Operational Semantics

Operational semantics provides a way of understanding what a program means by mimicking, at a high level, the operation of a computer executing the program. Operational semantics falls under two broad classes: *big-step* operational semantics, which specifies the entire operation of a given expression or statement; and *small-step* operational semantics, which specifies the operation of the program one step at a time. Both are powerful tools for verifying the correctness and other desired properties of programs.

Exercises

1. Use the big-step operational semantics rules for the WHILE language to write a well-formed derivation with $\langle E, y := 3$; if y > 1 then z := y else $z := 2 \rangle \Downarrow E[y \mapsto 3; z \mapsto 3]$ as its conclusion. Make sure to indicate which rule you used to prove each premise or conclusion.

$\overline{\langle E,3 angle \downarrow_a 3}$ int	$\frac{\overline{\langle E[y\mapsto 3], y\rangle \Downarrow_a 3} \text{ var } \overline{\langle E[y\mapsto 3], 1\rangle \Downarrow_a 1}}{\langle E[y\mapsto 3], y>1\rangle \Downarrow_b \text{ true}} \begin{array}{c} \text{int} \\ \text{boolop} \end{array}$	$\frac{\overline{\langle E[y \mapsto 3], y \rangle \Downarrow_a 3}}{\langle E[y \mapsto 3], z := y \rangle \Downarrow E[y \mapsto 3; z \mapsto 3]} assign$ <i>if-true</i>
$\overline{\langle E, y := 3 \rangle \Downarrow E[y \mapsto 3]} \text{ assign}$	$\langle E[y\mapsto 3], ext{if}\; y>1 ext{ then } z:=y ext{ el}$	$\operatorname{see} z := 2 \rangle \Downarrow E[y \mapsto 3; z \mapsto 3]$
$\langle E,y:=3; ext{if } y>1 ext{ then } z:=y ext{ else } z:=2 angle \Downarrow E[y\mapsto 3; z\mapsto 3]$		

2. For homework 2, you will be partially proving that if a statement terminates, then the big- and smallstep semantics for WHILE will obtain equivalent results; i.e.,

$$\forall S \in \texttt{Stmt}. \forall E, E' \in \texttt{Var} \mapsto \mathbb{Z}. \langle E, S \rangle \to^* \langle E', \texttt{skip} \rangle \iff \langle E, S \rangle \Downarrow E'$$

You will prove this by induction on the structure of derivations for each direction of \iff . For your homework proof, you are only required to show

- The base case(s).
- The inductive case for let using the semantics developed in question 1 of the homework.
- Two more representative inductive cases.

You may assume that this property holds for arithmetic and boolean expressions, i.e., you may assume the following hold:

$$\forall a \in \texttt{AExp.} \forall n \in \mathbb{Z}. \langle E, a \rangle \to_a^* n \iff \langle E, a \rangle \Downarrow_a n \tag{1}$$

$$\forall P \in \texttt{BExp.} \forall b \in \{\texttt{true}, \texttt{false}\}. \langle E, P \rangle \rightarrow_b^* b \iff \langle E, P \rangle \Downarrow_b b \tag{2}$$

You may also assume the small-step if congruence of $\langle E, S \rangle \rightarrow^* \langle E', S' \rangle$:

$$\frac{\langle E, P \rangle \to_b^* P'}{\langle E, \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \to^* \langle E, \text{if } P' \text{ then } S_1 \text{ else } S_2 \rangle}$$
(3)

For this exercise, you will prove the following representative inductive case:

 $\forall S \in \texttt{Stmt}. \forall E, E' \in \texttt{Var} \mapsto \mathbb{Z}. \langle E, \texttt{if} \ P \ \texttt{then} \ S_1 \ \texttt{else} \ S_2 \rangle \Downarrow E' \iff \langle E, \texttt{if} \ P \ \texttt{then} \ S_1 \ \texttt{else} \ S_2 \rangle \rightarrow^* \langle E', \texttt{skip} \rangle$

We prove each direction of \Leftrightarrow separately. We proceed by induction on derivations of program evaluation. We define a partial order over derivations $D_1 \prec D_2$ if D_1 is a sub-derivation of D_2 (that is D_1 is a premise of D_2).

Proof obligation for \Rightarrow : We will first prove that $\langle E, S \rangle \Downarrow E' \Rightarrow \langle E, S \rangle \rightarrow^* \langle E', \text{skip} \rangle$. In other words, if there exists a derivation $D :: \langle E, S \rangle \Downarrow E'$, we want to show that there exists a derivation of $\langle E, S \rangle \rightarrow^* \langle E', \text{skip} \rangle$.

Inductive Hypothesis: Our inductive hypothesis is that if $D' :: \langle E_1, S' \rangle \Downarrow E_2$ (for aribtrary D', S', E_1, E_2) is a sub-derivation of D, then there also exists a derivation of $\langle E_1, S' \rangle \rightarrow^* \langle E_2, \text{skip} \rangle$. In other words, given D' exists, we can assume that $\langle E_1, S' \rangle \Downarrow E_2 \Rightarrow \langle E_1, S' \rangle \rightarrow^* \langle E_2, \text{skip} \rangle$.

Base Case (skip): Let $D :: \langle E, \text{skip} \rangle \Downarrow E'$. By inversion, we know that D must end with the *big-skip* rule, which gives us E = E'. And, by the *multi-reflexive* rule for \rightarrow^* , we have that $\langle E, \text{skip} \rangle \rightarrow^* \langle E, \text{skip} \rangle$. Since E and E' are equal, we have proved that $\langle E, \text{skip} \rangle \Downarrow E' \Rightarrow \langle E, \text{skip} \rangle \rightarrow^* \langle E', \text{skip} \rangle$ as required.

Inductive Case (if): In this case, we have $D :: \langle E, if P \text{ then } S_1 \text{ else } S_2 \rangle \Downarrow E'$. We want to show that there exists a derivation for $\langle E, if P \text{ then } S_1 \text{ else } S_2 \rangle \rightarrow^* \langle E', \text{skip} \rangle$. By inversion, there are two cases for the previous rule applied to D, *big-if-true* and *big-if-false*.

Case 1 *big-if-true*: We have:

$$D ::= \frac{\langle E, P \rangle \Downarrow \text{true} \quad D' :: \langle E, S_1 \rangle \Downarrow E'}{\langle E, \text{ if } P \text{ then } S_1 \text{ else } S_2 \rangle \Downarrow E'} \text{ big-if-true}$$
(4)

Using the induction hypothesis on sub-derivation D', we also have:

$$\langle E, S_1 \rangle \to^* \langle E', \text{skip} \rangle$$
 (5)

By (2) we have that $\langle E, P \rangle \downarrow_b$ true $\Rightarrow \langle E, P \rangle \rightarrow_b^*$ true, and using this result with (3) we have:

$$\frac{\langle E, P \rangle \to_b^* \text{true}}{\langle E, \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \to^* \langle E, \text{if true then } S_1 \text{ else } S_2 \rangle} \tag{6}$$

By the *small-if-true* rule, we also have:

$$\langle E, \texttt{if true then } S_1 \texttt{ else } S_2 \rangle \to \langle E, S_1 \rangle$$
 (7)

By (5), (7), and the *multi-inductive* rule of \rightarrow^* , we can then derive:

$$\frac{\langle E, \text{if true then } S_1 \text{ else } S_2 \rangle \to \langle E, S_1 \rangle \quad \langle E, S_1 \rangle \to^* \langle E', \text{skip} \rangle}{\langle E, \text{if true then } S_1 \text{ else } S_2 \rangle \to^* \langle E', \text{skip} \rangle}$$
(8)

By (6), (8), and the *transitive* property of \rightarrow^* , we are finally able to derive:

$$\langle E, \text{if P then } S_1 \text{ else } S_2 \rangle \rightarrow^* \langle E', \text{skip} \rangle$$

Case 2 *big-if-false*: Similar to above, using corresponding rules for the false case.

Thus, we have shown that $\langle E, \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \Downarrow E' \Rightarrow \langle E, \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \rightarrow^* \langle E', \text{skip} \rangle.$

Proof obligation for \Leftarrow : We will now prove that $\langle E, S \rangle \Downarrow E' \Leftarrow \langle E, S \rangle \rightarrow^* \langle E', \text{skip} \rangle$. In other words, if there exists a derivation $D :: \langle E, S \rangle \rightarrow^* \langle E', \text{skip} \rangle$, we want to show that there exists a derivation of $\langle E, S \rangle \Downarrow E'$.

Inductive Hypothesis: Our inductive hypothesis is that if $D' :: \langle E_1, S' \rangle \rightarrow^* \langle E_2, \text{skip} \rangle$ (for aribtrary D', S', E_1, E_2) is a sub-derivation of D, then there also exists a derivation of $\langle E_1, S' \rangle \Downarrow E_2$. In other words, given D' exists, we can assume that $\langle E_1, S' \rangle \rightarrow^* \langle E_2, \text{skip} \rangle \Rightarrow \langle E_1, S' \rangle \Downarrow E_2$.

Base Case (skip): Let $D :: \langle E, \text{skip} \rangle \to^* \langle E', \text{skip} \rangle$. By inversion, we know that no small-step rule for skip exists. This derivation is only possible using the *multi-reflexive* rule for \to^* , which gives us E = E'. And, by the *big-step* rule, we have that $\langle E, \text{skip} \rangle \Downarrow E$. Since E and E' are equal, we have proved that $\langle E, \text{skip} \rangle \to^* \langle E', \text{skip} \rangle \Rightarrow \langle E, \text{skip} \rangle \Downarrow E'$ as required.

Inductive Case (if): In this case, we have $D :: \langle E, if P \text{ then } S_1 \text{ else } S_2 \rangle \rightarrow^* \langle E', \text{skip} \rangle$. We want to show that there exists a derivation for $\langle E, if P \text{ then } S_1 \text{ else } S_2 \rangle \Downarrow E'$ By inversion of rules we know that this derivation must use transitive applications of the *multi-inductive* rule, eq. (3), and either the *small-if-true* or *small-if-false* rules. We can discuss the *true* and *false* cases separately.

Case 1: By inversion and use of transitive applications of \rightarrow^* , the derivation for the *true* case will be of the form:

$$\frac{D_P :: \langle E, P \rangle \to_b^* \text{true}}{\langle \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \to^* \langle E, \text{if true then } S_1 \text{ else } S_2 \rangle} \frac{D_{S_1} :: \langle E, S_1 \rangle \to^* \langle E', \text{skip} \rangle}{\langle E, \text{if true then } S_1 \text{ else } S_2 \rangle \to^* \langle E', \text{skip} \rangle}$$

$$\langle E, \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \to^* \langle E', \text{skip} \rangle$$
(9)

Using D_P from (9) and the result from (2), we have that:

$$\langle E, P \rangle \Downarrow_b$$
true (10)

Using D_{S_1} from (9) and the induction hypothesis, we have that:

$$\langle E, S_1 \rangle \Downarrow E' \tag{11}$$

Using (10), (11), and the *big-step* rule, we have the required derivation:

$$\frac{\langle E, P \rangle \Downarrow \text{true} \quad \langle E, S_1 \rangle \Downarrow E'}{\langle E, \text{if } P \text{ then } S_1 \text{ else } S_2 \rangle \Downarrow E'} \text{ big-if-true}$$

Case 2: The *false* case is similar to above, substituting S_2 for S_1 .

Thus, we have shown that $\langle E, \texttt{if P} \texttt{ then } S_1 \texttt{ else } S_2 \rangle \rightarrow^* \langle E', \texttt{skip} \rangle \Rightarrow \langle E, \texttt{if } P \texttt{ then } S_1 \texttt{ else } S_2 \rangle \Downarrow E'.$