
17-355/17-665/17-819: Program Analysis
Spring 2022 Midterm Exam Study Guide

Rohan Padhye and Isabella Laybourn

Name:

Andrew ID:

Study Guide Instructions: This study guide is intended to help you prepare for the midterm. It
consists of several types of material:

1. Material providing content or context that will be on the test, such as the background on non-
deterministic language constructs (Question 1, Operational Semantics) and the background
on alias pairs analysis (Question 2). This material is provided so you can familiarize yourself
with it ahead of time, and not have to wade through background material and wrap your
head around it in a limited timespan.

2. Question templates that specify a type of question that may or may not be asked, but without
particulars. You can practice answering those kinds of questions or otherwise making sure
you understand how to answer such questions.

3. Concrete questions, which may or may not be on the exam, or may be similar to those that
will be on the exam.

We cannot promise to have full coverage of all material in the course so far, or all of the ques-
tions that may ultimately be on the exam. However, we have attempted to be thorough, and
have tried to give you a sample of the types of questions we will be asking about the material in
the course. We expact that if you carefully study this material and the lecture notes, you will be
well-prepared for the exam.

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 1 of 7

Question 1: Operational Semantics (0 points)
Note: the exam will contain questions based on this idea of nondeterministic language constructs, and
so we include this material in the guide so you can wrap your head around how to reason about them
ahead of time.

Recall from lecture and homework assignments, we previously proved WHILE to be deter-
ministic when execution terminates:

@S P Stmt . @E,E1, E2 P VarÑ Z . xE,Sy ó E1 ^ xE,Sy ó E2 ñ E1 “ E2

(a) First, consider an extension to WHILE called WHILErand, which adds a new boolean ex-
pression called randpq that can evaluate to either true or false at random each time it is
evaluated. We define the big-step semantics for this construct using two rules:

xE, randpqy ó true
big-rand-true

xE, randpqy ó false
big-rand-false

Your task is to prove that WHILErand is non-deterministic. To do this, you must show that:

DS P Stmt . DE,E1, E2 P VarÑ Z . xE,Sy ó E1 ^ xE,Sy ó E2 ^ E1 ‰ E2

In other words, you will construct a WHILErand program S and pick an initial environ-
ment E such that the evaluation of xE,Sywill result in at least two distinct final states.

i. Construct the WHILErand program S.

ii. Specify the environment E.

iii. Give an environment E1 such that xE,Sy ó E1.

iv. Give a distinct environment E2 such that xE,Sy ó E2, where E1 ‰ E2.

{ 0 Question 1 continues. . .

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 2 of 7

(b) Now, consider a different extension to WHILE called WHILE‖, which adds a new state-
ment type S1 ‖ S2. This construct is similar to sequencing (S1;S2), with the difference
that the order of evaluation is non-deterministic. We again define two rules for this con-
struct:

xE,S1y ó E
1 xE1, S2y ó E

2

xE,S1 ‖ S2y ó E2
big-par-1

xE,S2y ó E
1 xE1, S1y ó E

2

xE,S1 ‖ S2y ó E2
big-par-2

Your task is to prove that WHILE‖ is non-deterministic. To do this, you must again show
that:

DS P Stmt . DE,E1, E2 P VarÑ Z . xE,Sy ó E1 ^ xE,Sy ó E2 ^ E1 ‰ E2

i. Construct the WHILE‖ program S.

ii. Specify the environment E.

iii. Give an environment E1 such that xE,Sy ó E1.

iv. Give a distinct environment E2 such that xE,Sy ó E2, where E1 ‰ E2.

(c) Finally, consider a multi-threaded extension to WHILE3ADDR called WHILE3ADDRfork

which introduces two instructions “fork m” (where m is an integer) and “halt”. The
semantics of “n : forkm” are such that a new thread of execution is spawned starting at
instructionm, and the current thread continues execution from n`1. The halt instruction
stops the current thread. A WHILE3ADDRfork program executes by non-deterministically
choosing an active thread and evaluating the instruction corresponding to its program
counter. All threads share a common global state. A WHILE3ADDRfork program starts

{ 0 Question 1 continues. . .

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 3 of 7

with one thread executing at instruction 1, and ends when all threads have finished exe-
cution.

For example, consider the program:

1 : x :“ 1
2 : y :“ 2
3 : fork 6
4 : print x
5 : halt
6 : print y
7 : halt

When the first thread reaches instruction 3, it forks off a second thread. The first thread
continues to print 1 and then stops. The second thread prints 2 and then stops. Because of
the non-deterministic order of thread interleaving, this program may either print 1 then
2, or it may print 2 then 1.

To account for multi-threaded execution in the program semantics, we change the config-
uration c to be of the form c P E ˆ N˚, where N˚ refers to a sequence of zero or more
program counters for all the currently executing threads. The initial configuration is
c0 “ xE, p1qy, and the program halts when reaching a final configuration of the form
xE1, pqy (where pq is the empty sequence).

i. When executing the sample program above, with the empty initial environmentE0 “

tu, what is the configuration immediately after evallating instruction 3?

ii. Recall that an execution trace of program P is a sequence of configurations c0, c1, . . . ,
such that P $ ci ; ci`1. When starting with the empty environment E0 “ tu, how
many distinct traces can the execution of the above program have? For each trace,
list down the sequence of program counters being evaluated (e.g. “1, 2, 3, 4, ...”).

{ 0 Question 1 continues. . .

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 4 of 7

iii. Draw the control-flow graph (CFG) for the above program. Remember that a CFG
edge exists between nodes m and n iff the evaluation of m can be immediately fol-
lowed by the evaluation of n in any trace of program execution.

{ 0 Document continues. . .

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 5 of 7

Question 2: Analysis Specification (0 points)
Note: the exam will contain questions based on this idea of alias pairs analysis. As in these sample
questions, it will be a dataflow analysis instead of a flow-insensitive constraint solving problem like
Andersen’s analysis.

An alternative to points-to analysis is alias pairs analysis, which computes, at each program
point, a set of pairs of expressions that may alias one another. An expression is either a variable
such as x, or a single dereference of a pointer variable such as *x. We do not track aliased pairs
including more dereferences—that is, nothing like ***x. To illustrate, the pair (*x, y) means
that x may point to y, whereas the pair (*x, *y) means that x and y may point to the same
memory location.

For example, consider the following program:

1 : s :“ 2
2 : x :“ &y
3 : y :“ &z
4 : t :“ &s
5 : w :“ t

This analysis would compute the following pair sets immediately after each program location:

location alias pairs
1 H

2 { (*x, y) }
3 { (*x, y) (*y, z) }
4 { (*x, y) (*y, z) (*t, s) }
5 { (*x, y) (*y, z) (*t, s) (*w, s) (*w, *t) }

(a) Define a lattice L and analysis information σ for this analysis.

(b) What do top and bottom correspond to in this lattice? (the answer J is incorrect).

(c) Assume we have the alias information σ = FOO, and consider analyzing the statement
BAR.

i. Which alias pairs in the state should be killed by the statement?
ii. Which alias pairs should be generated by the statement?

(d) Consider the statement FOO. If the alias information before the statement is σ = EXAM-
PLE1, what is the alias information after the statement?

(e) Imagine you have only two variables x and y in your program. What is the maximum
number of alias pairs you can have in the worst case? Do not worry about type safety—
assume that all alias pairs that can be represented by the syntax are possible. What is the
total size of the lattice?

{ 0 Document continues. . .

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 6 of 7

Question 3: Soundness (0 points)
Imagine we want to extend X analysis to a language with Y. Consider the following incorrect
flow function:

fFOOvCODEwpσq “ σr...update...s

This function is incorrect because it does X; to see this, consider code that does Y.

(a) Prove that this flow function is not locally sound.

(b) Specify a correct flow function.

(c) Prove that your new flow function is monotonic.

(d) At a high level, how must we change either the worklist algorithm or the control flow
graph to implement a backwards analysis, like in live variables analysis?

{ 0 Document continues. . .

17-355/17-665/17-819: Spring 2022, Midterm Exam Study Guide Page 7 of 7

Question 4: Interprocedural Analysis (0 points)
Imagine you are would like to implement an interprocedural X analysis. Consider the follow-
ing simple test code:

...example omitted...

(a) Would porting an intraprocedural analysis and applying it to the interprocedural control
flow graph produce satisfactory analysis output on this example? Why or why not?

(b) Provide an example program that demonstrates a case where function inlining is a bad
solution to the interprocedural control flow problem, and explain why it shows that.

(c) What is one reason that dynamic dispatch poses a challenge to interprocedural dataflow
analysis?

(d) Create a GETCTX function for the k-limited value-based context strategy.

{ 0 End of exam.

