
Homework 5 (Programming): Context-Sensitive
Interprocedural Analysis

17-355/17-665/17-819: Program Analysis
Fraser Brown, Ian Dardik

Checkpoint due: Tuesday, October 08, 2024 (11:59 PM) [50 points]
Final due: Thursday, October 24, 2024 (11:59 PM) [200 points]

Assignment Objectives:

• Implement a context-sensitive, interprocedural dataflow analysis.

• Handle the complexities of analyzing a real programming language.

• Make use of a real framework for analyzing Java code.

Handin Instructions. Submit your entire GITHUB repository for this assignment following the
instructions on GradeScope. The assignment accepts GitHub repositories only, with a popup that
links to your GitHub account and shows you a list of your available repositories. Note that this
is different from the last coding assignment, where we asked you to submit a single file. This
also means you must commit and push code and changes to GitHub to be able to submit the latest
version for this assignment. Note that we do not plan to look directly at your GITHUB repository
for this assignment, even though you do need to use it. You must submit your code via Grade-
scope. Gradescope does not automatically pull new versions of your code, so you must resubmit
whenever you have a new version that you would like graded.

Your grade will be based on a combination of the autograder tests your code passes, and certain
manual considerations, described at the end of this document.

1 Context-Sensitive Interprocedural Analysis Implementation

In this assignment, you will implement (and test!) a context-sensitive interprocedural integer
sign analysis for Java, using the simpler/less precise domain we implemented in homework 3.
Implement context-sensitivity using the call string approach with a maximum depth of 2.

We provide starter code for this assignment based on the Soot framework, which supports
analysis and optimization of Java code and projects. We have provided a bit less scaffolding than
we did last time, but there are still clear TODOs in comments indicating where you should begin
your implementation. In particular, you need to implement:

• In Context, the getCtx method.

• In Sigma, the equals and hashCode methods(s).

1



• The majority of IntraSignAnalysis, which implements the intra-procedural part of the
analysis. Note that you do not need to explicitly implement Kildall’s, because Soot provides
it at the backend; familiarize yourself with the framework, and look over the starter code to
see what you do need to implement (e.g., flow functions, join, etc). Unlike in homework 3, you
do need to implement a reportWarnings method, see below.

• The majority of InterSignAnalysis.

For the checkpoint, all you will need to implement is Sigma and IntraSignAnalysis

On language. In Java, integer variables are separate from variables that hold references, booleans,
floating point values, etc. Your implementation need only track information for variables corre-
sponding to type int, for local variables and method parameters. Your analysis should cover
variable copies, integer constants, addition, subtraction, multiplication, and division as precisely
as possible. You are not required to correctly analyze other operations, though your analysis
should not crash on code that includes them. Your analysis should reason about local variables
and method parameters; you may assume that globals, fields, or array accesses, are unknown.

Expected analysis output. At a high level, we expect the analysis to issue warnings when it
identifies an array access that may involve a negative array index. This is the primary output we
expect from your analysis implementation: a set of warnings for the code. We provide a stan-
dard method Util.reportWarning for reporting warnings, and there are example usages in
IntraSignAnalysis.java that show how to call it. To see an example of how we will test this,
you may look at the sample tests we provide in the starter code. The src/test/inputs/ direc-
tory contains test inputs to test both intra- and interprocedural analyses; these also are commented
where errors should be reported. The files IntraAnalysisTest.java and InterAnalysisTest.java
show how we test the analysis results, and will be informative when you are writing your own.

Tests. We do provide sample tests. For the checkpoint, the tests provided in IntraAnalysisTest.java
are the same as the autograder tests. For the final submission, we have a set of held-out autograder
tests. For full credit on the final submission, you must also implement additional tests for your
analysis, covering the key implementation considerations you are tackling. One or more test cases
should require context sensitivity—i.e., the test case would fail if your analysis were interproce-
dural not context-sensitive. Your tests should use JUnit and be automatically run with gradlew
test. We will download your Gradescope submission and run your tests.

2 Setup and Tool Information

Go to https://classroom.github.com/a/SxGwYgp9 to clone the starter code into your own
private GITHUB account. This assignment uses the Gradle build automation system. Gradle gen-
erates wrapper scripts that automatically download any dependencies that are needed to run a
project, including Gradle itself.

For getting started with Soot’s dataflow framework, have a look at the Github wiki page:
https://github.com/soot-oss/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot

Note that the Soot project was officially superceded by “SootUp”, which was released in De-
cember 2022. However, the documentation is extremely sparse, and so we decided to stick with the
deprecated project for this year. The Soot project has not yet been archived on GitHub and so you
should be able to use it without problem in Fall, 2024.

2

https://classroom.github.com/a/SxGwYgp9
https://github.com/soot-oss/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot


Java version. Consult the README of the starter code for implications in terms of the versions of
Java code that you can analyze with Soot, and be sure you’re looking at the right documentation.
A key problem is that Soot cannot analyze code past Java 15, but VMs for Java 12–16 are not
maintained or have security vulnerabilities. This means that both codespaces and the autograder
uses Java 11. Yes, it’s old. Implication: avoid fancy language features from Java 14 on up.

2.1 Alternative 1 - Github Codespaces (Recommended)

Open this repository using GitHub Codespaces. To build the source code, open the Gradle Tab on
the sidebar of Codespaces and clicking build.

We have provided test cases, which you can run with by clicking test on the same Gradle
Tab. You can also set breakpoints before running the tests to debug your code. To enter debug
mode, click on the debug icon in test option on the Gradle Tab.

2.2 Alternative 2 - Locally Building and Testing

Ensure you have installed the Java Development Kit. Anything from version 8 to 15 should work
with Soot, but for consistency with the autograder, you probably want 11. To build the source code
at the command line, you just need to run ./gradlew build on *nix systems, or gradlew.bat
build on Windows. If you use Visual Studio Code or IntelliJ, you will similarly need to configure
it to use the correct version of Java (e.g., via modifying settings.json in Visual Studio code). You
can then use the appropriate Gradle extensions to interact with the project.

We have provided test cases, which you can run with gradlew test; passing the test cases
is an indication that you are on the right track, though earning credit for the assignment requires
implementing your own analysis in a general way so that it will also work correctly with other
test programs.

3 Grading

This assignment is worth 250 points in total. The checkpoint is worth 50 points, and the final is
worth 200 points. Grading will involve both testing, and some manual assessment. The rough
expected distribution of maximum available points for the automatically graded components is:

Checkpoint

• Correct implementation of Sigma and IntraSignAnalysis: 50 pts

Final

• Correct implementation of getCtx: 20 pts

• Correct implementation of Sigma: 10 pts

• Correct implementation of IntraSignAnalysis: 60 pts

• Correct implementation of InterSignAnalysis: 80 pts

The rough expected distribution of points for the manually graded components is:

• New tests that roughly cover the implemented functionality and run with gradlew test
or with the test option on the Gradle Tab in codespaces: 20 pts

3

https://www.oracle.com/java/technologies/downloads/#java11


• Good coding practices, including code structure and commenting: 10 pts

Partial credit will be available as well, for all of the above.

4


	Context-Sensitive Interprocedural Analysis Implementation
	Setup and Tool Information
	Alternative 1 - Github Codespaces (Recommended)
	Alternative 2 - Locally Building and Testing

	Grading

