Carnegie
Mellon

University

Lecture 1: Introduction to
Program Analysis

17-355/17-665/17-819: Program Analysis
Claire Le Goues and Fraser Brown
Jan 17, 2023

* Course materials developed with Jonathan Aldrich and Rohan Padyhe % 33 D

Software and Societal
(c)2023 J. Aldrich, C. Le Goues, R. Padhye, Fraser Brown 1 Systems Department

https://creativecommons.org/licenses/by/4.0/

Introductions

— i

Prof. Claire Le Goues Prof. Fraser Brown TA Daniel Ramos

| [aysS3D

Learning objectives

« Provide a high level definition of program analysis and give examples
of why it is useful.

o Sketch the explanation for why all analyses must approximate.

o Understand the course mechanics, and be motivated to read the
syllabus.

o Describe the function of an AST and outline the principles behind AST
walkers and declarative languages for simple bug-finding analyses.

o Recognize the basic WHILE demonstration language and translate
between WHILE and While3Addr.

| [aysS3D

What is this course about?

« Program analysis is the systematic examination of a program to
determine its properties.

« From 30,000 feet, this requires:
- Precise program representations
- Tractable, systematic ways to reason over those representations.
« We will learn:
- How to unambiguously define the meaning of a program, and a
programming language.
- How to prove theorems about the behavior of particular programs.
- How to use, build, and extend tools that do the above, automatically.

4 [aysS3D

Why might you care?

Program analysis, and the skills that underlie it, have

implications for:

« Automatic bug finding

. Language design and implementation (compilers, VMs)

« Program transformation (refactoring, optimization, repair)
« Program synthesis

5 [aysS3D

You've seen it before!

E public void| foo() {

Eé int a = computeSomething();
x if (a == "5")

. doMoreStuff():

You've seen it before!

.S public int foo() {
. doStuff();

ﬂ doMoreStuff();
: return 4.

Lots of tools available

Lint

| lldepot/googled/java/com/google/devtools/staticanalysis/Test.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {

return getString() == "foo".toString();

}

public String getString() {
return new String("foo");

}

Cancel

ErrorProne

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());:
}

public String getString() {
return new String("foo");
}
}

package com.google.devtools.staticanalysis;

public class Test {

~ Lint
Java
1:02 AM, Aug 21

Missing a Javadoc comment.

Please fix Not useful
public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

StringEquality (see http://code.google.com/p/error-prone/wiki/StringEquality)

1:03 AM, Aug 21
Please fix
Suggested fix attached: show Not useful

public String getString() {
return new String(“"foo");

}

(6 @ github.com/marketplace?category=code-quality

Marketplace ~Search results

Types

Apps

Actions

Categories

APl management

Chat

Code quality

Code review
Continuous integration
Dependency management
Deployment

IDEs

Learning

Localization

Mobile

Monitoring

Project management
Publishing

Recently added
Security

Support

Testing

Utilities

Filters v

Verification

Verified

Unverified

Your items A

Purchases

Q

Pull requests Issues Marketplace Explore

Code quality

Automate your code review with style, quality, security, and test-coverage checks when you need them.

245 results filtered by Code quality x

CodeScene &

The analysis tool to identify and prioritize
technical debt and evaluate your
organizational efficiency

CodeFactor &
Automated code review for GitHub

DeepScan &
Advanced static analysis for automatically
finding runtime errors in JavaScript code

Datree &
Policy enforcement solution for confident
and compliant code

DeepSource &

Discover bug risks, anti-patterns and
security vulnerabilities before they end up
in production. For Python and Go

Codecov &
Group, merge and compare coverage
reports

Codacy &
Automated code reviews to help
developers ship better software, faster

Code Climate &
Automated code review for technical debt
and test coverage

Sider &

Automatically analyze pull request against
custom per-project rulesets and best
practices

codelingo
Your Code, Your Rules - Automate code
reviews with your own best practices

Also recommended for you

ib. ketplace?category

o

Next

laysS3D

TestQuality &
Modern, powerful, test plan management

Restyled.io &
Restyle Pull Requests as they're opened

LGTM &

Find and prevent zero-days and other
critical bugs, with customizable alerts and
automated code review

Lucidchart Connector &

Insert a public link to a Lucidchart diagram
so team members can quickly understand
an issue or pull request

Code Inspector &
Code Quality, Code Reviews and Technical
Debt evaluation made easy

codebeat &
Code review expert on demand.
Automated for mobile and web

Better Code Hub &
A Benchmarked Definition of Done for
Code Quality

Coveralls &

Ensure that new code is fully covered, and
see coverage trends emerge. Works with
any Cl service

Imgbot &
A GitHub app that optimizes your images

Check TODO
Checks for any added or modified TODO
items in a Pull Request

https://github.com/marketplace?category=code-quality

Advanced exampl

CodeGuru @ Amazon

es from industry

GitHub CoPilot

node
E—
from "fetch-h2"
—_— A Co— [C—
@ =0 WA S g0
- ¢ S AT o - -
<' P === D”'ﬁ’ ADDD% @ [‘IHH
- i ——r bk el ‘J—J ync function isPositive(t string): Promise<boolean
. . o const 5 it fetch(http://tex ntiment/
Amazon Write & Review Code Build & Test Deploy Run Improve e F
CodeGuru Built-in code reviews Detect and optimize Continuously detect anomalies Fix performance issues g
.) with actionable the expensive lines and most expensive lines of and reduce cost
Find Y‘l’.';"'e's“gfstgszens've recommendations of code code in production
|
’ CodeGuru Reviewer CodeGuru Profiler CodeGuru Profiler
M Aaatias
Architecture of SAGE
input0 coverage constraints
data
Bug Detected Triggers
check for code generate solve -
crashes coverage constraints constraints
(AppVerifier) (Nirvana) (TruScan)

(z3)

—_—

Sapienz Trigger Patch Fix Patch Validated
Auto Triage Generator Generator Revision
inputi '
v

< m?ﬁ‘e ' N l B v

Revert Revert)
. - inputN Full Diff Partial Diff Template Mutation

SAGE @ Microsoft

& N N -

SO

Common types of issues found using automated program analysis

Defects that result from inconsistently following simple design rules.
e Security: Buffer overruns, improperly validated input.

e Memory safety: Null dereference, uninitialized data.

e Resource leaks: Memory, OS resources.

e API Protocols: Device drivers; real time libraries; GUI frameworks.

e Exceptions: Arithmetic/library/user-defined

e Encapsulation: Accessing internal data, calling private functions.

o Data races: Two threads access the same data without synchronization

Key: check compliance to simple, mechanical design rules

. [aysS3D

IS THERE A BUG IN
THIS CODE?

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *

3. get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. «cli(); // disables interrupts

9. if ((bh = sh->buffer pool) == NULL)
10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

12

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *

3. get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. «cli(); // disables interrupts

9. 1if ((bh = sh->buffer pool) == NUL
10. return NULL;

11. sh->buffer pool
12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

-> b next;

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘000

13

Abstract Model

enable = err(double enable)

.

disable = err(double disable)

is_disabled

end path = err(exiting with inter disabled)

. [aysS3D

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *

3. get free buffer(struct stripe head * sh,

4. int b size) {

5 struct buffer head *bh;

6 unsigned long flags;

7. save flags(flags); Initial state: is_enabled
8 cli(); // disables interrupts

9 if ((bh = sh->buffer pool) == NULL)

10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

15

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *

3. get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save_flags (flags); Transition to: is_disabled
8. «cli(); // disables interrupts

9. 1if ((bh = sh->buffer pool) == LL)

10. return NULL;

11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

16

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *

3. get free buffer(struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags); Final state: is_disabled
8. cli(); // disables interrupts__ggie"""

9. if ((bh = sh->buff : NULL)

10. return NULL;
11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables interrupts
14. return bh;

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

17

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *
3. get free buffer(struct stripe head * sh,
4. int b size) {
struct buffer head *bh;
unsigned long flags;

cli(); // disables interrupts
if ((bh = sh->buffer pool) ==
10. return NULL;
11. sh->buffer pool = bh
12. bh->b size = b size;
13. restore flags(flads);
14. return bh;

5
6
7. save flags(flags);
8
9

// re-enables interrupts

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

18

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer head *

3. get free buffer(struct stripe head * sh,

4. int b size) {
5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. «cli(); // disables interrupts
9. 1if ((bh = sh->buffer pool) ==

Final state: is_enabled
10. return NULL;

11. sh->buffer pool = bh -> b
12. bh->b size = b size;
13. restore flags
14. return bh;

8gs); // re-enables interrupts

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

19

Behavior of interest...

. IS on uncommon execution paths.
- Hard to exercise when testing.

. Executing (or analyzing) all paths is infeasible

. Instead: (abstractly) check the entire possible
state space of the program.

[aysS3D

What is this course about?

« Program analysis is the systematic examination of a program to
determine its properties.

21 [aysS3D

What is this course about?

« Program analysis is the systematic examination of a program to
determine its properties.

« Principal techniques:

o Dynamic:
= Testing: Direct execution of code on test data in a controlled environment.
= Analysis: Tools extracting data from test runs.

o Static:
= Inspection: Human evaluation of code, design documents (specs and models),

modifications.

= Analysis: Tools reasoning about the program without executing it.

o ...and their combination.
. [aysS3D

The Bad News: Rice's Theorem

"Any nontrivial property about
the language recognized by a
Turing machine is undecidable.”

Henry Gordon Rice, 1953

Proof by contradiction (sketch)

Assume that you have a function that can determine if a program p has some nontrivial property (like
divides by zero):

/44 int silly(program p, input i) {

2. pP(1);

3/ return 5/0;

4. }

5. bool halts(program p, input 1) {

6. return divides by zero(silly(p,1i));
7 }

. [aysS3D

_m i

Error Reported True positive False positive
(correct analysis result)

No Error Reported False negative True negative
(correct analysis result)

Over-approximate analysis:
reports all potential defects
-> no false negatives
-> subject to false positives

Under-approximate analysis:
every reported defect is an actual defect
-> no false positives
-> subject to false negatives

25

Soundness and Completeness

« An analysis is “sound” if every claim it makes is true
« An analysis is “complete” if it makes every true claim

« Soundness/Completeness correspond to under/over-

approximation depending on context.
o E.g. compilers and verification tools treat “soundness” as over-approximation since

they make claims over all possible inputs
o E.g. code quality tools often treat “sound” analyses as under-approximation because

they make claims about existence of bugs

26

Complete Analysis

27

In Defense of Soundiness: A Manifesto

Ben Livshits, Manu Sridharan, Yannis Smaragdakis, Ondfej Lhotdk, J. Nelson Amaral, Bor-Yuh
Evan Chang, Sam Guyer, Uday Khedker, Anders Maller, and Dimitrios Vardoulakis

Microsoft Research, Samsung Research America, University of Athens, University of Waterloo, University of Alberta,
University of Colorado Boulder, Tufts University, IT Bombay, Aarhus University, Google

Static program analysis is a key component of many software development tools, including compilers, development
environments, and verification tools. Practical applications of static analysis have grown in recent years to include tools by
companies such as Coverity, Fortify, GrammaTech, |1BM, and others. Analyses are often expected 1o be soundin that ther result
models all possible executions of the program under analysis. Soundness implies that the analysis computes an over-
approximation in order 1o stay tractable; the analysis result will also model behaviors that do not actually occur in any program
execution. The predsion of an analysis is the degree to which it avod s such spurious results, Users expect analyses to be sound
as amatter of curse, and desire analyses to be as precise as possible, while being able to scale to large programs,

Soundness would seem essential for any kind of static program analysis. Soundness is also widely emphasized in the academic
Mterature. Yet, in practice, soundness is commonly eschewed: we are not aware of a single realistic whole-program' analysis tool
{e.g., tools widely used for bug detection, refactoring assistance, programming automation, etc.) that does not purposely make
umnsound choices. Similarly, virtually all published whole-program analyses are unsound and omit comservative handling of
common language features when applied to real programming language s

The typical reasons for such chokes are engineering compromises: implementers of such tools are well aware of how they wuld
handle complex language features soundly (e.g., by assuming that a complex language feature can exhibit any behavior |, but do
not do 0 because this would make the analysis unsarlable or impreci se to the point of being useless. Therefore, the dominant
practice is one of treating soundness as an engineer ing choke,

In all, we are faced with a paradox: on the one hand we have the ubiquity of unsoundness in any practical whole-program analysis
tool that has a claim to precision and scalability; on the other, we have a research community that, outside a small group of
experts, is oblivious to any unsoundness, let alone its preponderance in practice.

Our cbservation is that the paradox can be reconciled. The state of the art in realistic analyses exhibits consistent traits, while
also integrating a sharp discontinuity. On the one hand, typical realistic analysis implementations have a sound @ve: most
common language features are over-approximated, modeling all their possible behaviors, Every time there are multiple options
{e.g., tranches of a conditional statement, multiple data flows) the analysis models all of them. On the other hand, some specific
language features, well known to experts in the area, are best under-appravimated. Effectively, every analysis pretends that
perfectly possitie behaviors cannot happen. For instance, it is conventional for an other wise sound static analysis to treat highly-
dynamic language constructs, such as Java reflection or eval in JavaScript, under-appraximately. A practical analysis, therefore,
may pretend that eval does nothing, unless it can precisely resalve its string argument at compile time.,

We introduce the term soundy for such analyses. The concept of soundiness attempts to capture the balance, prevalent in
practice, of over-approximated handling of most language features, yet deliber ately under-approximated handling of a feature
subset well recognized by experts. Soundiness is in fact what s meant in many papers that ¢laim to describe asound analysis, A
soundy analysis akms to be as sound as possible without excessively compromising precision and for scalability.

Our message here is threefokd:

1. We bring forward the ublquity of, and engineering need for, unsoundness in the static program analysis practice. For static
analysis researchers, this may come as nosurprise. For the rest of the community, which expects to use analyses as a black
box, this unsoundness is less understood.

FWe draw 2 dstinction betwee n whole program analys es, wihich need 1o model shame d data, such as the heap, and modular anabses e g, e
systems. Althoughths space is acontnuum, he dstnction is typecaly well understood.

https://yanniss.github.io/Soundiness-CACM.pdf '

https://yanniss.github.io/Soundiness-CACM.pdf

Soundness and Completeness Tradeoffs

e Sound + Complete is impossible in general (Rice’s theorem)

e Most practical tools attempt to be either sound or complete for
some specific application, using approximation

e Multiple classes of sound/complete techniques may exist, with
trade-offs for accuracy and performance.

e Program analysis is a rich field because of the constant and
never-ending battle to balance these trade-offs with ever-
increasing software complexity

29

Course topics

e Program representation
e Abstract interpretation: Use abstraction to

reason about possible program behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Pointer analysis
o Control flow analysis
e Hoare-style verification: Make logical
arguments about program behavior.
o Axiomatic semantics

30

Model checking (briefly) : reason about all

possible program states.
o Take 15-414 if you want the full treatment!

SAT/SMT solvers
Symbolic execution: test all possible
executions paths simultaneously.
o Test generation
Grey-box analysis for fuzz testing
Program synthesis
Program repair
Real-world verification
We will basically not cover types.

[aysS3D

Fundamental concepts

e Abstraction

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

e The importance of semantics.
o We prove things about analyses with respect to the semantics of the underlying language.

o Program proofs as inductive invariants.

e Implementation
o You do not understand analysis until you have written several.

31 [aysS3D

QUMY
b.

[

—

"

When/what

e Lectures 2x week (T,Th, 11 AM ET - in WEH 2302).

o Active learning exercise(s) in every class, so a laptop or phone is useful (a comment on that...)

o Lecture notes for review --- get latest PDF from website

o Some slides, much board, sometimes all board but slides released post facto with exercise
answers. Check the website.

e Recitation 1x week (Fr, 10 AM ET - in BH A51).

o Lab-like, very helpful for homework.
o Beready to work, bring a laptop

e Lecture recordings?

o« Homework, two exams, project.

e There is an optional physical textbook. (“PPA")

o We have lots of lecture notes that we release on the website.

. [aysS3D

Communication

o Course website: https.//cmu-program-analysis.github.io

e We also use Canvas, Piazza, Gradescope (see website for links)

o Canvas: In-class exercises, some assignments, grades tally

o Gradescope: For written assignments

o Piazza: Please use public posts for any course related questions as much as possible, unless the
matter is sensitive. Feel free to respond to other posts and engage in discussion.

o We have office hours! Or, by appointment.
o Please use Piazza private messages for logistics or extensions questions; if

you must email, email us both

. [aysS3D

https://cmu-program-analysis.github.io/

“How do | get an A?”

e 10% in-class (lecture/recitation) participation and exercises
o Check the syllabus for what do if you have to miss class.

e 40% homework assignments
o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) to be released by Friday!

e 30% two exams
e 20% final project

o There will be some options here.
o No final exam; exam slot used for project presentations.

o We have late days and a late day policy; read the syllabus.
o thdr: 3 late days per HW, with 5 total late days before penalties kick in

35

Slight variations in expectations

o Ifyou're taking the undergraduate version of the course (17-355)
o Recitation attendance is expected and part of participation grade.

o If you're taking the graduate version of the course (17-665/819)

o Recitation attendance is encouraged.

o Higher bar for final course project.
= Master’s students: Expected to engage with large codebases (either frameworks or targets)
= PhD students: Expected to engage with research questions

e You are welcome to move up your expectations to be assessed differently
(email us)

. [aysS3D

CMU can be a pretty intense place.

e A 12-credit course is expected to take ~12 hours a week.

o« We aim to provide a rigorous but tractable course.
o More frequent assignments rather than big monoliths
o Two exams to cover/integrate core material, but lower stakes per exam.

e Please let us know how much time the class is actually taking.
o We have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty.

e Ifit's 2 am and you're panicking...put the homework down, send us an
email, and go to bed.

. [aysS3D

Let's get started

What is this course about?

« Program analysis is the systematic examination of a program to
determine its properties.

« From 30,000 feet, this requires:
- Precise program representations
- Tractable, systematic ways to reason over those representations.
« We will learn:
- How to unambiguously define the meaning of a program, and a
programming language.
- How to prove theorems about the behavior of particular programs.
- How to use, build, and extend tools that do the above, automatically.

. [aysS3D

Our first representation: Abstract Syntax

e Atree representation of source code based on the language grammar.
e Concrete syntax: The rules by which programs can be expressed as

strings of characters
o E.g."if (x*(a+ b)) {foo(a); }"
o Use finite automata and context-free grammars, automatic lexer/parser generators

o Abstract syntax: a subset of the parse tree of the program.

o Only care about statements, expressions and their relationship with constituent operands.
o Don't care about parenthesis, semicolons, keywords, etc.

e (The intuition is fine for this course; take compilers if you want to learn how
to parse for real.)

. [aysS3D

The WHILE language - Example program

% X
2=
v >

fy 0 then
while y > 1 do
Zz = 2z * y;
y :=y —1
else
skip

41

Sample program computes z = x/ using
y as a temp variable.
WHILE uses assignment statements, if-
then-else, while loops.
All vars are integers.
Expressions only arithmetic (for vars) or
relational (for conditions).
No I/0 statements. Inputs and outputs
are implicit.

o Later on, we may add extensions with

explicit "read x” and "print x .

[aysS3D

WHILE abstract syntax

e (ategories:

o S e Stmt statements
o a € Aexp arithmetic expressions
o Xy €Var variables
o n € Num number literals
o P € BExp boolean predicates
o | €labels statement addresses (line numbers)
e Syntax:
o S§ ::=x:=a | skip | S; ; S,
| if P then S; else S, | while P do S
o a ::=x| n| a, op, a,
o op, ::=+ | - | *| /| .
o P ::= true | false | not P | P, op, P, | al op, a2
o op, ::= and | or | ..
o op, ti=< | =|=]>]|z|

42

Concrete syntax is similar,
but adds things like

(parentheses) for

disambiguation during
parsing

Together: Building an AST

Y = X;
2=
1f vy > 0 then
while y > 1 do
Zz = 2z * y;
y : =y — 1
else
skip

Ex 1: Building an AST for C code

void copy bytes(char dest[], char source[], int n) {
for (int 1 = 0; 1 < n; ++1)
dest[1] = source[1];

Our first static analysis: AST walking

o One way to find "bugs” is to walk the AST, looking for particular patterns.

o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.

. [aysS3D

Example: shifting by more than 31 bits.

« Assume we want to find code patterns of the following form:
X << =3

z >> 35

. For 32-bit integer vars, these operations may signal unintended
typos, since it doesn't makes sense to shift by a number outside
the range (0, 32).

) [aysS3D

Example: shifting by more than 31 bits.

For each instruction I in the program
if I is a shift instruction
if (type of I's left operand is int
&& I's right operand is a constant
&& value of constant < 0 or > 31)
warn(“Shifting by less than 0 or more
than 31 is meaningless”)

47

Our first static analysis: AST walking

o One way to find “"bugs” is to walk the AST, looking for particular patterns.

o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.

e Various frameworks, some more language-specific than others.

o Tradeoffs between language agnosticism and semantic information available.

o Consider “grep”: very language agnostic, not very smart.

o Python’s "astor” package designed for Python ASTs. Clean API; highly specific.
e Classic architecture based on Visitor pattern:

o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node
o To do something interesting for AST element of type X, override visitX

« More recent approaches based on semantic search, declarative logic
programming, or query languages.

) [aysS3D

