
DYNAMIC ANALYSES FOR
DATA RACE DETECTION
Lecture by Claire Le Goues
17-355/17-665/17-819: Program Analysis

Material from past lectures by Rohan Padhye and Jonathan Aldrich, based in large part on
slides by John Erickson, Stephen Freund, Madan Musuvathi, Mike Bond, and Man Cao

Lecture Goals
• What is a data race, and what is data race free execution?

• Subtleties of data races and memory models
• Why taking advantage of “harmless races” is almost certainly a bad idea

• Lockset analysis for data race detection

• Happens-before based data race detection
• And high performance implementations, e.g. as in FastTrack

Bytecode Instrumentation
• Bytecode: Mid-to-low-level IR used by somewhat dynamic

language runtimes (e.g. JVM, Python, WebAssembly)
• Often use a stack machine representation
• Accesses and manipulates a stack of values
• Instructions are simple and operate on stack values
• Very easy to write an AST-to-stack-machine compiler
• Pre-order tree traversal to emit code (”emit” operands first, then “emit” node)

• Bytecode can be interpreted (e.g. CPython) or JIT-compiled to assembly
(e.g. JVM HotSpot)

Stack Machine Bytecode

Instruction (at <label>)
• Push <const>
• Load <var>
• Store <var>
• Dup
• Add
• Invoke <func> <nargs>
• Jump <label’>
• Jump-if-zero <label’>

Stack (before à after)
• … à … <const>
• … à … E(var)
• ... val à … // E[var ↦ val]
• … val à … val val
• … val1 val2 à … (val1+val2)
• … val1 val2 … valnargs à … result
• … à … // PC = label’
• … val à … // PC = val ? PC+1 : label’

SEQUENTIAL CONSISTENCY

First things First
Assigning Semantics to Concurrent Programs

• What does this program mean?

• Sequential Consistency [Lamport ‘79]
Program behavior = set of its thread interleavings

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;

Exercise 1:

• What are the possible final values for variables `t` and `u` after
running this program, assuming sequential consistency?

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;

Sequential Consistency Explained

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0; // F = 1 implies X is initialized

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

t=1 implies u=1

Sequential Consistency provides two crucial
abstractions:
• Program Order Abstraction
• Instructions execute in the order specified in the program

A ; B
means “Execute A and then B”

• Shared Memory Abstraction
• Memory behaves as a global array, with reads and writes done immediately

• We implicitly assume these abstractions for sequential programs
• As we will see, we can only rely on these abstractions under certain conditions in a

concurrent context

Semantics of WHILE|| : S1 ∥ S2

Semantics of WHILE|| : S1 ∥ S2

WHAT IS A DATA RACE ?
…The term is often overloaded
…Precise definition is important in designing a tool

Data Race
• Two accesses conflict if
• they access the same memory location, and
• at least one of them is a write

Write X – Write X
Write X – Read X
Read X – Write X
Read X – Read X

• A data race is a pair of conflicting accesses that happen
concurrently

“Happen Concurrently”
• A and B happen concurrently if
• there exists a sequentially consistent execution in which they

happen one after the other

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Data races are almost always no good
• What are some consequences of a data race, even when

assuming sequential consistency?

Unintended Sharing
• Threads accidentally sharing objects

Thread 1

void work() {
static int local = 0;
…
local += …
…

}

Thread 2

void work() {
static int local = 0;
…
local += …
…

}

Data Race

Atomicity Violation
• When code that is meant to execute atomically…
• That is, without interference from other threads

• …suffers interference from some other thread

Thread 1

void Bank::Update(int a)
{

int t = bal;
bal = t + a;

}

Thread 2

void Bank::Withdraw(int a)
{

int t = bal;
bal = t - a;

}

Data Race

Ordering Violation
• Incorrect signaling between a producer and a consumer

Thread 1

work = null;
CreateThread (Thread 2);
work = new Work(); Thread 2

ConsumeWork(work);

Data Race

But,….

AcquireLock(){
while (!CAS (lock, 0, 1)) {}

}

ReleaseLock() {
lock = 0;

}

Data Race ?

Acceptable Concurrent Conflicting Accesses

• Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

• Innovative uses of shared memory
• Fast reads
• Double-checked locking
• Lazy initialization
• Setting dirty flag
• ...

• Need mechanisms to distinguish these from erroneous conflicts

One Solution: Programmer Annotation
• Programmer explicitly annotates variables as “synchronization”
• Java – volatile keyword
• C++ – std::atomic<> types

Data Race
• Two accesses conflict if
• they access the same memory location, and
• at least one of them is a write

• A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization
• Recall: “Concurrent” means there exists a sequentially consistent

execution in which they happen one after the other

• Equivalent definition: a pair of conflicting accesses where one
doesn’t happen before the other
• Program order
• Synchronization order
• Acquire/release, wait-notify, fork-join, volatile read/write

Exercise 2: Is there a data race?
If so, on what variable(s)?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

23

Is there a data race?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

24

Consider regular compiler
transformations/optimizations

Before:

data = 42;
flag = true;

25

After:

flag = true;
data = 42;

Possible behavior

T1:

flag = true;

data = 42;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

26

Consider regular compiler
transformations/optimizations

Before:

if (flag)

t = data;

27

After:

t2 = data;

if (flag)

t = t2;

Possible behavior

T1:

data = 42;
flag = true;

T2:

t2 = data;

if (flag)

t = t2;

Initially:
int data = 0;

boolean flag = false;

28

How do we fix this?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

29

Using “synchronized” keyword in Java

T1:

data = ...;
synchronized (m) {
flag = true;

}

T2:

boolean f;

synchronized (m) {

f = flag;

}

if (f)

... = data;

Initially:
int data = 0;

boolean flag = false;

30

… Implemented via locks

T1:

data = ...;
acquire(m);
flag = true;

release(m);

T2:

boolean f;

acquire(m);

f = flag;

release(m);

if (f)

... = data;

Initially:
int data = 0;

boolean flag = false;

Happens-beforerelationship

31

Using “volatile” keyword in Java

T1:

data = ...;
flag = true;

T2:

if (flag)

... = data;

Initially:
int data = 0;

volatile boolean flag = false;

Happens-beforerelationship

32

Data Race vs Race Conditions
• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program
• Due to events, device interaction, thread interleaving, …
• Race conditions can be very bad!
• Famous Examples: 2003 NE blackout, Therac 25

Data Race vs Race Conditions
• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program
• Due to events, device interaction, thread interleaving, …
• Race conditions can be very bad!

• Data races are neither sufficient nor necessary for a race
condition
• Data race is a good symptom for a race condition

DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS

Advantage of Eliminating All Data Races

• Defining semantics for concurrent programs becomes
surprisingly easy

• Even in the presence of compiler and hardware optimizations

Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly sharedOK for sequential programs

if X is not modified between L1 and L3

Can Break Sequential Consistent Semantics

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X = 1;
M2: Y = 1;

M1: X = 1;
M2: Y = 1;

u == 1 è v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

Data Race

Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly sharedOK for sequential programs

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data race on Y

Key Observation [Adve& Hill '90]
• Many sequentially valid (compiler & hardware) transformations

also preserve sequential consistency
• …Provided the program is data-race free

• Forms the basis for modern C++, Java semantics
data-race-free à sequential consistency

otherwise à weak/undefined semantics

DATA RACE DETECTION

Static Data Race Detection
• Advantages:
• Reason about all inputs/interleavings
• No run-time overhead
• Adapt well-understood static-analysis techniques
• Annotations to document concurrency invariants

• Examples: RCC/Java (type-based), ESC/Java ("functional verification”,
theorem proving-based)
• Disadvantages of static:
• Undecidable, false positives/false negatives abound
• May be slow, require programmer annotations, and have difficult-to-interpret

results

Dynamic Data Race Detection
• Advantages
• Can avoid false positives
• No need for language extensions or sophisticated static analysis

• Disadvantages
• Run-time overhead (5-20x for best tools)
• Memory overhead for analysis state
• Reasons only about observed executions
• sensitive to test coverage
• (some generalization possible...)

Definition Refresh
• A data race is a pair of concurrent conflicting accesses to

unannotated locations (i.e. not locks or volatile variables)

• Problem: it’s very difficult to catch the two accesses executing
concurrently!

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Solutions
• Lockset
• Infer data races through violation of locking discipline

• Happens-before
• Infer data races by generalizing a trace to a set of traces with the same

happens-before relation

LOCKSET ALGORITHM
Eraser [Savage et.al. ‘97]

Lockset Algorithm Overview
• Checks a sufficient condition for data-race-freedom: Consistent locking

discipline
• Every data structure is protected by a single lock
• All accesses to the data structure made while holding the lock

• Example:
// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

RecvQueue is
consistently protected

by RecvQueueLk

ProcQueue is
consistently protected

by ProcQueueLk

Inferring the Locking Discipline
• How do we know which lock protects what?
• Asking the programmer is cumbersome

• Solution: Infer from the program
AcquireLock(A);
AcquireLock(B);
x ++;
ReleaseLock(B);
ReleaseLock(A);

AcquireLock(B);
AcquireLock(C);
x ++;
ReleaseLock(C);
ReleaseLock(B);

X is protected by
A, or B, or both

X is protected by
B, or C, or both

X is protected
by B

LockSet Algorithm
• Two data structures:
• LocksHeld(t) = set of locks held currently by thread t

• Initially set to Empty
• LockSet(x) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread t acquires lock l
• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 ∪ {𝑙}

• When thread t releases lock l
• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 − {𝑙}

• When thread t accesses location x
• 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 = 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 ∩ 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑(𝑡)
• Report “data race” when LockSet(x) becomes empty

LockSet Algorithm
• No warnings à no data races on the current execution
• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race
• Thread-local initialization
• Object read-shared after thread-local initialization

A = new A();
A.f = 0;

// publish A
globalA = A; f = globalA.f;

Maintain A State Machine Per Location

Init Local
to T

Thread T
Read /
Write

Read
Shared

Thread T’
Read Any Thread

Read

Thread T
Read /
Write

Shared

Any Thread
Write

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm

LockSet Algorithm
• State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock(WrongLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(WrongLk);

// Process a packet
AcquireLock(SendQueueLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(SendQueueLk);

LockSet Algorithm
• Does not handle locations consistently protected by different

locks during a particular execution

// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

Pkt is protected by
RecvQueueLk

Pkt is thread local

Pkt is protected by
ProcQueueLk

HAPPENS-BEFORE

Happens-Before Relation [Lamport '78]
• A concurrent execution is a partial-order determined by communication

events
• The program cannot “observe” the order of concurrent non-communicating

events

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++?

Happens-Before Relation [Lamport '78]
• A concurrent execution is a partial-order determined by communication

events
• The program cannot “observe” the order of concurrent non-communicating

events

• Both executions form the same happens-before relation

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++

Constructing the Happens-Before Relation

• Program order
• Total order of thread

instructions

• Synchronization order
• Total order of accesses to the

same synchronization

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock

Happens-Before Relation And Data Races
• If all conflicting accesses are

ordered by happens-before
• à data-race-free execution
• à All linearizations of partial-order

are valid program executions

• If there exists conflicting accesses
not ordered

• à a data race

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock

Happens-Before and Data-Races
• Not all unordered conflicting accesses are data races

• There is no data race on X
• But, there is a data race on Y
• Remember:
• Exists unordered conflicting access à Exists data race

X = 1;
Y = 1;

if(Y == 1)
X = 2;

Init: X = Y = 0;

IMPLEMENTING HAPPENS-
BEFORE ANALYSES

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...

1

2

3

4

5 5

1

2

3

4

5

4

3

2

1

6 6 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 7 7

vol = 1

tmp = vol

acq(m)

Precise
Happens-
Before

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

2 0 0

2 0 0

2 0 0 1 3 0

0 1 0

0 1 0

1 1 0

1 2 0

1 1 1

0 0 1

0 0 1

0 0 1

0 0 1

2 2 0 1 3 0 1 1 2

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

2 2 1 1 3 0 1 1 2

vol = 1

tmp = vol

acq(m)

Exercise on vector clocks and partial
ordering
� VC = [t1, t2,… tN]

� What is VCa ⊑ VCb?

� What is VCa ⊔ VCb?

� What are sufficient and necessary conditions
for there to be a data race between two
accesses having vector clocks VCa and VCb?

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

A’s local time B’s local time

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

B-steps with B-time ≤ 1
happen before
A’s next step

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 13 0

4 10 1

? Yes

? Yes

O(n) time

x = 0

4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1

x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1

x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx VCA ?

5 1 ? No4 8

O(n) time

VectorClocks for Data-Race Detection
� Sound

– Warning è data-race exists
� Complete

– No warnings è data-race-free execution

� Performance
– slowdowns > 50x
– memory overhead

78

FASTTRACK

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...RaceTrack [YRC 05]
MultiRace [PS 03]

Hybrid Race Detector [OC 03]
...

FastTrack
[Flanagan-Freund 09]

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...RaceTrack [YRC 05]
MultiRace [PS 03]

Hybrid Race Detector [OC 03]
...

FastTrack
[Flanagan-Freund 09]

• Design Criteria:
- sound & complete
(find at least 1st data race on each var)

- efficient
• Insight:

• HB relation is a partial order
• But all accesses to a var are
almost always totally ordered

Key observations
� Write-write and write-read races: Assuming

no races have been detected on so far, all
previous writes are ordered by HB; the only
thing you need to track is the clock/identity
(c@t, epoch).

� Read-write: Reads are typically unordered only
when data is read-shared. Use an adaptive
representation for tracking read history,
optimizing for the common case, and only using
full vector clocks when necessary.

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 13 0

4 10 1

? Yes

? Yes

O(n) time

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

Write-Write and Write-Read Data Races

?

?
?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

?
?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

O(1)

x = 0

4 1

4 0

2 8

0 8

2 1 1@B

VCA VCB Lm Wx

0 0 4@AWrite-Write Check: Wx VCA ?

4 1 ? Yes1@B

(1 ≤ 1?)

O(1) time

Last Write
"Epoch"

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

x = 0

rel(m)

acq(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

Write-Read Check:

5 1 ? No8@B

Wx VCA ?

O(1) time(8 ≤ 1?)

Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Data Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...

Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Data Races -- Unordered Reads

?

fork

? ?

x = 0

x = 0
-

VCA VCB Wx Rx

7 0

fork
7@A7 0

7 1 7@A8 0

read x
7 1 7@A8 0

7@A8 0
x = 2

read x

8 1

-

-

-

1@B
O(1)

O(n)

Read-Write Check: Rx VCA ?

8 08 1 ? No

O(n)

Slowdown (x Base Time)

4.1

8.6

21.7

31.6

89.8

20.2

8.5

0

5

10

15

20

25

30

35

40

45

50

Empty Eraser MultiRace Goldilocks Basic VC DJIT+ FastTrack

� FastTrack allocated ~200x fewer VCs

(Note: VCs for dead objects are garbage collected)

� Improvements
– accordion clocks [CB 01]
– analysis granularity [PS 03, YRC 05]

Checker Memory
Overhead

Basic VC,
DJIT+ 7.9x

FastTrack 2.8x
Empty 2.0x

Memory Usage

Fuzzing can also find data races
� Idea: Catch races “red handed”. Loosely,

– Pause thread execution when writing to X
– If another thread reaches a statement that

reads or writes X then we have observed
concurrent conflicting accesses!

� Analysis does not care about locks or other
synchronization primitives.

– Consistent locking will make the above
condition impossible to trigger.

Race Fuzzer
� Run-time Overhead

– No overhead of tracking synchronization,
locks, or vector clocks (hey, that rhymes!)

– But pausing threads forever can lead to
deadlocks

– Pausing threads for a short while (e.g.
sleep(1000)) adds overhead for every write
access, though this approach is very effective.

� Solution idea:
– Instead of “pausing” thread, just deprioritize

it in the OS scheduler

Lecture Takeaways
� Data race: two accesses, one of which is a write,

with no happens-before relation
� Data races are subtle

– Compiler optimizations, hardware reordering make
racy program behavior hard to predict

– Better to synchronize consistently
� Lockset analysis: intuitive, fast

– But many false warnings
� Happens-before data race detection

– Sound; OK speed if carefully implemented
� Stress testing

– Sound and fast; Can catch data races red handed
– Needs assumptions to prune the space of possible

races

Key References
� Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About

Shared Variables or Memory Models", CACM 2012.
� Leslie Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", CACM 1978.
� Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types

for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

� Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu, "Finding and
Reproducing Heisenbugs in Concurrent Programs", OSDI 2008.

� Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

� S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References
� Friedemann Mattern, "Virtual Time and Global States of

Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

� Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

� Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

� Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

� Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

� Cormac Flanagan and Stephen N. Freund, "The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References
� John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk

Olynyk, "Effective Data-Race Detection for the Kernel", OSDI
2010.

� Madanlal Musuvathi, Sebastian Burckhardt, Pravesh Kothari, and
Santosh Nagarakatte, "A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs", ASPLOS 2010.

� Michael D. Bond, Katherine E. Coons, Kathryn S. McKinley, "PACER:
proportional detection of data races", PLDI 2010.

� Cormac Flanagan and Stephen N. Freund, "Adversarial memory for
detecting destructive races", PLDI 2010.

� Koushik Sen. “Race directed random testing of concurrent
programs”. PLDI 2010.

� Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. “Efficient scalable thread-safety-violation detection:
finding thousands of concurrency bugs during testing”, SOSP 2019.

Bonus slides on the Java
Memory Model (JMM)

Behaviors Allowed in JMM

102

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Behaviors Allowed in JMM

103

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Behaviors Allowed in JMM

104

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Behaviors Allowed in JMM

105

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Valid due to lack
of happens-before

ordering

Behaviors Allowed in JMM

106

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Assertion
failure!

Behaviors Allowed in JMM

107

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Assertion
failure!

Behaviors Allowed in JMM

108

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Requires returning future value or
reordering to trigger the assertion failure

Can this assert trigger in JVMs?
Do you think the JMM allows it?

109

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = y;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

The JVM and the JMM

110

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = y;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

JMM disallows
r2 == 1 because

of causality
requirements

– Ševčík and Aspinall, ECOOP, 2008

The JVM and the JMM

111

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

The JVM and the JMM

112

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

The JVM and the JMM

113

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

The JVM and the JMM

114

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

Assertion
failure

possible!

Moral: Just say no to data races
Don’t try hacks based on the memory model
• Unless you are as good as Doug Lea

• Or you have formalized the memory model rules in a tool
• And even then, are the rules right?

Author of java.util.concurrent

