
Program Analysis Recitation 2

September 2024

Operational semantics provides a way of understanding what a program means by mimicking, at a high level,
the operation of a computer executing the program. Operational semantics falls under two broad classes: big-
step operational semantics, which specifies the entire operation of a given expression or statement; and small-step
operational semantics, which specifies the operation of the program one step at a time. Both are powerful tools for
verifying the correctness and other desired properties of programs.

Exercises

1. Use the big-step operational semantics rules for the While language to write a well-formed derivation with
the conclusion: ⟨E, i := 0; while i < 1 do i := i + 1 ⇓ E[i 7→ 1]⟩. Make sure to indicate which rule you used
to prove each premise or conclusion.

assign
int

⟨E, 0⟩ ⇓ 0

⟨E, i := 0⟩ ⇓ E[i 7→ 0]

boolop
var

⟨E[i 7→ 1], i⟩ ⇓ 1
int

⟨E[i 7→ 1], 1⟩ ⇓ 1

⟨E[i 7→ 1], i < 1⟩ ⇓ false
⟨E[i 7→ 1], while i < 1 do i := i+ 1⟩ ⇓ E[i 7→ 1]

while-false

······

boolop
var

⟨E[i 7→ 0], i⟩ ⇓ 0
int

⟨E[i 7→ 0], 1⟩ ⇓ 1

⟨E[i 7→ 0], i < 1⟩ ⇓ true ⟨E[i 7→ 0], i := i+ 1⟩ ⇓ E[i 7→ 1]
assign

⟨E[i 7→ 0], while i < 1 do i := i+ 1⟩ ⇓ E[i 7→ 1]
while-true

⟨E, i := 0; while i < 1 do i := i+ 1 ⇓ E[i 7→ 1]⟩
seq

2. Please see the other PDF for exercise 2.

1


