
17-355/17-665/17-819: Program Analysis
Fall 2023 Midterm Exam # 1

Claire Le Goues, Fraser Brown, and Daniel Ramos

Name:

Andrew ID:

Study Guide Instructions: This study guide is intended to help you prepare for the first midterm.
It consists of several types of material:

1. Material providing content or context that will actually be on the test, especially the back-
ground on regular expressions (Question 1, Operational Semantics) and the background on
alias pairs analysis (Question 2). This material is provided so you can familiarize yourself
with it ahead of time, and not have to wade through background material and wrap your
head around it in a limited timespan.

2. Question templates that specify a type of question that may or may not be asked, but without
particulars. Questions 1(a) and 1(b), or all of Question 3, are good examples. You can prac-
tice answering those kinds of questions by filling in reasonable examples for the blanks, or
otherwise making sure you understand how to answer this kind of question.

3. Concrete questions, which may or may not be on the exam, or may be similar to those that
will be on the exam.

We cannot promise to have full coverage of all material in the course so far, or all of the ques-
tions that may ultimately be on the exam. However, we have attempted to be thorough, and
have tried to give you a sample of the types of questions we will be asking about the material in
the course. We expact that if you carefully study this material and the lecture notes, you will be
well-prepared for the exam.

You will be permitted to bring as many pages of notes/study material as you want, including
(but not limited to) this study guide with your notes (if you want).

17-355/17-665/17-819: Fall 2023 Exam 1 Page 1 of 6

Question 1: Operational Semantics (0 points)
Note: the exam will contain questions based on this idea of specifying inference rules for regular ex-
pressions, and so we include this material in the guide so you can wrap your head around how regular
expressions work and could be precisely specified in advance.

Consider the following abstract grammar for regular expressions:

e ::“ “x” singleton — matches the character x
| empty skip — matches the empty string
| e1e2 concatenation — matches e1 followed by e2
| e1 | e2 or — matches e1 or e2
| e˚ Kleene star —matches 0 or more occurrences of e

We also give an abstract grammar for strings (modeled as lists of characters; we write “bye”
as shorthand for “b” :: “y” :: “e” :: nil):

s ::“ nil empty string
| “x” :: s string with first character x, and other characters s

We introduce a new judgement to give large-step operational semantics rules of inference for
regular expressions matching strings:

$ e matches s leaving s1

A regular expression e applied to string s means that e matches some prefix of s, leaving
the suffix s1 unmatched. If s1 “ nil, then e matched s exactly; if s1 “ s, then e does not
match any part of s. For example: $ “h” matches“hello” leaving “ello”; the concatenation
construct means that $ “he” matches“hello” leaving “llo”. Note that this semantics may be
non-deterministic! We come back to this later.

Here are two of the simpler rules of inference for regular expressions:
s “ “x2 :: s1

$ “x2 matches s leaving s1
singleton

$ empty matches s leaving s
skip

(a) Precisely specify [one of Kleene star, concatenation, or]1 language construct(s) via one or
more large-step operational semantics inference rules.

(b) Consider these potential rules of inference for [one of Kleene star, concatenation, or]:

premises ´ 1

conclusion ´ 1
rule-1

premises ´ 2

conclusion ´ 2
rule-2-WRONG

i. Recall that a logical system is complete if every true statement is provable; it is sound if
every provable statement is true. Assuming the other rules are correct, the rule-2-WRONG
rule makes our overall system:

⃝ Unsound
⃝ Incomplete

ii. Prove it, by giving either an example of a true statement that cannot be proven with
this rule, or a provable judgement that is untrue.

iii. Write a correct rule for the language construct.

1An actual exam question would specify

{ 0 Question 1 continues. . .

17-355/17-665/17-819: Fall 2023 Exam 1 Page 2 of 6

(c) We noted above that these semantics by be non-deterministic! That is, it is possible to
apply the same regular expression to one string in two different ways such that you get
two different answers. We can write this more formally as:

Dr P e . Ds, s1, s2 P Str . $ r matches s leaving s1 ^ $ r matches s leaving s2 ^s1 ‰ s2

Prove this, by giving an example expression e and string s, and two different valid deriva-
tions for matching e to s that results in two different strings “left”

i. Give an example e

ii. Given an example s

iii. Give an s1 and a valid derivation for $ e matches s leaving s1 using the rules of
inference for regular expression above (you can use your new rule if you want).

iv. Give a different s2 and a valid valid derivation for $ e matches s leaving s2 using
the rules of inference for regular expression above (you can use your new rule if you
want).

(d) This non-determinism is sub-optimal; we would instead prefer operational semantics for
a judgement that returns the set of all possible suffixes. If S is a set of strings s, we could
change our previous judgement accordingly, to: $ e matches s leaving S, and then
use rules of inference like the following:

$ “x” matches s leaving ts1|s “ “x” :: s1u
singleton1

$ empty matches s leaving tsu
empty1

$ e1 matches s leaving S $ e2 matches s leaving S1

$ e1|e2 matches s leaving S Y S1
or

Do one of the following:
• either give operational semantics rules of inference for [one of: conctenation, or, Kleene

star]. You may not place a derivation inside a set constructor, as in tx|Dy. $ e matches x leaving yu.
Each inference rules must have a finite and fixed set of hypotheses.

• or argue in two–five sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of in-
ference, and demonstrate that each one is incorrect—either unsound or incomplete—
with respect to our intuitive notion of regular expression matching.

(e) Your roommate looks over your shoulder as you are reviewing for this exam, and sees
the following inference rule for small-step semantics for WHILE3ADDR copy:

P rns “ x :“ y

P $ xE,ny ; xErx ÞÑ Eryss, n ` 1y
step-copy

They ask “Hey why do you need that premise in that rule? You wouldn’t need it in the
WHILE equivalent small-step rules...”

(f) Induction on the structure of expressions is sufficient to prove many properties about
them (like the one we did in class, showing that the number of literals and variable occur-
rences in some expressions is L(a) = O(a) + 1). Why, in one sentence, can’t we induct on
statement structure to prove most other interesting properties about WHILE (and have to
induct on the structure of the derivation, instead)?

{ 0 Exam continues. . .

17-355/17-665/17-819: Fall 2023 Exam 1 Page 3 of 6

Question 2: Analysis Specification (0 points)
Note: the exam will contain questions based on this idea of alias pairs analysis; we will introduce
pointer analysis in class before the exam. An in depth understanding of actual pointer analysis algo-
rithms is not required to understand/answer these questions or any questions we will put on the exam.
We reprint some introductory material on pointers from the text in case you want to start studying
before we cover it.

Pointers are variables whose value refers to another value elsewhere in memory, by storing the
address of that stored value. Ignoring for the moment memory allocation and arrays, we can
decompose all pointer operations in C into four types:

I ::“ ...
| p :“ &x taking the address of a variable
| p :“ q copying a pointer from one variable to another
| ˚p :“ q assigning through a pointer
| p :“ ˚q dereferencing a pointer

Pointers matter in analyzing real programs. Consider for example constant-propagation anal-
ysis of the following program:

1 : z :“ 1
2 : p :“ &z
3 : ˚p :“ 2
4 : print z

To analyze this program correctly we must be aware that at instruction 3, p points to z. If this
information is available we can use it in a flow function as follows:

fCP v˚p :“ ywpσq “ σrz ÞÑ σpyq | z P must-point-toppqs

When we know exactly what a variable x points to, we have must-point-to information. This
isn’t always possible, depending on the programming language. Also, sometimes we could
be uncertain about which of several locations p could point to, such as if it’s set to a different
location in the then or else parts of an if statement. We call tracking this kind of situation
may-point-to information, and we could use it in constant propogation like:

fCP v˚p :“ ywpσq “ σrz ÞÑ σpzq \ σpyq | z P may-point-toppqs

An alternative to a constraint-based approach (as we will cover in class) is an alias pairs anal-
ysis, which computes, at each program point, a set of pairs of expressions that may alias one
another. An expression is either a variable such as x, or a single dereference of a pointer vari-
able such as *x. We do not track aliased pairs including more dereferences—that is, nothing
like ***x. To illustrate, the pair (*x, y) means that x may point to y, whereas the pair (*x, *y)
means that x and y may point to the same memory location.2

For example, consider the following program:

2We assume for simplicity that the pair (x,y) cannot occur, which is true in C and Java, but not C++.

{ 0 Question 2 continues. . .

17-355/17-665/17-819: Fall 2023 Exam 1 Page 4 of 6

1 : s :“ 2
2 : x :“ &y
3 : y :“ &z
4 : t :“ &s
5 : w :“ t

This analysis would compute the following pair sets immediately after each program location:

location alias pairs
1 H

2 { (*x, y) }
3 { (*x, y) (*y, z) }
4 { (*x, y) (*y, z) (*t, s) }
5 { (*x, y) (*y, z) (*t, s) (*w, s) (*w, *t) }

(a) Define a lattice L and analysis information σ for this analysis.

(b) What do top and bottom correspond to in this lattice? (the answer J is incorrect). 3.

(c) Define the ordering relation between lattice elements. i.e., when is σ1 Ď σ2?

(d) Define the join operation on lattice elements. i.e.,. what is σ1 \ σ2?

(e) Assume we have the alias information σ = FOO, and consider analyzing the statement
BAR.

i. Which alias pairs in the state should be killed by the statement?
ii. Which alias pairs should be generated by the statement?

(f) Consider the statement EXAMPLE CODE. If the alias information before the statement is
σ = EXAMPLE1, what is the alias information after the statement?

(g) Assuming monotonic flow functions, will the analysis on the alias pair lattice defined
above terminate? Why or why not? Your answer should be precise in terms of bounding
the height of the lattice.

(h) Imagine we relax the assumption about the number of dereferences tracked. E.g., con-
sider an alternative lattice that allows a pair (****x,y) (whereas the original analysis only
allows pairs like (*x, y). Is the analysis guaranteed to terminate on this new lattice? Why
or why not?

3cf. constant propagation: J “ Z

{ 0 Exam continues. . .

17-355/17-665/17-819: Fall 2023 Exam 1 Page 5 of 6

Question 3: Soundness (0 points)
Imagine we want to extend X analysis to a language with Y. Consider the following incorrect
flow function:

fFOOvCODEwpσq “ σr...update...s

This function is incorrect because it does X; to see this, consider code that does Y.

(a) Prove that this flow function is not locally sound.

(b) Specify a correct flow function.

(c) Prove that your new flow function is monotonic.

(d) Why is it a good idea to apply a widening operator only at loop heads in a control flow
graph?

(e) Why don’t we need a widening operator for zero or sign analysis?

(f) Why can’t we use the basic operational semantics to reason about the correctness of a
reaching definitions analysis?

{ 0 Exam continues. . .

17-355/17-665/17-819: Fall 2023 Exam 1 Page 6 of 6

Question 4: Interprocedural Analysis (0 points)
Imagine you are would like to implement an interprocedural X analysis. Consider the follow-
ing simple test code:

...example omitted...

(a) Imagine you wanted to use default assumptions around function calls.
i. Provide an example of default assumptions that produces sound but imprecise re-

sults for the example.
ii. Provide an example of default assumptions that produces more precise output on

this example.
iii. Provide an example for which the more precise assumptions produces incorrect dataflow

output.

(b) Would porting an intraprocedural analysis and applying it to the interprocedural control
flow graph produce satisfactory analysis output on this example? Why or why not?

(c) Provide an example program that demonstrates a case where function inlining is a bad
solution to the interprocedural control flow problem, and explain why it shows that.

(d) What is one reason that dynamic dispatch poses a challenge to interprocedural dataflow
analysis?

(e) Assuming a context-sensitivity limit of X, which context-sensitivity-limiting approach
would provide more precise results for the following example function:
...example omitted...

⃝ Call strings
⃝ Contexts

Justify your answer:

{ 0 End of exam.

