don't care about parenthesis, semicolons, keywords, etc.

* (The intuition is fine for this course; take compilers if you want to learn
how to parse for real.)
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The WHILE language - Example program

« Sample pro%ram computes z = x!

v 1= X; using y as atemp variable.
z = 1;  WHILE uses assignment
if v > 0 then istatements, if-then-else, while
. 00ps.
Whllé_y >* L c.io » All vars are integers.
2 7 2 Yr « Expressions only arithmetic (for
y =y — 1 vars) or relational (for conditions).
else * No I/0 statements. Inputs and
skip outputs are implicit.

« Later on, we may use extensions with
explicit "read x "and "print x .
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WHILE abstract syntax

S statements We'll use these meta-variaples

a arithmetic expressions ( AEXP) frequently for ease of notation

x,y program variables (Vars)

n  number literals

b boolean expressions (BExp)

S = zxz:=a b = true a = T opp = and|or

skip false | n opr = < | < | =
S1; So not b | a1 OPg A2 | > | =
if b then S; else S2 b1 opy, bo opa = +|—|=*]|/
while b do S ai op, as
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Exercise: Building an AST

N

3 89
<

S3D

statements

arithmetic expressions (AExp)

program variables (Vars)
number literals
boolean expressions (BExp)

T:i=a b
skip

Sl; Sz

if b then S else Ss
while bdo S
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true
false
not b

b1 opy b2
ai opr a2

y 1= X;
z = 1;
1f yv > 0 then
while y > 1 do
Z =z * v;
y =y — 1
else
skip
T opp, == and |or
n o = < | < | =
a1 0Pq a2 | > | =
opa = +|—|=*]/
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Our first static analysis: AST walking

« One way to find “bugs” is to walk the AST, looking for
particular patterns.
 Traverse the AST, look for nodes of a particular type
« Check the neighborhood of the node for the pattern in question.

« Basically, a glorified “grep” that knows about the syntax but not
semantics of a language.
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Example: shifting by more than 31 bits.

Assume we want to find code patterns of the following form:
x << -3

z >> 35

For 32-bit integer vars, these operations may signal unintended typos, since it
doesn’'t makes sense to shift by a number outside the range (0, 32).
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Example: shifting by more than 31 bits.

For each 1nstruction I 1n the program
1f I 1s a shift instruction
if (type of I's left operand is int
&& I's right operand is a constant
&& value of constant < 0 or > 31)

warn (“Shifting by less than 0 or more
than 31 is meaningless”)
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Our first static analysis: AST walking

« One way to find “bugs” is to walk the AST, looking for particular
patterns.
 Traverse the AST, look for nodes of a particular type
« Check the neighborhood of the node for the pattern in question.

« Various frameworks, some more language-specific than others.
 Tradeoffs between language agnosticism and semantic information available.
« Consider “grep”: very language agnostic, not very smart.
« Python's "astor” package designed for Python ASTs. Clean API; highly specific.

« One common architecture based on Visitor pattern:
« class Visitor has a visitX method for each type of AST node X
 Default Visitor code just descends the AST, visiting each node
« To do something interesting for AST element of type X, override visitX

« Other more recent approaches based on semantic search, declarative
logic programming, or query languages.
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CodeQL gueries 1.23

( O d e Q L Dashboard [ Java queries

Inefficient empty string test

Created by Documentation team, last modified on Mar 28, 2019
« Alanguage for querying
code. DEVG'OpEd by from MethodAccess ma
GitHub. where

ma.getMethod().hasName("equals") and

ma.getArgument(@).(StringLiteral).getValue() = ""
¢ SUppOrtS many common select ma, "This comparison to empty string is inefficient, use isEmpty()
languages. instead."

* Library of common
Fa);%gg?)?rrr?llgagt | g?]tste s When checking whether a string s is empty, perhaps the most obvious solution is to write something Iikj s.equals("") (pr

"".equalsis)). However, this actually carries a fairly significant overhead, because 5tring.equals of type
tests and conversions before starting to compare the content of the strings.

Query: InefficientEmptyStringTest.qgl » Expand source

Recommendation

The preferred way of checking whether a string s is empty is to check if its length is equal to zero. Thus, the condition is s. length(}
== @. The length method is implemented as a simple field access, and so should be noticeably faster than calling equals.

Mote that in Java 6 and later, the String class has an 1sEmpty method that checks whether a string is empty. If the codebase does
not need to support Java 5, it may be better to use that method instead.
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Back to WHILE

S  statements

a  arithmetic expressions (AExp)

x,y program variables (Vars)

n  number literals

b boolean expressions (BExp)

S = zxz:=a b = true a = T opp = and|or

skip false | n opr = < | < | =
S1; So not b | a1 OPg A2 | > | =
if b then S; else S2 b1 opy, bo opa = +|—|=*]|/
while b do S ai op, as
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Questions to answer

« What is the “meaning” of a given WHILE expression/statement ?

« How would we go about evaluating WHILE expressions and
statements?

« How are the evaluator and the meaning related?
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Three canonical approaches

« Operational semantics
« How would | execute this?
* Interpreter

« AXiomatic semantics
« What is true after | execute this?
« Symbolic Execution

 Denotational semantics

« What function is this trying to compute?
« Mathematical modeling
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Operational Semantics

 Specifies how expressions and statements should be evaluated
depending on the form of the expression.
« 0,1,2,...don't evaluate any further.
« They are normal forms or values.
« 4 + 2 is evaluated by adding integers 4 and 2 to get 6.
« Rule can be generalized for an expression containing only literals: n, + n,

* a4 + a, is evaluated by:
« First evaluating expression a4 to value n;,

« Then evaluating expression a, to integer n,
« The result of the evaluation is the literal representing n, + n,
« Here, evaluation order is being defined as left-to-right (post-order AST traversal)

« Operational semantics abstracts the execution of a concrete interpreter.
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Big-Step Semantics

« Uses down-arrow U notation to denote evaluation to normal form.
* a U nis ajudgment that expression a is evaluated to value n
« For example: (4+2)+9 U 15

 You can think of this as a logical proposition.
« The semantics of a language determines what judgments are provable.
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Inference Rules

premaise; premises ... DPremise,
conclusion

A notation for defining semantics.

* If ALL of the premises above the line can be proved true, then the
conclusion holds as well.
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Let's Formalize the tiny ADD language

« 0,1,2,...don't evaluate any further.
« They are normal forms or values.

* a4 + a, is evaluated by:
« First evaluating expression a4 to value n;,
« Then evaluating expression a, to integer n,
« The result of the evaluation is the literal representing n, + n,
« Here, evaluation order is being defined as left-to-right (post-order AST traversal)
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Big-step semantics for ADD

nln big-int

R LS B AU NP
a1 + as || n1 + no

D Software and Societal Carnegie
Systems Department Mellon

University



Derivation trees arhm azlny o g

a1+a2iln1+n2

* Let's derive (4 + 2) +9 U 15 from the rules
404 22
4+206 99
4+2)+9 15

« The derivation provides a proof of (4 +2) +9 U 15 using only
axioms and inference rules.
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Operational Semantics of WHILE

« The meaning of WHILE expressions depend on the values of variables

« What does x+5 mean? It depends on x.
 |f x = 8 at some point, we expect x+5 to mean 13

« The value of integer variables at a given moment is abstracted as a

function:
E:Var - Z
« We will augment our notation of big-step evaluation to include state:
(E,a) I n

¢« So,if{x—»8}eE, then(E,x+5)U 13
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Big-Step Semantics for WHILE expressions

big-int big-var

B,y I n (E,z) | E(x)

<Eaa’1> J ny <Ea a'2> J na
<E,a,1 + a,2> U ni1 + N9

big-add

 Similarly for other arithmetic and boolean expressions
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States propagate in derivations

- Let E; = {x » 4}. Whatwillx * 2 — 6 evaluate to in this state?

(Br,z) | 4 (E1,2) | 2
<E1,$C*2>U8 <E1,6>U6
<E1,(LU*2)—6>U2

F(E{,x *2 —6) U 2 (this evaluation is provable via a well-formed derivation)
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Big-Step Semantics for WHILE statements

e Statements do not evaluate to values.
« However, statements can have side-effects.

- Notation for statement evaluations; (E,S) U E’

(E.skipy | B big-skip

(E,a) | n

big-assign

(B,x:=a) | E|lx — n]
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Big-Step Semantics for WHILE statements

(E,51) V E" (E',S3) | E"
<Ea Sla 52> \U E”

big-seq

(E,b) | true (FE,S1) | E’
(E,if b then S; else Sy || F/

big-iftrue

(E,by | false (FE,Sy) | E’

(E,if b then S else S5) | £’ big-iffalse
Q3D ofinaresnd sockee




Big-Step Semantics for WHILE statements

 Exercise: Write the rule “big-while” for

while bdo S
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Big-Step Semantics for WHILE
Statements

(E,b) || false
(E,whilebdo S) | E

big-whilefalse

(E,by || true (F,S;whilebdo S) | E’
(F,while bthen S) | F’

big-whiletrue
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Big-Step Semantics for WHILE
Statements

(E,b) || false
(E,whilebdo S) | E

big-whilefalse

Alternate formulation (equivalent to previous slide):
(E,b) || true (E,S | E') (E',whilebdo S) | E”
(F,while bthen S) | E”

big-whiletrue
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Big-Step Semantics: Discussion

* Rules suggest an AST interpreter

« Recursively evaluate operands, then current node (post-order
traversal)

 Disadvantages:

« Cannot reason about non-terminating loops, e.g. while true do skip

 Does not model intermediate states
« Needed for semantics of concurrent execution models (e.g. Java threads)
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Small-Step Operational Semantics

« Each step is an atomic rewrite of the program

 Execution is a sequence of (possibly infinite) steps
* (Eq, (x*2) —6) > (E1,(4%2) —6) > (E,8—6) > 2

- Small arrow notation for single step:
(E,a) >4 a'
(E) b) _)b b,

(E,S) = (E',S')

(the subscripts on the arrows can be omitted when context is clear)

Carnegie

D Software and Societal
Systems Department Me.!lon :
University



Small-Step Operational Semantics
e First define a multi-step notation: (E,S) =" (E',S")

(E.S5 > (E.5 multi-reflexive

<E, S> — <E’,S"> <E’,S’> ¥ <E”,S”>
<E, S> ¥ <E”’ S”>

multi-inductive

« A terminating evaluation of a program P from initial state E,, is:
<Ein»P> ud (Eout» Skip)
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Small-Step Semantics for WHILE expressions

« AXioms are similar:

(E.7) —q E(z) small-var

(E.n) - small-int
’ —a
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Small-Step Semantics for WHILE expressions

« Compound expressions
<E,ﬂ,1> a ﬂffl
(E,a1 + az) —4 a] + a2

small-add-left

<E:ﬂ2> —a ﬂfZ
(E,ny +az) =4 nq + ﬂé

small-add-right

(Byny + o) —q ny + ny 04
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Small-Step Semantics for WHILE statements

(E,S1) — (E',S7)
(E,S1;82) = (E',S}; S2)

small-seq-congruence

1l
(E,skip; Sp) — (B, 8p) 1
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Small-Step Semantics for WHILE statements

(E,by =y V
(E,if bthen S else Sy) — (F, if b’ then S| else Sy)

small-if-congruence

1l-i
(E,if true then S else Sy) — (F,S1) small-iftrue

So ftw d s t | Carnegie
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Small-Step Semantics for WHILE statements

e Exercise: Write the rule “small-while"” for

while b do S
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Small-Step Semantics for WHILE statements

(E,while bdo S) — (if b then S;while bdo S else skip) small-while
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Provability

e Given some operational semantics, (E,a) U nis
provable if there exists a well-formed derivation with
(E,a) U n as its conclusion

“well-formed” = "every step in the derivation is a valid
instance of one of the rules of inference for this opsem
system”

F(E,a)Un “itisprovable that(E,a) {n"”
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Proofs over semantics

« Once we have defined semantics clearly, we can now reason
about programs rigorously via proofs by structural induction.

« But first, recall mathematical induction:

« To prove vn : P(n) by induction on natural numbers
« Base case: show that P(0) holds
 Inductive case: show thatvm: P(m) = P(m+ 1)
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Proofs by Structural Induction

i n opa = +|—|x*]|/
| a1 OPq A2
« To prove Va € Aexp: P(a) by induction on structure of syntax

« Base cases: show that P(x) and P(n) holds

e Inductive cases: show that
 P(a;) AP(a,) = P(a, + a,)
* P(a;) AP(ay,) = P(a, * a,)

* P(a;) AP(az) = P(a;/ay)
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Proofs by Structural Induction

Example. Let L(a) be the number of literals and variable occurrences in some expression a
and O(a) be the number of operators in a. Prove by induction on the structure of a that Va €

Aexp . L(a) = O(a) + 1:

Base cases:
e Casea=n.L(a)=1and O(a) =0
e Casea=1z.L(a)=1and O(a) =0

Inductive case 1: Case a = a1 + a9
e By definition, L(a) = L(a1) + L(a2) and O(a) = O(a1) + O(a2) + 1.
e By the induction hypothesis, L(a;) = O(a1) + 1 and L(a2) = O(a2) + 1.
e Thus, L(a) = O(a1) + O(az2) + 2 = O(a) + 1.

The other arithmetic operators follow the same logic.
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Proofs by Structural Induction

« Prove that small-step and big-step semantics of expressions produce
equivalent results.

Va € AExp .(E,a) >, n<<{(E,a) | n

e Can be proved via structural induction over syntax. (Exercise)
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Proofs by Structural Induction

* Prove that WHILE is deterministic. That is, if the program
terminates, it evaluates to a unique value.

Va€Aexp. VE .Vn,n' eN. (E,a) | nArlE,a)|n =n=n
VPeBexp. VE.Vb,b'eB. (E,P)|bA{(E,P)|V =0bb="¥
Vs . VE,E' E". (E,S) | E' A{(E,S) | E" = E' = E"

Rule for while is recursive;

doesn’t depend only on
subexpressions

« (Can prove for expressions via induction over syntax, but not for
statements.

« But there's still a way.
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To prove: | VS . VE,E' E" . (E,S)|| E' A\(E,S) | E" = E' = E"

Structural Induction over Derivations

Base case: the one rule with no premises, skip: let D:: (E,S) || E',and let D' :: (E,S) | E"

D ::=(E,skip) | E

By inversion, the last rule used in D’ (which, again, produced E”) must also have been the
rule for skip. By the structure of the skip rule, we know E” = E.

Inductive cases: We need to show that the property holds when the last rule used in D was
each of the possible non-skip WHILE commands. I will show you one representative case; the
rest are left as an exercise. If the last rule used was the while-true statement:

Dy :(E,by || true Dy :{(E,S)| E; D3:{FE;,whilebdoS) | F’
D ::= (E,whilebdo S) | F’

Pick arbitrary E” such that D’ :: (E,while bdo S) || E”

By inversion, D’ must use either the while-true or the while-false rule. However,
having proved that boolean expressions are deterministic (via induction on syntax), and given
that D contains the judgment (E,b) | true, we know that D’ cannot be the while-false
rule, as otherwise it would have to contain a contradicting judgment (E, b) || false.

So, we know that D' is also using while-true rule. In its derivation, D’ must also have
subderivations Dj, :: (E,S) || E] and D5 :: (E{,while bdo S) | E”. By the induction hypoth-
esis on Dy with DQ, we know E1 Ej. Using this result and the induction hypothesis on D;
with D5, we have E” = E'.




Next time

« WHILE3ADDR: A 3-address-code representation of WHILE
 Control-flow graphs
* Introduction to data-flow analysis
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