
Homework 6:
Axiomatic Semantics and Hoare-style Verification

17-355/17-665/17-819: Program Analysis Fall 2024
Fraser Brown, Ian Dardik

Due: Thursday, 10/31/2024 at 11:59 pm EST

100 points total

Assignment Objectives:

• Generate verification conditions and show how they are used in program verification.

• Write new Hoare Rules/axiomatic semantics for a particular language.

• Reason about soundness/completeness of a system for axiomatic semantics.

Handin Instructions. Submit your assignment through the Gradescope link on Canvas (sup-
ports PDF and jpgs/photos) by the due date. When submitting, indicate which pages of the PDF
correspond to each homework question. Typesetting is not required, but is strongly suggested;
you may submit photos or scans of handwritten answers, but they must be clear and legible. Con-
sult homework 2 for pointers to useful latex packages.

We are not making correct handin worth 5 points explicitly, but we reserve the right to remove
5 points if the homework is not submitted correctly.

Question 1, VCGen, (24 points). Consider the following rules for VCGen. We saw the first two in
class; consider the third one as a proposed rule for let:

V C(S1;S2, Q) = V C(S1, V C(S2, Q))
V C(x := e,Q) = [e/x]Q
V C(let x = e in S,Q) = [e/x]V C(S,Q)

The rule for let is incorrect.

(a) Explain why, briefly, in English prose,

(b) Give a correct rule for let.

Question 2, Let rule soundness, (18 points). Given {P} S {Q}, we desire that P ⇒ V C(c,Q) ⇒
WP (c,Q). We say that our VC rules are sound if ⊨ {V C(S,Q)} S {Q}. Demonstrate the unsound-
ness of the buggy let rule above by giving/showing the following six things:

(a) a statement S and

1



(b) a post-condition Q and

(c) a state E, all such that

(d) E ⊨ V C(S,Q) and

(e) ⟨S,E⟩ ⇓ E′ but

(f) E′ ⊭ Q

Question 3, Do-while, (10 points). Write a sound and complete Hoare rule for do S while b. The
statement has the standard semantics (i.e., S is executed at least once, before b is tested). You do
not need to formally prove soundness/completeness, but make sure the rule makes sense.

Question 4, Loop proof obligations, (24 points). Consider the following program:

{N > 0 }
i := 0;
while (i < N) do

i := i + 1
{i=N}

1. What is a suitable loop invariant for proving this post-condition holds?

2. Write out the verification condition for this program (don’t forget to use the precondition!).
You don’t have to solve/prove the verification condition, just write it out neatly; it should be
formatted so that it’s especially clear which parts correspond to the three parts of the proof
obligations for the loop:

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition:

Hint: you can get full credit on the second part even if your loop invariant (answer to the first part) is
incorrect.

Question 5, Soundness/Completeness, (24 points). Consider the following three Hoare rules:

⊢ {X} S {b ⇒ X ∧ ¬b ⇒ Y }
⊢ {b ⇒ X ∧ ¬b ⇒ Y } while b do S {Y } rule1

⊢ {X ∧ b} S {X}
⊢ {X} while b do S {X} rule2

⊢ {X} S {X}
{X} while b d S {X ∧ ¬b} rule3

Recall that a system of axiomatic semantics is sound if everything we can prove is also true: if
⊢ {P} S {Q} then ⊨ {P} S {Q}. A system of axiomatic semantics is complete if we can prove all
true things: if ⊨ {P} S {Q} then ⊢ {P} S {Q}. All three of the rules above are sound, but none are
complete.

2



For two of the identified incomplete rules, give/show example P , Q, E, S, and E′ such that
⟨S,E⟩ ⇓ E′ and both E ⊨ P and and E′ ⊨ Q, but it is not possible given the rule to prove
⊢ {P} S {Q}. Be clear about which rules you have chosen.

(Educational) note: An incomplete system cannot prove all possible properties or handle all possible
programs. Incompleteness in an axiomatic semantics or type system is typically not as dire as unsoundness.
Many research results that claim to work for the C language, for example, are actually incomplete because
they fail to address, say, setjmp/longjmp or bitfields. (Many of them are also unsound because they do not
correctly model various language features like unsafe casts, pointer arithmetic, or integer overflow.)

Acknowledgement: Thanks to Selva Samuel for finding a bug in the original formulation of this question
back in 2016.

3


