
Lecture 1: Introduction to
Program Analysis
17-355/17-665/17-819: Program Analysis

Claire Le Goues and Fraser Brown
Jan 17, 2023

1

* Course materials developed with Jonathan Aldrich and Rohan Padyhe

https://creativecommons.org/licenses/by/4.0/
(c) 2023 J. Aldrich, C. Le Goues, R. Padhye, Fraser Brown

https://creativecommons.org/licenses/by/4.0/

Introductions

2

Prof. Claire Le Goues Prof. Fraser Brown TA Daniel Ramos

Learning objectives

● Provide a high level definition of program analysis and give examples
of why it is useful.

● Sketch the explanation for why all analyses must approximate.
● Understand the course mechanics, and be motivated to read the

syllabus.
● Describe the function of an AST and outline the principles behind AST

walkers and declarative languages for simple bug-finding analyses.
● Recognize the basic WHILE demonstration language and translate

between WHILE and While3Addr.

3

What is this course about?

● Program analysis is the systematic examination of a program to
determine its properties.

● From 30,000 feet, this requires:
○ Precise program representations
○ Tractable, systematic ways to reason over those representations.

● We will learn:
○ How to unambiguously define the meaning of a program, and a

programming language.
○ How to prove theorems about the behavior of particular programs.
○ How to use, build, and extend tools that do the above, automatically.

4

Why might you care?

Program analysis, and the skills that underlie it, have
implications for:
● Automatic bug finding
● Language design and implementation (compilers, VMs)
● Program transformation (refactoring, optimization, repair)
● Program synthesis

5

You’ve seen it before!

6

You’ve seen it before!

7

Lots of tools available

8

https://github.com/marketplace?category=code-quality

Lint

ErrorProne

https://github.com/marketplace?category=code-quality

Advanced examples from industry

9

Sapienz and SapFix @ Facebook

CodeGuru @ Amazon

SAGE @ Microsoft

GitHub CoPilot

Common types of issues found using automated program analysis

Defects that result from inconsistently following simple design rules.
● Security: Buffer overruns, improperly validated input.
● Memory safety: Null dereference, uninitialized data.
● Resource leaks: Memory, OS resources.
● API Protocols: Device drivers; real time libraries; GUI frameworks.
● Exceptions: Arithmetic/library/user-defined
● Encapsulation: Accessing internal data, calling private functions.
● Data races: Two threads access the same data without synchronization

10

Key: check compliance to simple, mechanical design rules

IS THERE A BUG IN
THIS CODE?

11

12

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

Part of the spec:
Interrupts should not be disabled

upon function return

13

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘000

ERROR: function returns with
interrupts disabled!

is_enabled

is_disabled

disable enable

enable è err(double enable)

end path è err(exiting with inter disabled)

disable è err(double disable)

Abstract Model

14

15

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

Initial state: is_enabled

16

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

Transition to: is_disabled

17

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

Final state: is_disabled

18

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

Transition to: is_enabled

19

1. /* from Linux 2.3.99 drivers/block/raid5.c */
2. static struct buffer_head *
3. get_free_buffer(struct stripe_head * sh,
4. int b_size) {
5. struct buffer_head *bh;
6. unsigned long flags;
7. save_flags(flags);
8. cli(); // disables interrupts
9. if ((bh = sh->buffer_pool) == NULL)
10. return NULL;
11. sh->buffer_pool = bh -> b_next;
12. bh->b_size = b_size;
13. restore_flags(flags); // re-enables interrupts
14. return bh;
15.}

Example from Engler et al., Checking system rules
Using System-Specific, Programmer-Written
Compiler Extensions, OSDI ‘00

Final state: is_enabled

Behavior of interest…

● Is on uncommon execution paths.
○ Hard to exercise when testing.

● Executing (or analyzing) all paths is infeasible
● Instead: (abstractly) check the entire possible

state space of the program.

20

What is this course about?

● Program analysis is the systematic examination of a program to
determine its properties.

● From 30,000 feet, this requires:
○ Precise program representations
○ Tractable, systematic ways to reason over those representations.

● We will learn:
○ How to unambiguously define the meaning of a program, and a

programming language.
○ How to prove theorems about the behavior of particular programs.
○ How to use, build, and extend tools that do the above, automatically.

21

What is this course about?

● Program analysis is the systematic examination of a program to
determine its properties.

● Principal techniques:
○ Dynamic:

■ Testing: Direct execution of code on test data in a controlled environment.
■ Analysis: Tools extracting data from test runs.

○ Static:
■ Inspection: Human evaluation of code, design documents (specs and models),

modifications.
■ Analysis: Tools reasoning about the program without executing it.

○ …and their combination.

22

The Bad News: Rice's Theorem

23

"Any nontrivial property about
the language recognized by a
Turing machine is undecidable.“

Henry Gordon Rice, 1953

Proof by contradiction (sketch)

Assume that you have a function that can determine if a program p has some nontrivial property (like
divides_by_zero):

1. int silly(program p, input i) {
2. p(i);
3. return 5/0;
4. }
5. bool halts(program p, input i) {
6. return divides_by_zero(`silly(p,i)`);
7. }

24

25

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Over-approximate analysis:
reports all potential defects
-> no false negatives
-> subject to false positives

Under-approximate analysis:
every reported defect is an actual defect
-> no false positives
-> subject to false negatives

Soundness and Completeness

● An analysis is “sound” if every claim it makes is true
● An analysis is “complete” if it makes every true claim

● Soundness/Completeness correspond to under/over-
approximation depending on context.

○ E.g. compilers and verification tools treat “soundness” as over-approximation since
they make claims over all possible inputs

○ E.g. code quality tools often treat “sound” analyses as under-approximation because
they make claims about existence of bugs

26

Complete Analysis

True Properties
(e.g. defects,
optimization
opportunities)

Sound
Analysis

Unsound
and

Incomplete
Analysis

27

28
https://yanniss.github.io/Soundiness-CACM.pdf

https://yanniss.github.io/Soundiness-CACM.pdf

Soundness and Completeness Tradeoffs

● Sound + Complete is impossible in general (Rice’s theorem)
● Most practical tools attempt to be either sound or complete for

some specific application, using approximation
● Multiple classes of sound/complete techniques may exist, with

trade-offs for accuracy and performance.
● Program analysis is a rich field because of the constant and

never-ending battle to balance these trade-offs with ever-
increasing software complexity

29

True Properties
(e.g. defects)

Sound
Analysis

1

Sound
Analysis

2

Sound
Analysis

3

Course topics

● Program representation
● Abstract interpretation: Use abstraction to

reason about possible program behavior.
○ Operational semantics.
○ Dataflow Analysis
○ Termination, complexity
○ Widening, collecting
○ Interprocedural analysis
○ Pointer analysis
○ Control flow analysis

● Hoare-style verification: Make logical
arguments about program behavior.

○ Axiomatic semantics

● Model checking (briefly) : reason about all
possible program states.

○ Take 15-414 if you want the full treatment!
● SAT/SMT solvers
● Symbolic execution: test all possible

executions paths simultaneously.
○ Test generation

● Grey-box analysis for fuzz testing
● Program synthesis
● Program repair
● Real-world verification
● We will basically not cover types.

30

Fundamental concepts

● Abstraction
○ Elide details of a specific implementation.
○ Capture semantically relevant details; ignore the rest.

● The importance of semantics.
○ We prove things about analyses with respect to the semantics of the underlying language.

● Program proofs as inductive invariants.
● Implementation

○ You do not understand analysis until you have written several.

31

Course
mechanics

32

When/what

● Lectures 2x week (T,Th, 11 AM ET – in WEH 2302).
○ Active learning exercise(s) in every class, so a laptop or phone is useful (a comment on that…)
○ Lecture notes for review --- get latest PDF from website
○ Some slides, much board, sometimes all board but slides released post facto with exercise

answers. Check the website.
● Recitation 1x week (Fr, 10 AM ET – in BH A51).

○ Lab-like, very helpful for homework.
○ Be ready to work, bring a laptop

● Lecture recordings?
● Homework, two exams, project.
● There is an optional physical textbook. (“PPA”)
● We have lots of lecture notes that we release on the website.

33

Communication

● Course website: https://cmu-program-analysis.github.io
● We also use Canvas, Piazza, Gradescope (see website for links)

○ Canvas: In-class exercises, some assignments, grades tally
○ Gradescope: For written assignments
○ Piazza: Please use public posts for any course related questions as much as possible, unless the

matter is sensitive. Feel free to respond to other posts and engage in discussion.

● We have office hours! Or, by appointment.
● Please use Piazza private messages for logistics or extensions questions; if

you must email, email us both.

34

https://cmu-program-analysis.github.io/

“How do I get an A?”

● 10% in-class (lecture/recitation) participation and exercises
○ Check the syllabus for what do if you have to miss class.

● 40% homework assignments
○ Both written (proof-y) and coding (implementation-y).
○ First one (mostly coding) to be released by Friday!

● 30% two exams
● 20% final project

○ There will be some options here.

● No final exam; exam slot used for project presentations.
● We have late days and a late day policy; read the syllabus.

○ tl;dr: 3 late days per HW, with 5 total late days before penalties kick in

35

Slight variations in expectations

● If you’re taking the undergraduate version of the course (17-355)
○ Recitation attendance is expected and part of participation grade.

● If you’re taking the graduate version of the course (17-665/819)
○ Recitation attendance is encouraged.
○ Higher bar for final course project.

■ Master’s students: Expected to engage with large codebases (either frameworks or targets)
■ PhD students: Expected to engage with research questions

● You are welcome to move up your expectations to be assessed differently
(email us)

36

CMU can be a pretty intense place.

● A 12-credit course is expected to take ~12 hours a week.
● We aim to provide a rigorous but tractable course.

○ More frequent assignments rather than big monoliths
○ Two exams to cover/integrate core material, but lower stakes per exam.

● Please let us know how much time the class is actually taking.
○ We have no way of knowing if you have three midterms in one week.
○ Sometimes, we misjudge assignment difficulty.

● If it’s 2 am and you’re panicking…put the homework down, send us an
email, and go to bed.

37

Let’s get started

38

What is this course about?

● Program analysis is the systematic examination of a program to
determine its properties.

● From 30,000 feet, this requires:
○ Precise program representations
○ Tractable, systematic ways to reason over those representations.

● We will learn:
○ How to unambiguously define the meaning of a program, and a

programming language.
○ How to prove theorems about the behavior of particular programs.
○ How to use, build, and extend tools that do the above, automatically.

39

Our first representation: Abstract Syntax

● A tree representation of source code based on the language grammar.
● Concrete syntax: The rules by which programs can be expressed as

strings of characters
○ E.g. “if (x * (a + b)) { foo(a); }”
○ Use finite automata and context-free grammars, automatic lexer/parser generators

● Abstract syntax: a subset of the parse tree of the program.
○ Only care about statements, expressions and their relationship with constituent operands.
○ Don’t care about parenthesis, semicolons, keywords, etc.

● (The intuition is fine for this course; take compilers if you want to learn how
to parse for real.)

40

The WHILE language – Example program

y := x;
z := 1;
if y > 0 then
while y > 1 do
z := z * y;
y := y – 1

else
skip

● Sample program computes z = x! using
y as a temp variable.

● WHILE uses assignment statements, if-
then-else, while loops.

● All vars are integers.
● Expressions only arithmetic (for vars) or

relational (for conditions).
● No I/O statements. Inputs and outputs

are implicit.
○ Later on, we may add extensions with

explicit `read x` and `print x`.

41

WHILE abstract syntax

● Categories:
○ S ∈ Stmt statements
○ a ∈ Aexp arithmetic expressions
○ x, y ∈ Var variables
○ n ∈ Num number literals
○ P ∈ BExp boolean predicates
○ l ∈ labels statement addresses (line numbers)

● Syntax:
○ S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
○ a ::= x | n | a1 opa a2
○ opa ::= + | - | * | / | …
○ P ::= true | false | not P | P1 opb P2 | a1 opr a2
○ opb ::= and | or | …
○ opr ::= < | ≤ | = | > | ≥ | ...

42

Concrete syntax is similar,
but adds things like
(parentheses) for
disambiguation during
parsing

Together: Building an AST

43

y := x;
z := 1;
if y > 0 then
while y > 1 do
z := z * y;
y := y – 1

else
skip

Ex 1: Building an AST for C code

void copy_bytes(char dest[], char source[], int n) {
for (int i = 0; i < n; ++i)

dest[i] = source[i];
}

44

Our first static analysis: AST walking

● One way to find “bugs” is to walk the AST, looking for particular patterns.
○ Traverse the AST, look for nodes of a particular type
○ Check the neighborhood of the node for the pattern in question.

45

Example: shifting by more than 31 bits.

● Assume we want to find code patterns of the following form:
x << -3
z >> 35

● For 32-bit integer vars, these operations may signal unintended
typos, since it doesn’t makes sense to shift by a number outside
the range (0, 32).

46

Example: shifting by more than 31 bits.

For each instruction I in the program
if I is a shift instruction

if (type of I’s left operand is int
&& I’s right operand is a constant
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)

47

Our first static analysis: AST walking

● One way to find “bugs” is to walk the AST, looking for particular patterns.
○ Traverse the AST, look for nodes of a particular type
○ Check the neighborhood of the node for the pattern in question.

● Various frameworks, some more language-specific than others.
○ Tradeoffs between language agnosticism and semantic information available.
○ Consider “grep”: very language agnostic, not very smart.
○ Python’s ”astor” package designed for Python ASTs. Clean API; highly specific.

● Classic architecture based on Visitor pattern:
○ class Visitor has a visitX method for each type of AST node X
○ Default Visitor code just descends the AST, visiting each node
○ To do something interesting for AST element of type X, override visitX

● More recent approaches based on semantic search, declarative logic
programming, or query languages.

48

