Lecture 1: Introduction
to Program Analysis

17-355/17-665/17-819: Program Analysis
Rohan Padhye
Aug 26, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

SSD Software and Soc t | . %[illﬂ)f;l gie
th&mlu&ummmzatgﬁmmﬂaﬁﬁ

Systems D epar tm
iversity

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Introductions

Prof. Rohan Padhye TA Vasu Vikram

| P .
Software and Societal Qa.l negie
Systems Department Mellon

University

IBM Research

My Background e

Berkeley ..
Research
. . Carnegie
* Involved with program analysis for ~12 years. Mellot aws

PhD from UC Berkeley, Masters from [IT Bombay (India)

« Contributed to research on fuzz testing, static interprocedural analysis, performance analysis, etc.

Worked at IBM Research, Microsoft Research, Samsung Research America, and

Amazon Web Services

« Developed tools for improving developer productivity, finding input-validation software bugs,
identifying security vulnerabilities in mobile systems, discovering concurrency issues in distributed

systems, fuzzing cloud-hosted databases etc.

Advising PhD students in CMU’s Software Engineering program
« | lead the Program Analysis, Software Testing, and Applications research group (PASTA lab)

Carnegie

D Software and Societal
Systems Department Me.!lon :
University

Learning objectives

Provide a high level definition of program analysis and give
examples of why it is useful.

Sketch the explanation for why all analyses must be
approximate.,

Understand the course mechanics and be motivated to read
the syllabus.

Describe the function of an AST and outline the principles
oehind AST walkers for simple bug-finding analyses.

Recognize the basic WHILE demonstration language and
translate between WHILE and While3Addr.

D Software and Societal
Systems Department

Carnegie
Mellon
University

What is this course about?

« Program analysis is the systematic examination of a program
to determine its properties.

« From 30,000 feet, this requires:
 Precise program representations
 Tractable, systematic ways to reason over those representations.

« We will learn:

« How to unambiguously define the meaning of a program, and a
programming language.
« How to prove theorems about the behavior of particular programs.

« How to use, build, and extend tools that do the above,
automatically.

D Software and Societal Carnegle.
Systems Department Mellon

University

Why might you care?

Program analysis, and the skills that underlie it, have implications for:
« Automatic bug finding
« Language design and implementation (compilers, VMs)
« Program transformation (refactoring, optimization, repair)
« Program synthesis

D Software and Societal Carnegie
Systems Department Mellon

University

You've seen it before

= public wvoid| foo() {
int a = computeSomething():

if (a == "5")
doMoreStuff():

Carnegie
Mellon

SS D Software and Societal
Systems Department . .
University

You've seen it before

- public int foo() {
doStuff():

return 3:

doMoreStuff();

return 4:

| .
Software and Societal Qa.l negie
Systems Department Mellon

University

L ots of tools available

Lint

Pull requests

@ github.com/marketplace?category=code-quality

Issues

Marketplace Explore

* O@HEONO RO @

Marketplace = Search results

Types

Apps

Actions

Categories

’ /ldepot/googled/java/lcom/google/devtools/staticanalysis/Test.java

package com.google.devtools.staticanalysis;

public class Test {

}

public boolean foo() {

return getString() == "foo".toString();

}
public String getsString() {

return new String("foo");

}

Cancel

ErrorProne

3D

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());
}

public String getString() {
return new String("foo");
}
}

package com.google.devtools.staticanalysis;
public class Test {
= Lint

Java
1:02 AM, Aug 21

Missing a Javadoc comment.

Please fix Not useful
public boolean foo() {
return getString() == "foo".toString():;

= ErrorProne String comparison using reference equality instead of value equality

StringEquality (see hitp://code.google.com/plerror-pronefwiki/StringEquality)

1:03 AM, Aug 21
Please fix
Suggested fix attached: show Not useful

public String getString() {
return new String(“foo");

Software and Societal
Systems Department

APl management

Chat
Code quality x
Code review

‘ Continuous integration
Dependency management
Deployment

IDEs

Learning

Localization

Mobile

Monitoring

Project management
Publishing

Recently added
Security

Support

Testing

Utilities

Filters «

Verification

Verified

Unverified

Your items

Purchases

Q

Code quality

Automate your code review with style, quality, security, and test-coverage checks when you need them.

245 results filtered by Code quality = x

Cs

CodeScene &

The analysis tool to identify and prioritize
technical debt and evaluate your
organizational efficiency

CodeFactor &
Automated code review for GitHub

DeepScan &
Advanced static analysis for automatically
finding runtime errors in JavaScript code

Datree &
Policy enforcement solution for confident
and compliant code

DeepSource &

Discover bug risks, anti-patterns and
security vulnerabilities before they end up
in production. For Python and Go

Codecov &
Group, merge and compare coverage
reports

Codacy &
Automated code reviews to help
developers ship better software, faster

Code Climate &
Automated code review for technical debt
and test coverage

Sider &

Automatically analyze pull request against
custom per-project rulesets and best
practices

codelingo
Your Code, Your Rules - Automate code
reviews with your own best practices

Also recommended for you

hitps://github.com/marketplace? =api

a

Cl

2
©
*

o
®

Next

TestQuality &
Modern, powerful, test plan management

Restyled.io &
Restyle Pull Requests as they're opened

LGTM &

Find and prevent zero-days and other
critical bugs, with customizable alerts and
automated code review

Lucidchart Connector &

Insert a public link to a Lucidchart diagram
so team members can quickly understand
an issue or pull request

Code Inspector &
Code Quality, Code Reviews and Technical
Debt evaluation made easy

codebeat &

Code review expert on demand.
Automated for mobile and web

Better Code Hub &
A Benchmarked Definition of Done for
Code Quality

Coveralls &

Ensure that new code is fully covered, and
see coverage trends emerge. Works with
any Cl service

Imghot &
A GitHub app that optimizes your images

Check TODO
Checks for any added or modified TODO
items in a Pull Request

Carnegie

Mellon

Uniwv

lv

1A%

https://github.com/marketplace?category=code-quality
https://github.com/marketplace?category=code-quality
https://github.com/marketplace?category=code-quality

Advanced examples from industry

CodeGuru @ Amazon

|

—
. —
- q \,\3 o
: &/
Amazon er?e & Review ICade Build & Te.“.
CodeGuru Built-in code reviews Detect and optimize
. . with actionable the expensive lines
Find your most expensive recommendations of code
lines of code
CodeGuru Reviewer CodeGuru Profiler
Architecture of SAGE

input0 coverage constraints
data

check for

code generate solve
crashes coverage constraints constraints
(AppVerifier) (Nirvana) (TruScan)

inputl ‘
mgt.r-x’c‘ |
SAGE @ Microsoft y

D Software and Societal
Systems Department

[

=

—l=

==
o o
ul:l
oo
v
::\

-

—1

—

n isPositive r
const await fetch(http://text-proc
Improve

Fix performance issues
and reduce cost

Continuously detect anomalies
and most expensive lines of
code in production

CodeGuru Profiler

GitHub CoPilot

Bug Detected Triggers

_—

Sapienz

Trigger Patch
Auto Triage

Fix Patch
Generator

Generator

l

Validated
Revision

I l

Revert Revert

Full Diff Partial Diff H Template

Mutation

Carnegie
Mellon
University

What kinds of issues does program analysis help find?

Defects that result from inconsistently following simple design rules.
 Security: Buffer overruns, improperly validated input.
 Memory safety: Null dereference, uninitialized data.
- Resource leaks: Memory, OS resources.
« API Protocols: Device drivers; real time libraries; GUI frameworks.
- Exceptions: Arithmetic/library/user-defined
- Encapsulation: Accessing internal data, calling private functions.

 Data races: Two threads access the same data without
synchronization

Key: check compliance to simple, mechanical design rules

D Software and Societal Carnegle.
Systems Department Mellon

University

s there a bug in this code?

D Software and Societal Carnegie
Systems Department Mellon

University

0 J o o~ W N

~ B P P P ©
S W N RO

15.}

.static struct buffer head *

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);
cli();
if

// disables interrupts
((bh =
return NULL;

sh=->buffer pool) NULL)

sh->buffer pool = bh -> b next;
bh->b size = b size;
restore flags(flags); // re-enables

return bh;

./* from Linux 2.3.99 drivers/block/raidb.c */

.get free buffer (struct stripe head * sh,

Part of the spec:

Interrupts should not be
disabled upon function return

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

0 J o o~ W N

~ B P P P ©
S W N RO

15.}

.static struct buffer head *

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);
cli();
if ((bh
return NULL;

// disables interrupts

sh=->buffer pool)

sh->buffer pool bh -> b next;

bh->b size

b size;
restore flags(flags); // re-enables

return bh;

./* from Linux 2.3.99 drivers/block/raidb.c */

.get free buffer (struct stripe head * sh,

ERROR: function returns with

interrupts disabled!

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Abstract Model

enable =» err(double enable)

enable
disable =» err(double disable)

is_disabled

end path = err(exiting with inter disabled)

| .
Software and Societal Qa.l negie
Systems Department Mellon

University

0 J o o~ W N

~ B P P P ©
S W N RO

15.}

.static struct buffer head *

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);
cli();
if ((bh
return NULL;

// disables interrupts

sh=->buffer pool) NULL)

sh->buffer pool bh -> b next;

bh->b size

b size;
restore flags(flags); // re-enables

return bh;

./* from Linux 2.3.99 drivers/block/raidb.c */

.get free buffer (struct stripe head * sh,

Initial state: is_enabled

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

./* from Linux 2.3.99 drivers/block/raid5.c */
.static struct buffer head *
.get free buffer (struct stripe head * sh,

int b size) {
struct buffer head *bh;

unsigned long flags;

Transition to: is_disabled

save flags(flags);

0 J o o~ W N

cli(); // disables interrupts
if ((bh = sh->buffer pool) == NULL)
return NULL;

= = WO
= O .

sh->buffer pool = bh -> b next;

[
N

bh->b size = b size;

[H-Y
W

restore flags(flags); // re-enables interrupts

[
AN

return bh;

Example from Engler et al., Checking system rules Using
1 5 . } System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

0 J o o~ W N

~ B P P P ©
S W N RO

15.}

.static struct buffer head *

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);
cli();
if ((bh
return NULL;

// disables interrupts

sh=->buffer pool) il

sh->buffer pool bh -> b next;

bh->b size

b size;
restore flags(flags); // re-enables

return bh;

./* from Linux 2.3.99 drivers/block/raidb.c */

.get free buffer (struct stripe head * sh,

Final state: is_disabled

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

./* from Linux 2.3.99 drivers/block/raid5.c */

.static struct buffer head *

.get free buffer (struct stripe head * sh,
int b size) {

struct buffer head *bh;

unsigned long flags;

save flags(flags);

Transition to: is_enabled

0 I o s W N

cli(); // disables interrupts
if ((bh = sh->buffer pool) == NULL)
return NULL;

= = WO
= O .

sh->buffer pool = bh -> b nex

[
N

bh->b size = b size;

[H-Y
W

restore flags(flags); 7/ re-enables interrupts

[
AN

return bh;

Example from Engler et al., Checking system rules Using
1 5 . } System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

./* from Linux 2.3.99 drivers/block/raid5.c */
.static struct buffer head *
.get free buffer (struct stripe head * sh,
int b size) {
struct buffer head *bh;
unsigned long flags;

save flags(flags);

o J o U~ W N

cli(); // disables interrupts

9. if ((bh = sh->buffer pool) == NULL)
10. return NULL;

11. sh->buffer pool = bh -> b next;

Final state: is_enabled

12. Dbh->b size = b size;

13. restore flags(flags re—enables interrupts

14. return bh;
Example from Engler et al., Checking system rules Using
1 5 . } System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Behavior of interest...

* IS on uncommon execution paths.
« Hard to exercise when testing.

 Executing (or analyzing) all paths is infeasible

* Instead: (abstractly) check the entire possible state
space of the program.

D Software and Societal Carnegle.
Systems Department Mellon

University

What is this course about?

- Program analysis is the systematic examination of a program
to determine its properties.

D Software and Societal Carnegie
Systems Department Mellon

University

What is this course about?

- Program analysis is the systematic examination of a program
to determine its properties.

* Principal techniques:
* Dynamic:
 Testing: Direct execution of code on test data in a controlled environment.
 Analysis: Tools extracting data from test runs.
- Static:

 Inspection: Human evaluation of code, design documents (specs and
models), modifications.

 Analysis: Tools reasoning about program behavior without executing it.
* Inference: Statistical models of code (e.g., Al / ML)

e ...and their combination.

D Software and Societal Carnegle.
Systems Department Mellon

University

What is this course about?

- Program analysis is the systematic examination of a program
to determine its properties.

* Principal techniques:
« Dynamic:

 Analysis: Tools extracting data from test runs.
- Static:

 Analysis: Tools reasoning about program behavior without executing it.

e ...and their combination.

D Software and Societal Carnegle.
Systems Department Mellon

University

The Bad News: Rice's Theorem

"Any nontrivial property about the

language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

Software and Soc t | Carnegie
SSD Systems D epar tm Mellon

University

Proof by contradiction (sketch)

Assume that you have a function that can determine if a program p
has some nontrivial property (like divides by zero):

int silly(program p, 1nput 1) {
p(1);
return 5/0;

}

bool halts(program p, 1nput 1) {
return divides by zero(silly(p,1));

J

\]O\U-ll-bwml—‘

D Software and Societal Carnegie
Systems Department Mellon

University

Error Reported True positive False positive
(correct analysis result)

No Error Reported False negative True negative
(correct analysis result)

Over-approximate analysis:
reports all potential defects
-> no false negatives
-> subject to false positives

Under-approximate analysis:
every reported defect is an actual defect
-> no false positives
-> subject to false negatives

| .
Software and Societal Qa.l negie
Systems Department Mellon

University

Soundness and Completeness

« An analysis is “sound” if every claim it makes is true
« An analysis is “complete” if it makes every true claim

e Soundness/Completeness correspond to under/over-
approximation depending on context.

 E.g. compilers and verification tools treat “soundness” as over-
approximation since they make claims over all possible inputs

 E.g. code quality tools often treat “sound” analyses as under-
approximation because they make claims about existence of bugs

Carnegie

D Software and Societal
Systems Department Me!lon :
University

Complete Analysis

Software and Societal (}a.rnegie
Systems Department Mellon

University

Soundness and Completeness
Tradeoffs

« Sound + Complete is impossible in general (Rice’s theorem)

« Most practical tools attempt to be either sound or complete
for some specific application, using approximation

« Multiple classes of sound/complete techniques may exist,
with trade-offs for accuracy and performance.

« Program analysis is a rich field because of the constant and
never-ending battle to balance these trade-offs with ever-
increasing software complexity

Software and Societal Qarnegw
Systems Department Mellon

University

Course overview

D Software and Societal Carnegie
Systems Department Mellon
University

Course topics

* Program representation

 Abstract interpretation: Use abstraction
to reason about possible program
behavior.

Operational semantics.
Dataflow Analysis
Termination, complexity
Widening, collecting
Interprocedural analysis
Pointer analysis

Control flow analysis

« Hoare-style verification: Make logical
arguments about program behavior.

 Axiomatic semantics

D Software and Societal
Systems Department

Model checking (briefly) : reason about
all possible program states.

« Take 15-414 if you want the full treatment!

Symbolic execution: test all possible
executions paths simultaneously.

» Concolic execution / test generation

Grey-box analysis for fuzz testing
« Take 17-712 if you want the full treatment!

Dynamic analysis for race detection
Program synthesis

Program repair

We will not cover types.

We may touch on recent Al-based
methods

Carnegie
Mellon
University

What to expect

Beautiful and elegant theory (15-251 is a soft pre-req)

« Mostly discrete mathematics, symbolic reasoning, inductive proofs
 This is traditionally a “white-board” course [may not always use slides]

Build awesome tools
» Engineering of program analyses, compilers, and bug finding tools make great
use of many fundamental ideas from computer science and software engineering
New way to think about programs (15-150 or 15-214 soft pre-regs)
« Representations, control/data-flow, input state space

Appreciate the limits and achievements in the space
« What tools are impossible to build?
« What tools are impressive that they exist at all?
- When is it appropriate to use a particular analysis tool versus another?
« How to interpret the results of a program analysis tool?

D Software and Societal Carnegle.
Systems Department Mellon

University

Fundamental concepts

 Abstraction
* Elide details of a specific implementation.
« Capture semantically relevant details; ignore the rest.

* The importance of semantics.

« We prove things about analyses with respect to the semantics of
the underlying language.

* Program proofs as inductive invariants.

* Implementation
 You do not understand analysis until you have written several.

D Software and Societal Carnegle.
Systems Department Mellon

University

Course mechanics

D Software and Societal Carnegie
Systems Department Mellon
University

When/what

e Lectures 2x week (Tue, Th in GHC 4102).

 Active learning exercise(s) in every class - bring pen & paper!!!
* Lecture notes for review — get latest PDF from website

 Recitation 1x week (Fridays in WEH 5320).
« Lab-like, very helpful for homework.
- Be ready to work

« Homework, midterm exam, project.
e There is an optional physical textbook. (“PPA")

D Software and Societal Carnegie.
Systems Department Mellon

University

Communication

« Course website: https://cmu-program-analysis.github.io

« We also use Piazza, Gradescope (see website for links)

« Gradescope: For homework assignments and exams (grading)
https://www.gradescope.com/courses/1103580 (entry code J6EK22)

 Piazza: Please use public posts for any course related questions as
much as possible, unless the matter is sensitive. Feel free to

respond to other posts and engage in discussion.
« We have office hours! Or, by appointment.

Carnegie

D Software and Societal
Systems Department Me.!lon :
University

https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://www.gradescope.com/courses/1103580

“How do | get an A?”

* 10% in-class participation and exercises

* 40% homework assignments

« Both written (proof-y) and coding (implementation-y).
* First one (mostly coding) to be released by Friday!

* 30% across two midterm exams
« 20% final project
» There will be some options here.
* No final exam; exam slot used for project presentations.

- We have late days and an absence policy; read the syllabus.
* tl;dr — 6 free excuses across the whole semester, for any reason

D Software and Societal Carnegle.
Systems Department Mellon

University

Slight variations in expectations

« If you're taking the undergraduate version of the course (17-355)
 Recitation attendance is expected and part of participation grade.

« If you're taking the graduate version of the course (17-665/819)

 Recitation attendance is encouraged.

 Higher bar for final course project.

« Master’s students: Expected to engage with large codebases (either frameworks or
targets)

« PhD students: Expected to engage with research questions

* You are welcome to move up your expectations to be assessed
differently (email me)

Carnegie

D Software and Societal
Systems Department Me.!lon :
University

CMU can be a pretty intense place.

« A 12-credit course is expected to take ~12 hours a week.

« We aim to provide a rigorous but tractable course.
« More frequent assignments rather than big monoliths
- Midterm exam to cover core material from first half of course

 Please let us know how much time the class is actually taking.
« We have no way of knowing if you have three midterms in one week.
« Sometimes, we misjudge assignment difficulty.

e Ifit's 2 am and you're panicking...put the homework down, send us an
email, and go to bed.

D Software and Societal Carnegle.
Systems Department Mellon

University

	Slide 1: Lecture 1: Introduction to Program Analysis
	Slide 2: Introductions
	Slide 3: My Background
	Slide 4: Learning objectives
	Slide 5: What is this course about?
	Slide 6: Why might you care?
	Slide 7: You’ve seen it before
	Slide 8: You’ve seen it before
	Slide 9: Lots of tools available
	Slide 10: Advanced examples from industry
	Slide 11: What kinds of issues does program analysis help find?
	Slide 12: Is there a bug in this code?
	Slide 13
	Slide 14
	Slide 15: Abstract Model
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Behavior of interest…
	Slide 23: What is this course about?
	Slide 24: What is this course about?
	Slide 25: What is this course about?
	Slide 26: The Bad News: Rice's Theorem
	Slide 27: Proof by contradiction (sketch)
	Slide 28
	Slide 29: Soundness and Completeness
	Slide 30
	Slide 31: Soundness and Completeness Tradeoffs
	Slide 32: Course overview
	Slide 33: Course topics
	Slide 34: What to expect
	Slide 35: Fundamental concepts
	Slide 36: Course mechanics
	Slide 37: When/what
	Slide 38: Communication
	Slide 39: “How do I get an A?”
	Slide 40: Slight variations in expectations
	Slide 41: CMU can be a pretty intense place.

