
Lecture 1: Introduction
to Program Analysis

17-355/17-665/17-819: Program Analysis

Rohan Padhye

Aug 26, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Creative Commons License

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Introductions

Prof. Rohan Padhye TA Vasu Vikram

My Background

• Involved with program analysis for ~12 years.

• PhD from UC Berkeley, Masters from IIT Bombay (India)
• Contributed to research on fuzz testing, static interprocedural analysis, performance analysis, etc.

• Worked at IBM Research, Microsoft Research, Samsung Research America, and
Amazon Web Services

• Developed tools for improving developer productivity, finding input-validation software bugs,
identifying security vulnerabilities in mobile systems, discovering concurrency issues in distributed
systems, fuzzing cloud-hosted databases etc.

• Advising PhD students in CMU’s Software Engineering program
• I lead the Program Analysis, Software Testing, and Applications research group (PASTA lab)

Learning objectives

• Provide a high level definition of program analysis and give
examples of why it is useful.

• Sketch the explanation for why all analyses must be
approximate.

• Understand the course mechanics and be motivated to read
the syllabus.

• Describe the function of an AST and outline the principles
behind AST walkers for simple bug-finding analyses.

• Recognize the basic WHILE demonstration language and
translate between WHILE and While3Addr.

What is this course about?

• Program analysis is the systematic examination of a program
to determine its properties.

• From 30,000 feet, this requires:
• Precise program representations
• Tractable, systematic ways to reason over those representations.

• We will learn:
• How to unambiguously define the meaning of a program, and a

programming language.
• How to prove theorems about the behavior of particular programs.
• How to use, build, and extend tools that do the above,

automatically.

Why might you care?

Program analysis, and the skills that underlie it, have implications for:

• Automatic bug finding

• Language design and implementation (compilers, VMs)

• Program transformation (refactoring, optimization, repair)

• Program synthesis

You’ve seen it before

You’ve seen it before

Lots of tools available

https://github.com/marketplace?category=code-quality

Lint

ErrorProne

https://github.com/marketplace?category=code-quality
https://github.com/marketplace?category=code-quality
https://github.com/marketplace?category=code-quality

Advanced examples from industry

Sapienz and SapFix @ Facebook

CodeGuru @ Amazon

SAGE @ Microsoft

GitHub CoPilot

What kinds of issues does program analysis help find?

Defects that result from inconsistently following simple design rules.

• Security: Buffer overruns, improperly validated input.

• Memory safety: Null dereference, uninitialized data.

• Resource leaks: Memory, OS resources.

• API Protocols: Device drivers; real time libraries; GUI frameworks.

• Exceptions: Arithmetic/library/user-defined

• Encapsulation: Accessing internal data, calling private functions.

• Data races: Two threads access the same data without
synchronization

Key: check compliance to simple, mechanical design rules

Is there a bug in this code?

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Part of the spec:
Interrupts should not be

disabled upon function return

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

ERROR: function returns with
interrupts disabled!

is_enabled

is_disabled

disable enable

enable ➔ err(double enable)

end path ➔ err(exiting with inter disabled)

disable ➔ err(double disable)

Abstract Model

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Initial state: is_enabled

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_disabled

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_disabled

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_enabled

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}
Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_enabled

Behavior of interest…

• Is on uncommon execution paths.
• Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible

• Instead: (abstractly) check the entire possible state
space of the program.

What is this course about?

• Program analysis is the systematic examination of a program
to determine its properties.

• From 30,000 feet, this requires:
• Precise program representations
• Tractable, systematic ways to reason over those representations.

• We will learn:
• How to unambiguously define the meaning of a program, and a

programming language.
• How to prove theorems about the behavior of particular programs.
• How to use, build, and extend tools that do the above,

automatically.

What is this course about?

• Program analysis is the systematic examination of a program
to determine its properties.

• Principal techniques:
• Dynamic:

• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and

models), modifications.
• Analysis: Tools reasoning about program behavior without executing it.
• Inference: Statistical models of code (e.g., AI / ML)

• …and their combination.

What is this course about?

• Program analysis is the systematic examination of a program
to determine its properties.

• Principal techniques:
• Dynamic:

• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and

models), modifications.
• Analysis: Tools reasoning about program behavior without executing it.
• Inference: Statistical models of code (e.g., AI / ML)

• …and their combination.

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

Proof by contradiction (sketch)

Assume that you have a function that can determine if a program p
has some nontrivial property (like divides_by_zero):

1. int silly(program p, input i) {

2. p(i);

3. return 5/0;

4. }

5. bool halts(program p, input i) {

6. return divides_by_zero(`silly(p,i)`);

7. }

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Over-approximate analysis:
 reports all potential defects
 -> no false negatives
 -> subject to false positives

Under-approximate analysis:
 every reported defect is an actual defect
 -> no false positives
 -> subject to false negatives

Soundness and Completeness

• An analysis is “sound” if every claim it makes is true

• An analysis is “complete” if it makes every true claim

• Soundness/Completeness correspond to under/over-
approximation depending on context.
• E.g. compilers and verification tools treat “soundness” as over-

approximation since they make claims over all possible inputs

• E.g. code quality tools often treat “sound” analyses as under-
approximation because they make claims about existence of bugs

Complete Analysis

True Properties
(e.g. defects,
optimization
opportunities)

Sound
Analysis

Unsound
and

Incomplete
Analysis

Soundness and Completeness
Tradeoffs
• Sound + Complete is impossible in general (Rice’s theorem)

• Most practical tools attempt to be either sound or complete
for some specific application, using approximation

• Multiple classes of sound/complete techniques may exist,
with trade-offs for accuracy and performance.

• Program analysis is a rich field because of the constant and
never-ending battle to balance these trade-offs with ever-
increasing software complexity

True Properties
(e.g. defects)

Sound
Analysis

1

Sound
Analysis

2

Sound
Analysis

3

Course overview

Course topics

• Program representation

• Abstract interpretation: Use abstraction
to reason about possible program
behavior.
• Operational semantics.
• Dataflow Analysis
• Termination, complexity
• Widening, collecting
• Interprocedural analysis
• Pointer analysis
• Control flow analysis

• Hoare-style verification: Make logical
arguments about program behavior.
• Axiomatic semantics

• Model checking (briefly) : reason about
all possible program states.
• Take 15-414 if you want the full treatment!

• Symbolic execution: test all possible
executions paths simultaneously.
• Concolic execution / test generation

• Grey-box analysis for fuzz testing
• Take 17-712 if you want the full treatment!

• Dynamic analysis for race detection

• Program synthesis

• Program repair

• We will not cover types.

• We may touch on recent AI-based
methods

What to expect

• Beautiful and elegant theory (15-251 is a soft pre-req)

• Mostly discrete mathematics, symbolic reasoning, inductive proofs
• This is traditionally a “white-board” course [may not always use slides]

• Build awesome tools
• Engineering of program analyses, compilers, and bug finding tools make great

use of many fundamental ideas from computer science and software engineering

• New way to think about programs (15-150 or 15-214 soft pre-reqs)
• Representations, control/data-flow, input state space

• Appreciate the limits and achievements in the space
• What tools are impossible to build?
• What tools are impressive that they exist at all?
• When is it appropriate to use a particular analysis tool versus another?
• How to interpret the results of a program analysis tool?

Fundamental concepts

• Abstraction
• Elide details of a specific implementation.

• Capture semantically relevant details; ignore the rest.

• The importance of semantics.
• We prove things about analyses with respect to the semantics of

the underlying language.

• Program proofs as inductive invariants.

• Implementation
• You do not understand analysis until you have written several.

Course mechanics

When/what

• Lectures 2x week (Tue, Th in GHC 4102).
• Active learning exercise(s) in every class – bring pen & paper!!!

• Lecture notes for review — get latest PDF from website

• Recitation 1x week (Fridays in WEH 5320).
• Lab-like, very helpful for homework.

• Be ready to work

• Homework, midterm exam, project.

• There is an optional physical textbook. (“PPA”)

Communication

• Course website: https://cmu-program-analysis.github.io

• We also use Piazza, Gradescope (see website for links)
• Gradescope: For homework assignments and exams (grading)

https://www.gradescope.com/courses/1103580 (entry code J6EK22)

• Piazza: Please use public posts for any course related questions as
much as possible, unless the matter is sensitive. Feel free to
respond to other posts and engage in discussion.

• We have office hours! Or, by appointment.

https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://cmu-program-analysis.github.io/
https://www.gradescope.com/courses/1103580

“How do I get an A?”

• 10% in-class participation and exercises

• 40% homework assignments
• Both written (proof-y) and coding (implementation-y).
• First one (mostly coding) to be released by Friday!

• 30% across two midterm exams

• 20% final project
• There will be some options here.

• No final exam; exam slot used for project presentations.

• We have late days and an absence policy; read the syllabus.
• tl;dr — 6 free excuses across the whole semester, for any reason

Slight variations in expectations

• If you’re taking the undergraduate version of the course (17-355)
• Recitation attendance is expected and part of participation grade.

• If you’re taking the graduate version of the course (17-665/819)
• Recitation attendance is encouraged.

• Higher bar for final course project.
• Master’s students: Expected to engage with large codebases (either frameworks or

targets)

• PhD students: Expected to engage with research questions

• You are welcome to move up your expectations to be assessed
differently (email me)

CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.

• We aim to provide a rigorous but tractable course.
• More frequent assignments rather than big monoliths

• Midterm exam to cover core material from first half of course

• Please let us know how much time the class is actually taking.
• We have no way of knowing if you have three midterms in one week.

• Sometimes, we misjudge assignment difficulty.

• If it’s 2 am and you’re panicking…put the homework down, send us an
email, and go to bed.

	Slide 1: Lecture 1: Introduction to Program Analysis
	Slide 2: Introductions
	Slide 3: My Background
	Slide 4: Learning objectives
	Slide 5: What is this course about?
	Slide 6: Why might you care?
	Slide 7: You’ve seen it before
	Slide 8: You’ve seen it before
	Slide 9: Lots of tools available
	Slide 10: Advanced examples from industry
	Slide 11: What kinds of issues does program analysis help find?
	Slide 12: Is there a bug in this code?
	Slide 13
	Slide 14
	Slide 15: Abstract Model
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Behavior of interest…
	Slide 23: What is this course about?
	Slide 24: What is this course about?
	Slide 25: What is this course about?
	Slide 26: The Bad News: Rice's Theorem
	Slide 27: Proof by contradiction (sketch)
	Slide 28
	Slide 29: Soundness and Completeness
	Slide 30
	Slide 31: Soundness and Completeness Tradeoffs
	Slide 32: Course overview
	Slide 33: Course topics
	Slide 34: What to expect
	Slide 35: Fundamental concepts
	Slide 36: Course mechanics
	Slide 37: When/what
	Slide 38: Communication
	Slide 39: “How do I get an A?”
	Slide 40: Slight variations in expectations
	Slide 41: CMU can be a pretty intense place.

