Axiomatic Semantics and Hoare-style Verification

Axiomatic semantics (or Hoare-style logic) defines the meaning of a statement in terms of its effects on assertions of truth that can be made about the associated program. A Hoare Triple encodes these assertions in the form $\{P\} S\{Q\}$ where P is the precondition, Q is the postcondition, and S is a piece of code of interest. Using derivation rules for Hoare triples, we can prove that these triples hold.

1. $\operatorname{Prove}\{x>1\} \quad x:=x+1 ; x:=-x \quad\{x<0\}$.
2. Prove that the program $x:=x+y ; y:=x-y ; x:=x-y$ swaps the values of x and y. The conclusion should be:
$\{\mathrm{x}=A \wedge \mathrm{y}=B\} \mathrm{x}:=\mathrm{x}+\mathrm{y} ; \mathrm{y}:=\mathrm{x}-\mathrm{y} ; \mathrm{x}:=\mathrm{x}-\mathrm{y} \quad\{\mathrm{y}=A \wedge \mathrm{x}=B\}$

Let R be the derivation

$$
\frac{\vdash \mathrm{x}=A \wedge \mathrm{y}=B \Rightarrow \mathrm{x}+\mathrm{y}=A+B \wedge \mathrm{y}=B \quad \overline{\vdash\{\mathrm{x}+\mathrm{y}=A+B \wedge \mathrm{y}=B\} \mathrm{x}:=\mathrm{x}+\mathrm{y}\{\mathrm{x}=A+B \wedge \mathrm{y}=B\}} \text { assign } \vdash \mathrm{x}=A+B \wedge \mathrm{y}=B \Rightarrow \mathrm{x}=A+B \wedge \mathrm{x}-\mathrm{y}=A}{\vdash\{\mathrm{x}=A \wedge \mathrm{y}=B\} \mathrm{x}:=\mathrm{x}+\mathrm{y}\{\mathrm{x}=A+B \wedge \mathrm{x}-\mathrm{y}=A\}} \text { consq }
$$

Let S be the derivation

$$
\frac{\vdash \mathrm{x}=A+B \wedge \mathrm{x}-\mathrm{y}=A \Rightarrow \mathrm{x}=A+B \wedge \mathrm{x}-\mathrm{y}=A}{\stackrel{\vdash\{\mathrm{x}=A+B \wedge \mathrm{x}-\mathrm{y}=A\} \quad \mathrm{y}:=\mathrm{x}-\mathrm{y}\{\mathrm{x}=A+B \wedge \mathrm{y}=A\}}{\text { assign }} \vdash \mathrm{x}=A+B \wedge \mathrm{y}=A \Rightarrow \mathrm{x}-\mathrm{y}=B \wedge \mathrm{y}=A} \text { consq }
$$

Let T be the derivation

$$
\overline{\vdash\{\mathrm{x}-\mathrm{y}=B \wedge \mathrm{y}=A\} \quad \mathrm{x}:=\mathrm{x}-\mathrm{y} \quad\{\mathrm{y}=A \wedge \mathrm{x}=B\}} \text { assign }
$$

Let U be the derivation

$$
\frac{S T}{\vdash\{\mathrm{x}=A+B \wedge \mathrm{x}-\mathrm{y}=A\} \mathrm{y}:=\mathrm{x}-\mathrm{y} ; \mathrm{x}:=\mathrm{x}-\mathrm{y}\{\mathrm{y}=A \wedge \mathrm{x}=B\}} \text { seq }
$$

Putting these together, we then have the final derivation:

$$
\frac{R U}{\vdash\{\mathrm{x}=A \wedge \mathrm{y}=B\} \quad \mathrm{x}:=\mathrm{x}+\mathrm{y} ; \quad \mathrm{y}:=\mathrm{x}-\mathrm{y} ; \mathrm{x}:=\mathrm{x}-\mathrm{y} \quad\{\mathrm{y}=A \wedge \mathrm{x}=B\}} \text { seq }
$$

