
Homework 3 (Coding):
Dataflow Analysis (V2)

17-355/17-665/17-819: Program Analysis (Spring 2023)
Claire Le Goues, Fraser Brown, Daniel Ramos

Due: Thursday, February 9, 2023 (11:59 pm)

100 points total

Assignment Objectives:

• Implement the key parts of a dataflow analysis for WHILE3ADDR, based on the concepts of
flow functions, lattices, and the worklist algorithm.

Recall in class that we introduced the idea of integer sign analysis, which tracks whether each in-
teger in a program is positive, negative, or zero. The results of this analysis can be used to optimize
a program or to circumvent errors like using a negative index into an array.1 In this homework,
you will implement the fundamental components of integer sign analysis for WHILE3ADDR, in-
cluding α, join, ‰, and the worklist algorithm.

Handin Instructions Submit only your version of the src/analysis/df.ml file to the assign-
ment on Gradescope. Gradescope will run a set of held-out tests as part of its autotester against
your code. Your grade will be based primarily on a combination of the tests your code passes,
modulo certain manual considerations, described below.

Note that we do not plan to look at your GITHUB repository for this assignment. You must
submit your code files via Gradescope.

1 Setup and Tools

Go to https://classroom.github.com/a/UnLE6ysO to clone the hw3 starter code into your
own private GITHUB account.

The code is written in OCaml, a variant of the functional ML language family. If you have
programmed in SML, the syntax should not be too shocking. We also provide pointers to resources
on OCaml in the README.

The README on GitHub describes how to set up your environment, install dependencies,
and compile the code. It provides an overview on the starter code and the facilities it provides.
We have also commented the code reasonably extensively. At a high level, we provide parsers
for WHILE and WHILE3ADDR, an interpreter for WHILE, a compiler for automatic translation be-
tween WHILE and WHILE3ADDR, and a hook into the dataflow analysis that you will be writing.
You can therefore run your analysis on WHILE3ADDR programs directly and WHILE programs by

1For the purposes of this assignment, we have been ignoring the possibility of integer overflow (i.e., we consider
only mathematical integers).

1

https://classroom.github.com/a/UnLE6ysO


first compiling them into WHILE3ADDR. You can do this assignment without ever playing with
the WHILE interpreter; we provide it for completeness and demonstration.

Recitation on Friday, February 3, will involve interacting with this codebase and a brief intro-
duction to programming in OCaml. We encourage you to attend (even more than usual), espe-
cially if you aren’t familiar with functional ML languages

The only file you need to modify and submit for this assignment is src/analysis/df.ml.
Although it is not strictly required, you should also probably interact with and modify
test/test analysis.ml to test your analysis. You should not have to modify the Makefile
or interact with the build/compile system at all, once you have the project set up and running.

2 Your Task: Sign Analysis Implementation

In this assignment, you will implement integer sign analysis for the WHILE3ADDR language.2

You will implement the less precise analysis we discussed in class. The domain of this analysis
is defined at the top of df.ml: we track whether variables are Negative, Positive, or Zero (or
Top/Bottom). The state of the analysis at each program point is thus a mapping from a variable
name to its abstract value at that point.

We have provided starter code in df.ml that provides these definitions, and implements use-
ful utilities as well as several (...less interesting) parts of the analysis proper. You are to implement:3

• alpha, or α, the function that abstracts concrete to abstract values. (5 points)

• join values, which joins individual abstract values (we lift this to states for you). (10
points)

• The inequality check ‰ between abstract states (function sigma ne). (10 points)

• The rest of flow, which implements the flow function. We have provided some of the cases;
you will do arithmetic operators, and if statements. (15 points)

• The rest of kildall.4 We have set up the initialization, and the beginning of the work
function that pulls items off the worklist. The heart of work should use the node pulled
off the worklist to compute new dataflow states and worklist; this is the part you should
implement. (60 points)

We will also look at your code, and reserve the right to deduct up to 10% for poor coding
practice (lack of comments, impossible variable/function names, etc).

Clarification on division Bear in mind that the division in this language is integer division (that
is, it returns only the integer portion of the result and discards any fractional result). Carefully
consider what happens when dividing two numbers and the result is ă 1.

Grading and testing We have provided some initial tests for you in test/test analysis.ml. You
can run them using make test. You can (AND SHOULD) add your own to them, the code
should make it clear how.

2We will be analyzing a real language in a later assignment.
3We also marked the methods you need to complete with “TODO” comments, to help you find them in the code.
4Note that we provided pseudo-code for Kildall’s in class; it is a good place to start!

2



We have also set up Gradescope’s autograding functionality to run additional held-out tests
that we will use to inform our grading of your solution. You can submit df.ml via Gradescope,
and it will (fairly quickly) email you a report on how your submission did on the held-out tests.
These tests are different from the ones in the repository.

If you experience problems or think you’ve found a bug, please contact us ASAP. We have done
our best in setting it up, and we want it to be useful for you, but we may still be ironing out bugs!

3


	Setup and Tools
	Your Task: Sign Analysis Implementation

