
Homework 2 (Written): Semantics

17-355/17-665/17-819: Program Analysis
Fraser Brown, Ian Dardik

Due: Thursday, September 12, 2024 (11:59 PM) 100 points total

Assignment Objectives:
• Precisely specify language features using both small- and big-step semantic rules.
• Carefully consider the benefits of small- versus big-step rules for specifying language features.
• Practice and demonstrate the use of induction on the structure of derivations to prove conjec-

tures about the semantic rules for WHILE.

Handin Instructions (5 points). Please submit your assignment through the Gradescope link
on Canvas (supports PDF and jpgs/photos) by the due date. When submitting, please indicate
which pages of the PDF correspond to each homework question. Putting page breaks between
questions makes this simpler. Typesetting is not required, but is suggested; you may submit
photos of handwritten answers, but they must be clear and legible. Feel free to typeset your
proofs using your favorite LATEX package. If you do not have one, you may be interested in
mathpartir, which you can find on the website (look at the schedule on the date where hw2
is due and download mathpartir.zip). To see how to write some inference rules, compile
the example mathpartir.tex with, e.g., pdflatex. To use it for your assignment, include
mathpartir.sty in your tex file (i.e., (\usepackage {mathpartir}). Alternatively, you can
also modify mathpartir.tex directly.
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https://cmu-program-analysis.github.io


Question 1, let Statement, (20 points). Consider the WHILE language (not WHILE3ADDR!) ex-
tended with a new statement “let x = e in s”. The informal semantics of this construct is that the
expression e is evaluated; a new local variable x is created with lexical scope c; and x is initialized
with the result of evaluating e. Then the statement s is evaluated in c. For exposition/convenience,
we also extend WHILE with statement “print e” which evaluates the e and “displays the result”
in some un-modeled manner (it is otherwise similar to skip). Additionally, we assume that all
environments E begin with a value of 0 for every variable that will be used in any program. We
therefore expect the following code to display “3 2 1 5” (the curly braces are syntactic sugar):

x := 1;
y := 2;
let x = 3 in {

print x;
print y;
x := 4;
y := 5;

};
print x; print y

Part (a): Extend the big-step operational semantics judgment ⟨E, s⟩ ⇓ E′ with one new
rule for dealing with the let statement. Pay careful attention to the scope of the newly
declared variable and to changes to other variables.

Part (b): Extend the small-step operational semantics judgment ⟨E, s⟩ → ⟨E′, s′⟩ to
account for the let statement.

Question 2, Exceptional semantics, (25 points). One way to handle error situations (like divide-
by-zero, mentioned in class) generally is to explicitly introduce error handling into the language.
We thus add to WHILE integer-valued exceptions (or run-time errors), as in Java, ML or C#. We intro-
duce a new sort T to represent command terminations, which can either be normal or exceptional
(with an exception value n ∈ Z):

T ::= E “normal termination”
| E exc n “exceptional termination”

We use t to range over T . We then redefine our big-step operational semantics judgment:

⟨E,S⟩ ⇓ T

The interpretation of
⟨E,S⟩ ⇓ E′ exc n

is that statement S terminated abruptly by throwing an exception with value n ∈ Z at a point in
S’s execution when the state was E′. We only model one type of exception, but every exception
has an integer “argument” n (or “payload” or “value”) that is set when the exception is thrown
and available when the exception is caught.

Our previous statement rules must now be updated to account for exceptions, as in:

⟨E,S1⟩ ⇓ E′ exc n

⟨E,S1;S2⟩ ⇓ E′ exc n
seq1

⟨E,S1⟩ ⇓ E′ ⟨E′, S2⟩ ⇓ t

⟨E,S1;S2⟩ ⇓ t
seq2

We also introduce two new statements:
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• throw e: raise an exception with argument e.

• try S1 catch x S2: execute S1. If S1 terminates normally (i.e., without an uncaught excep-
tion), the try statement also terminates normally. If S1 raises an exception with value e, the
variable x ∈ L is assigned the value e, and then S2 is executed.

These are intended to have the standard exception semantics from languages like Java, C#, or
OCaml except that the catch block merely assigns to x, it does not bind it to a local scope. So, catch
does not behave like a let (simplifying the specification of the construct, if not its actual use!). We
thus expect:

x := 0 ;
{ try

if x <= 5 then throw 33 else throw 55
catch x

print x } ;
while true do {
x := x - 15 ;
print x ;
if x <= 0 then throw (x*2) else skip

}

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.

Give the big step operational semantics inference rules (using our new judgment) for
the two new statements listed above.

Question 3, Big or small?, (15 points). Argue for or against the claim that it would be more
natural to describe “WHILE with exceptions” using small-step semantics. You may use “simpler”
or “more elegant” instead of “more natural” if you prefer. Do not exceed two paragraphs (one can
suffice). Your answer should show an understanding of the differences between big- and small-
step operational semantics. If you’re not sure where to start, think about situations in which big
versus small-step semantics are useful or less useful.

Question 4, Induction, (35 points). In the lecture notes, we observed that we can use induction
on the structure of expressions to prove that the big- and small-step semantics for Aexp obtain
equivalent results. For the syntactic categories in WHILE, we can express this claim formally as:

∀a ∈ AExp. ∀E. ∀n ∈ Z. ⟨E, a⟩ →∗
a n ⇔ ⟨E, a⟩ ⇓ n (1)

∀P ∈ Bexp. ∀E. ∀b ∈ {true, false}. ⟨E,P ⟩ →∗
b b ⇔ ⟨E,P ⟩ ⇓ b (2)

∀S ∈ Stmt. ∀E,E′ ∈ Var → Z. ⟨E,S⟩ →∗ ⟨E′, skip⟩ ⇔ ⟨E,S⟩ ⇓ E′ (3)

Prove by induction on the structure of derivations that, if a statement terminates, the
big- and small-step semantics for WHILE will obtain equivalent results (equation (3)
above). You may assume (1) and (2) have been proven. Show (a) the base case(s), (b)
the inductive case for assign, and (c) the inductive case for let (using the semantics
you developed in question (1)). Make sure your proof is sufficiently detailed.
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If needed, here are the rules which define ⟨E,S⟩ →∗ ⟨E′, S′⟩ (the reflexive, transitive, closure of
⟨E,S⟩ → ⟨E′, S′⟩):

⟨E,S⟩ →∗ ⟨E,S⟩ R
⟨E,S1⟩ → ⟨E′, S2⟩ ⟨E′, S2⟩ →∗ ⟨E′′, S3⟩

⟨E,S1⟩ →∗ ⟨E′′, S3⟩
T

If needed, you may assume the following Lemmas hold:

Lemma 1.

Transitivity of ⟨E,S⟩ →∗ ⟨E′, S′⟩

⟨E,S1⟩ →∗ ⟨E′, S2⟩ ⟨E′, S2⟩ →∗ ⟨E′′, S3⟩
⟨E,S1⟩ →∗ ⟨E′′, S3⟩

Lemma 2.

a) Small-step assignment congruence of ⟨E,S⟩ →∗ ⟨E′, S′⟩

⟨E, a⟩ →∗
a a′

⟨E, x := a⟩ →∗ ⟨E, x := a′⟩

b) Small-step sequence congruence of ⟨E,S⟩ →∗ ⟨E′, S′⟩

⟨E,S1⟩ →∗ ⟨E′, S′
1⟩

⟨E,S1;S2⟩ →∗ ⟨E′, S′
1;S2⟩

c) Small-step let congruence rule(s) of ⟨E,S⟩ →∗ ⟨E′, S′⟩ (applies your answer to Question 1(b))
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