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Lecture Goals
• What is a data race, and what is data race free execution?

• Subtleties of data races and memory models
• Why taking advantage of “harmless races” is almost certainly a bad idea

• Lockset analysis for data race detection

• Happens-before based data race detection
• And high performance implementations, e.g. as in FastTrack



Bytecode Instrumentation
• Bytecode: Mid-to-low-level IR used by somewhat dynamic 

language runtimes (e.g. JVM, Python, WebAssembly)
• Often use a stack machine representation
• Accesses and manipulates a stack of values
• Instructions are simple and operate on stack values
• Very easy to write an AST-to-stack-machine compiler
• Pre-order tree traversal to emit code (”emit” operands first, then “emit” node)

• Bytecode can be interpreted (e.g. CPython) or JIT-compiled to assembly 
(e.g. JVM HotSpot)



Stack Machine Bytecode

Instruction (at <label>)
• Push <const>
• Load <var>
• Store <var>
• Dup
• Add
• Invoke <func> <nargs>
• Jump <label’>
• Jump-if-zero <label’>

Stack (before à after)
• … à … <const>
• … à … E(var)
• ... val à …     // E[var ↦ val]
• … val à … val val
• … val1 val2 à … (val1+val2)
• … val1 val2 … valnargs à … result
• … à …            // PC = label’
• … val à …      // PC = val ? PC+1 : label’



SEQUENTIAL CONSISTENCY



First things First
Assigning Semantics to Concurrent Programs

• What does this program mean?

• Sequential Consistency [Lamport ‘79]
Program behavior  =  set of its thread interleavings

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;  



Exercise 1: 

• What are the possible final values for variables `t` and `u` after 
running this program, assuming sequential consistency?

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;  



Sequential Consistency Explained

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;  // F = 1 implies X is initialized

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

t=1 implies u=1



Sequential Consistency provides two crucial 
abstractions:
• Program Order Abstraction
• Instructions execute in the order specified in the program

A ; B
means “Execute A and then B”

• Shared Memory Abstraction
• Memory behaves as a global array, with reads and writes done immediately

• We implicitly assume these abstractions for sequential programs
• As we will see, we can only rely on these abstractions under certain conditions in a 

concurrent context



Semantics of WHILE|| : S1 ∥ S2 



Semantics of WHILE|| : S1 ∥ S2 



WHAT IS A DATA RACE ?
…The term is often overloaded
…Precise definition is important in designing a tool



Data Race
• Two accesses conflict if 
• they access the same memory location, and 
• at least one of them is a write

Write X – Write X
Write X – Read X
Read X – Write X
Read X – Read X

• A data race is a pair of conflicting accesses that happen 
concurrently



“Happen Concurrently”
• A and B happen concurrently if 
• there exists a sequentially consistent execution in which they 

happen one after the other

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently



Data races are almost always no good
• What are some consequences of a data race, even when 

assuming sequential consistency?



Unintended Sharing
• Threads accidentally sharing objects 

Thread 1

void work() {
static int local = 0;
…
local += …
…

}

Thread 2

void work() {
static int local = 0;
…
local += …
…

}

Data Race



Atomicity Violation
• When code that is meant to execute atomically…
• That is, without interference from other threads

• …suffers interference from some other thread

Thread 1

void Bank::Update(int a) 
{

int t = bal;
bal = t + a;

}

Thread 2

void Bank::Withdraw(int a) 
{

int t = bal;
bal = t - a;

}

Data Race



Ordering Violation
• Incorrect signaling between a producer and a consumer

Thread 1

work = null;
CreateThread (Thread 2);
work = new Work(); Thread 2

ConsumeWork( work );

Data Race



But,….

AcquireLock(){
while (!CAS (lock, 0, 1)) {}

}

ReleaseLock() {
lock = 0;

}

Data Race ?



Acceptable Concurrent Conflicting Accesses

• Implementing synchronization (such as locks) usually requires 
concurrent conflicting accesses to shared memory

• Innovative uses of shared memory
• Fast reads
• Double-checked locking
• Lazy initialization
• Setting dirty flag
• ...

• Need mechanisms to distinguish these from erroneous conflicts



One Solution: Programmer Annotation
• Programmer explicitly annotates variables as “synchronization”
• Java – volatile keyword
• C++ – std::atomic<> types



Data Race 
• Two accesses conflict if 
• they access the same memory location, and 
• at least one of them is a write

• A data race is a pair of concurrent conflicting accesses to 
locations not annotated as synchronization
• Recall: “Concurrent” means there exists a sequentially consistent 

execution in which they happen one after the other

• Equivalent definition: a pair of conflicting accesses where one 
doesn’t happen before the other
• Program order
• Synchronization order
• Acquire/release, wait-notify, fork-join, volatile read/write



Exercise 2: Is there a data race?
If so, on what variable(s)?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

23



Is there a data race?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

24



Consider regular compiler 
transformations/optimizations

Before:

data = 42;
flag = true;

25

After:

flag = true;
data = 42;



Possible behavior

T1:

flag = true;

data = 42;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

26



Consider regular compiler 
transformations/optimizations

Before:

if (flag)

t = data;

27

After:

t2 = data;

if (flag)

t = t2;



Possible behavior

T1:

data = 42;
flag = true;

T2:

t2 = data;

if (flag)

t = t2;

Initially:
int data = 0;

boolean flag = false;

28



How do we fix this?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

29



Using “synchronized” keyword in Java

T1:

data = ...;
synchronized (m) {
flag = true;

}

T2:

boolean f;

synchronized (m) {

f = flag;

}

if (f)

... = data;

Initially:
int data = 0;

boolean flag = false;

30



… Implemented via locks

T1:

data = ...;
acquire(m);
flag = true;

release(m);

T2:

boolean f;

acquire(m);

f = flag;

release(m);

if (f)

... = data;

Initially:
int data = 0;

boolean flag = false;

Happens-beforerelationship

31



Using “volatile” keyword in Java

T1:

data = ...;
flag = true;

T2:

if (flag)

... = data;

Initially:
int data = 0;

volatile boolean flag = false;

Happens-beforerelationship

32



Data Race vs Race Conditions
• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program 
• Due to events, device interaction, thread interleaving, …
• Race conditions can be very bad!
• Famous Examples: 2003 NE blackout, Therac 25





Data Race vs Race Conditions
• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program 
• Due to events, device interaction, thread interleaving, …
• Race conditions can be very bad!

• Data races are neither sufficient nor necessary for a race 
condition
• Data race is a good symptom for a race condition 



DATA-RACE-FREEDOM SIMPLIFIES 
LANGUAGE SEMANTICS



Advantage of Eliminating All Data Races

• Defining semantics for concurrent programs becomes 
surprisingly easy

• Even in the presence of compiler and hardware optimizations



Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly sharedOK for sequential programs

if X is not modified between L1 and L3



Can Break Sequential Consistent Semantics

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X = 1;
M2: Y = 1;

M1: X = 1;
M2: Y = 1;

u == 1 è v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

Data Race



Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly sharedOK for sequential programs

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data race on Y



Key Observation [Adve& Hill '90 ]
• Many sequentially valid (compiler & hardware) transformations 

also preserve sequential consistency
• …Provided the program is data-race free

• Forms the basis for modern C++, Java semantics
data-race-free à sequential consistency

otherwise à weak/undefined semantics



DATA RACE DETECTION



Static Data Race Detection 
• Advantages:
• Reason about all inputs/interleavings
• No run-time overhead
• Adapt well-understood static-analysis techniques
• Annotations to document concurrency invariants

• Examples: RCC/Java (type-based), ESC/Java ("functional verification”, 
theorem proving-based)
• Disadvantages of static:
• Undecidable, false positives/false negatives abound
• May be slow, require programmer annotations, and have difficult-to-interpret 

results



Dynamic Data Race Detection
• Advantages
• Can avoid false positives
• No need for language extensions or sophisticated static analysis

• Disadvantages
• Run-time overhead (5-20x for best tools)
• Memory overhead for analysis state 
• Reasons only about observed executions
• sensitive to test coverage
• (some generalization possible...)



Definition Refresh
• A data race is a pair of concurrent conflicting accesses to 

unannotated locations (i.e. not locks or volatile variables)

• Problem: it’s very difficult to catch the two accesses executing 
concurrently!

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently



Solutions
• Lockset
• Infer data races through violation of locking discipline

• Happens-before
• Infer data races by generalizing a trace to a set of traces with the same 

happens-before relation



LOCKSET ALGORITHM
Eraser [Savage et.al. ‘97]



Lockset Algorithm Overview
• Checks a sufficient condition for data-race-freedom: Consistent locking 

discipline
• Every data structure is protected by a single lock
• All accesses to the data structure made while holding the lock

• Example:
// Remove a received packet
AcquireLock( RecvQueueLk );
pkt = RecvQueue.RemoveTop();
ReleaseLock( RecvQueueLk );

… // process pkt

// Insert into processed
AcquireLock( ProcQueueLk );
ProcQueue.Insert(pkt);
ReleaseLock( ProcQueueLk );

RecvQueue is 
consistently protected 

by RecvQueueLk

ProcQueue is 
consistently protected 

by ProcQueueLk



Inferring the Locking Discipline
• How do we know which lock protects what?
• Asking the programmer is cumbersome

• Solution: Infer from the program 
AcquireLock( A );
AcquireLock( B );
x ++;
ReleaseLock( B );
ReleaseLock( A );

AcquireLock( B );
AcquireLock( C );
x ++;
ReleaseLock( C );
ReleaseLock( B );

X is protected by
A, or B, or both

X is protected by 
B, or C, or both

X is protected
by B



LockSet Algorithm
• Two data structures:
• LocksHeld( t ) = set of locks held currently by thread t

• Initially set to Empty
• LockSet( x ) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread t acquires lock l
• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 ∪ {𝑙}

• When thread t releases lock l
• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 − {𝑙}

• When thread t accesses location x
• 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 = 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 ∩ 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑( 𝑡 )
• Report “data race” when LockSet( x ) becomes empty



LockSet Algorithm
• No warnings à no data races on the current execution
• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race
• Thread-local initialization
• Object read-shared after thread-local initialization

A = new A();
A.f = 0;

// publish A
globalA = A; f = globalA.f;



Maintain A State Machine Per Location

Init Local 
to T

Thread T
Read /
Write

Read
Shared

Thread T’
Read Any Thread

Read

Thread T
Read /
Write

Shared

Any Thread
Write

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm



LockSet Algorithm
• State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock( WrongLk );
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock( WrongLk );

// Process a packet
AcquireLock( SendQueueLk );
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock( SendQueueLk );



LockSet Algorithm
• Does not handle locations consistently protected by different 

locks during a particular execution

// Remove a received packet
AcquireLock( RecvQueueLk );
pkt = RecvQueue.RemoveTop();
ReleaseLock( RecvQueueLk );

… // process pkt

// Insert into processed
AcquireLock( ProcQueueLk );
ProcQueue.Insert(pkt);
ReleaseLock( ProcQueueLk );

Pkt is protected by 
RecvQueueLk

Pkt is thread local

Pkt is protected by
ProcQueueLk



HAPPENS-BEFORE



Happens-Before Relation [Lamport '78]
• A concurrent execution is a partial-order determined by communication 

events
• The program cannot “observe” the order of concurrent non-communicating 

events

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++?



Happens-Before Relation [Lamport '78]
• A concurrent execution is a partial-order determined by communication 

events
• The program cannot “observe” the order of concurrent non-communicating 

events

• Both executions form the same happens-before relation

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++



Constructing the Happens-Before Relation

• Program order
• Total order of thread 

instructions

• Synchronization order
• Total order of accesses to the 

same synchronization

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock



Happens-Before Relation And Data Races
• If all conflicting accesses are 

ordered by happens-before
• à data-race-free execution
• à All linearizations of partial-order 

are valid program executions

• If there exists conflicting accesses 
not ordered

• à a data race

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock



Happens-Before and Data-Races
• Not all unordered conflicting accesses are data races

• There is no data race on X
• But, there is a data race on Y
• Remember:
• Exists unordered conflicting access à Exists data race

X = 1;
Y = 1;

if( Y == 1 )
X = 2; 

Init: X = Y = 0;



IMPLEMENTING HAPPENS-
BEFORE ANALYSES



Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...



1

2

3

4

5 5

1

2

3

4

5

4

3

2

1

6 6 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 7 7

vol = 1

tmp = vol

acq(m)

Precise 
Happens-
Before 



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)



1 0 0

2 0 0

2 0 0

2 0 0

2 0 0 1 3 0

0 1 0

0 1 0

1 1 0

1 2 0

1 1 1

0 0 1

0 0 1

0 0 1

0 0 1

2 2 0 1 3 0 1 1 2

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

2 2 1 1 3 0 1 1 2

vol = 1

tmp = vol

acq(m)



Exercise on vector clocks and partial 
ordering
� VC = [t1, t2,… tN]

� What is VCa ⊑ VCb?

� What is VCa ⊔ VCb?

� What are sufficient and necessary conditions 
for there to be a data race between two 
accesses having vector clocks VCa and VCb?



4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A     B A     B A     B A     B A     B

A’s local time B’s local time



4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A     B A     B A     B A     B A     B

B-steps with B-time ≤ 1 
happen before
A’s next step



x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx    VCA ?

Read-Write Check:  Rx    VCA ?

4 13 0

4 10 1

?  Yes

?  Yes

O(n) time



x = 0

4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1



x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1



x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1



x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1



x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx    VCA ? 

5 1 ?  No4 8

O(n) time



VectorClocks for Data-Race Detection
� Sound

– Warning  è data-race exists
� Complete

– No warnings  è data-race-free execution

� Performance
– slowdowns > 50x
– memory overhead

78



FASTTRACK



Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...RaceTrack [YRC 05]
MultiRace [PS 03]

Hybrid Race Detector [OC 03]
...

FastTrack
[Flanagan-Freund 09]



Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...RaceTrack [YRC 05]
MultiRace [PS 03]

Hybrid Race Detector [OC 03]
...

FastTrack
[Flanagan-Freund 09]

• Design Criteria:
- sound & complete
(find at least 1st data race on each var)

- efficient
• Insight: 

• HB relation is a partial order
• But all accesses to a var are 
almost always totally ordered



Key observations
� Write-write and write-read races: Assuming 

no races have been detected on so far, all 
previous writes are ordered by HB; the only 
thing you need to track is the clock/identity 
(c@t, epoch).

� Read-write: Reads are typically unordered only 
when data is read-shared. Use an adaptive 
representation for tracking read history, 
optimizing for the common case, and only using 
full vector clocks when necessary.  



x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx    VCA ?

Read-Write Check:  Rx    VCA ?

4 13 0

4 10 1

?  Yes

?  Yes

O(n) time



Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

Write-Write and Write-Read Data Races

?

?
?

O(n)



Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

?
?

O(n)



Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

O(1)



x = 0

4 1

4 0

2 8

0 8

2 1 1@B

VCA VCB Lm Wx

0 0 4@AWrite-Write Check: Wx    VCA ?

4 1 ?    Yes1@B

(1 ≤ 1?)

O(1) time

Last Write
"Epoch"



x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B



x = 0

rel(m)

acq(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B
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Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Data Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...



Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Data Races -- Unordered Reads

?

fork

? ?

x = 0
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O(n)



Slowdown (x Base Time)
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� FastTrack allocated ~200x fewer VCs

(Note: VCs for dead objects are garbage collected) 

� Improvements
– accordion clocks [CB 01]
– analysis granularity [PS 03, YRC 05]

Checker Memory 
Overhead

Basic VC,
DJIT+ 7.9x

FastTrack 2.8x
Empty 2.0x

Memory Usage



Fuzzing can also find data races
� Idea: Catch races “red handed”. Loosely,

– Pause thread execution when writing to X
– If another thread reaches a statement that 

reads or writes X then we have observed 
concurrent conflicting accesses! 

� Analysis does not care about locks or other 
synchronization primitives. 

– Consistent locking will make the above 
condition impossible to trigger.



Race Fuzzer
� Run-time Overhead

– No overhead of tracking synchronization, 
locks, or vector clocks (hey, that rhymes!)

– But pausing threads forever can lead to 
deadlocks

– Pausing threads for a short while (e.g.
sleep(1000)) adds overhead for every write 
access, though this approach is very effective.

� Solution idea:
– Instead of “pausing” thread, just deprioritize 

it in the OS scheduler



Lecture Takeaways
� Data race: two accesses, one of which is a write, 

with no happens-before relation
� Data races are subtle

– Compiler optimizations, hardware reordering make 
racy program behavior hard to predict

– Better to synchronize consistently
� Lockset analysis: intuitive, fast

– But many false warnings
� Happens-before data race detection

– Sound; OK speed if carefully implemented
� Stress testing

– Sound and fast; Can catch data races red handed
– Needs assumptions to prune the space of possible 

races
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Bonus slides on the Java 
Memory Model (JMM)



Behaviors Allowed in JMM
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;



Behaviors Allowed in JMM
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;



Behaviors Allowed in JMM
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value



Behaviors Allowed in JMM
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Valid due to lack 
of happens-before

ordering



Behaviors Allowed in JMM
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Assertion 
failure!



Behaviors Allowed in JMM
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r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Assertion 
failure!



Behaviors Allowed in JMM

108

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Requires returning future value or 
reordering to trigger the assertion failure



Can this assert trigger in JVMs?
Do you think the JMM allows it?

109

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = y;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;



The JVM and the JMM

110

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = y;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

JMM disallows 
r2 == 1 because 

of causality
requirements

– Ševčík and Aspinall, ECOOP, 2008



The JVM and the JMM

111

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination



The JVM and the JMM
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;



The JVM and the JMM
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;



The JVM and the JMM
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r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a 
JVM, after 

redundant read 
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

Assertion 
failure 

possible!



Moral: Just say no to data races
Don’t try hacks based on the memory model
• Unless you are as good as Doug Lea

• Or you have formalized the memory model rules in a tool
• And even then, are the rules right?

Author of java.util.concurrent


