
Program Analysis Recitation 2 February 12, 2020

Operational Semantics

Operational semantics provides a way of understanding what a program means by mimicking, at a high level,
the operation of a computer executing the program. Operational semantics falls under two broad classes:
big-step operational semantics, which specifies the entire operation of a given expression or statement; and
small-step operational semantics, which specifies the operation of the program one step at a time. Both are
powerful tools for verifying the correctness and other desired properties of programs.

Exercises

1. Use the big-step operational semantics rules for the WHILE language to write a well-formed derivation
with 〈E, y := 3; if y > 1 then z := y else z := 2〉 ⇓ E[y 7→ 3; z 7→ 3] as its conclusion. Make sure to
indicate which rule you used to prove each premise or conclusion.

〈E, 3〉 ⇓a 3
int

〈E, y := 3〉 ⇓ E[y 7→ 3]
assign

〈E[y 7→ 3], y〉 ⇓a 3
var

〈E[y 7→ 3], 1〉 ⇓a 1
int

〈E[y 7→ 3], y > 1〉 ⇓b true
boolop

〈E[y 7→ 3], y〉 ⇓a 3
var

〈E[y 7→ 3], z := y〉 ⇓ E[y 7→ 3; z 7→ 3]
assign

〈E[y 7→ 3], if y > 1 then z := y else z := 2〉 ⇓ E[y 7→ 3; z 7→ 3]
if-true

〈E, y := 3; if y > 1 then z := y else z := 2〉 ⇓ E[y 7→ 3; z 7→ 3]
seq



2. For homework 2, you will be partially proving that if a statement terminates, then the big- and small-
step semantics for WHILE will obtain equivalent results; i.e.,

∀S ∈ Stmt.∀E,E′ ∈ Var 7→ Z.〈E,S〉 →∗ 〈E′, skip〉 ⇐⇒ 〈E,S〉 ⇓ E′

You will prove this by induction on the structure of derivations for each direction of ⇐⇒ .

For your homework proof, you are only required to show

• The base case(s).

• The inductive case for let using the semantics developed in question 1 of the homework.

• Two more representative inductive cases.

You may assume that this property holds for arithmetic and boolean expressions, i.e., you may assume
the following hold:

∀a ∈ AExp.∀n ∈ Z.〈E, a〉 →∗a n ⇐⇒ 〈E, a〉 ⇓a n (1)

∀P ∈ BExp.∀b ∈ {true, false}.〈E,P 〉 →∗b b ⇐⇒ 〈E,P 〉 ⇓b b (2)

You may also assume the small-step if congruence of 〈E,S〉 →∗ 〈E′, S′〉:

〈E,P 〉 →∗b P ′

〈E, if P then S1 else S2〉 →∗ 〈E, if P ′ then S1 else S2〉 (3)

For this exercise, you will prove the following representative inductive case:

∀S ∈ Stmt.∀E,E′ ∈ Var 7→ Z.〈E, ifP then S1 else S2〉 ⇓ E′ ⇐⇒ 〈E, ifP then S1 else S2〉 →∗ 〈E′, skip〉

We prove each direction of⇔ separately. We proceed by induction on derivations of program evalua-
tion. We define a partial order over derivations D1 ≺ D2 if D1 is a sub-derivation of D2 (that is D1 is a
premise of D2).

Proof obligation for⇒: We will first prove that 〈E,S〉 ⇓ E′ ⇒ 〈E,S〉 →∗ 〈E′, skip〉. In other words, if
there exists a derivation D :: 〈E,S〉 ⇓ E′, we want to show that there exists a derivation of 〈E,S〉 →∗
〈E′, skip〉.

Inductive Hypothesis: Our inductive hypothesis is that if D′ :: 〈E1, S
′〉 ⇓ E2 (for aribtrary D′, S′, E1, E2)

is a sub-derivation of D, then there also exists a derivation of 〈E1, S
′〉 →∗ 〈E2, skip〉. In other words,

given D′ exists, we can assume that 〈E1, S
′〉 ⇓ E2 ⇒ 〈E1, S

′〉 →∗ 〈E2, skip〉.

Base Case (skip): Let D :: 〈E, skip〉 ⇓ E′. By inversion, we know that D must end with the big-skip rule,
which gives us E = E′. And, by the multi-reflexive rule for→∗, we have that 〈E, skip〉 →∗ 〈E, skip〉.
Since E and E′ are equal, we have proved that 〈E, skip〉 ⇓ E′ ⇒ 〈E, skip〉 →∗ 〈E′, skip〉 as required.

Inductive Case (if): In this case, we have D :: 〈E, if P then S1 else S2〉 ⇓ E′. We want to show that
there exists a derivation for 〈E, if P then S1 else S2〉 →∗ 〈E′, skip〉. By inversion, there are two cases
for the previous rule applied to D, big-if-true and big-if-false.

Case 1 big-if-true: We have:

D ::=

〈E,P 〉 ⇓ true D′ :: 〈E,S1〉 ⇓ E′

〈E, if P then S1 else S2〉 ⇓ E′
big-if-true

(4)

Using the induction hypothesis on sub-derivation D′, we also have:

〈E,S1〉 →∗ 〈E′, skip〉 (5)



By (2) we have that 〈E,P 〉 ⇓b true⇒ 〈E,P 〉 →∗b true, and using this result with (3) we have:

〈E,P 〉 →∗b true
〈E, if P then S1 else S2〉 →∗ 〈E, if true then S1 else S2〉 (6)

By the small-if-true rule, we also have:

〈E, if true then S1 else S2〉 → 〈E,S1〉 (7)

By (5), (7), and the multi-inductive rule of→∗, we can then derive:

〈E, if true then S1 else S2〉 → 〈E,S1〉 〈E,S1〉 →∗ 〈E′, skip〉
〈E, if true then S1 else S2〉 →∗ 〈E′, skip〉 (8)

By (6), (8), and the transitive property of→∗, we are finally able to derive:

〈E, if P then S1 else S2〉 →∗ 〈E′, skip〉

Case 2 big-if-false: Similar to above, using corresponding rules for the false case.

Thus, we have shown that 〈E, if P then S1 else S2〉 ⇓ E′ ⇒ 〈E, if P then S1 else S2〉 →∗ 〈E′, skip〉.

Proof obligation for⇐: We will now prove that 〈E,S〉 ⇓ E′ ⇐ 〈E,S〉 →∗ 〈E′, skip〉. In other words,
if there exists a derivation D :: 〈E,S〉 →∗ 〈E′, skip〉, we want to show that there exists a derivation of
〈E,S〉 ⇓ E′.

Inductive Hypothesis: Our inductive hypothesis is that if D′ :: 〈E1, S
′〉 →∗ 〈E2, skip〉 (for aribtrary

D′, S′, E1, E2) is a sub-derivation of D, then there also exists a derivation of 〈E1, S
′〉 ⇓ E2. In other

words, given D′ exists, we can assume that 〈E1, S
′〉 →∗ 〈E2, skip〉 ⇒ 〈E1, S

′〉 ⇓ E2.

Base Case (skip): Let D :: 〈E, skip〉 →∗ 〈E′, skip〉. By inversion, we know that no small-step rule
for skip exists. This derivation is only possible using the multi-reflexive rule for →∗, which gives us
E = E′. And, by the big-step rule, we have that 〈E, skip〉 ⇓ E. Since E and E′ are equal, we have
proved that 〈E, skip〉 →∗ 〈E′, skip〉 ⇒ 〈E, skip〉 ⇓ E′ as required.

Inductive Case (if): In this case, we have D :: 〈E, if P then S1 else S2〉 →∗ 〈E′, skip〉. We want to
show that there exists a derivation for 〈E, if P then S1 else S2〉 ⇓ E′ By inversion of rules we know
that this derivation must use transitive applications of the multi-inductive rule, eq. (3), and either the
small-if-true or small-if-false rules. We can discuss the true and false cases separately.

Case 1: By inversion and use of transitive applications of→∗, the derivation for the true case will be of
the form:

DP :: 〈E,P 〉 →∗b true
〈if P then S1 else S2〉 →∗ 〈E, if true then S1 else S2〉

DS1 :: 〈E,S1〉 →∗ 〈E′, skip〉
〈E, if true then S1 else S2〉 →∗ 〈E′, skip〉

〈E, if P then S1 else S2〉 →∗ 〈E′, skip〉
(9)

Using DP from (9) and the result from (2), we have that:

〈E,P 〉 ⇓b true (10)

Using DS1 from (9) and the induction hypothesis, we have that:

〈E,S1〉 ⇓ E′ (11)



Using (10), (11), and the big-step rule, we have the required derivation:

〈E,P 〉 ⇓ true 〈E,S1〉 ⇓ E′

〈E, if P then S1 else S2〉 ⇓ E′
big-if-true

Case 2: The false case is similar to above, substituting S2 for S1.

Thus, we have shown that 〈E, if P then S1 else S2〉 →∗ 〈E′, skip〉 ⇒ 〈E, if P then S1 else S2〉 ⇓ E′.


