
Homework 7: Symbolic and Concolic Execution

17-355/17-665/17-819: Program Analysis
Rohan Padhye

Due: Tuesday, April 5 11:59 pm EST

100 points total

Assignment Objectives:
• Demonstrate understanding of specifications for verifying programs.
• Reason about satisfiability and EUF theory and implement a solution in SMT-LIB format.
• Understand Concolic Execution and implement constraint-collecting logic on behalf of a con-

colic execution engine

Setup. Clone the starter repository here: https://classroom.github.com/a/hJ_Zq_kL

Handin Instructions. Please submit your assignment via Gradescope by pointing it to your
GitHub repository by the due date. You should replace written-answers.pdf with your writ-
ten answers to question 1 and update signed.py, f1.py, f2.py, and sum.py to complete ques-
tion 2.

Note: We will not look at your homework repository directly, but will only see what you have submitted
to Gradescope! Make sure that you (re)submit after you have completed all parts; Gradescope does
not automatically pull new commits from GitHub.

Question 1, SMT with EUF, (25 points).
a) (10 points) Show, using the congruence closure, whether the following Equality Logic with Un-
interpreted Functions (EUF) formula is satisfiable. Show each step merging equivalent terms.

f(g(0)) = g(f(0)) ∧ f(g(f(y))) = 0 ∧ f(y) = 0 ∧ g(f(0)) 6= 0

b) (15 points) Give the SMT-LIB formula (i.e., a valid Z3 program) to prove your answer to (a) is
correct. Put your code in the answer, and show the output of Z3.

Question 2, Concolic Execution, (75 points).
For this task, you will concolically execute the following programs provided in the repository

• signed.py (0 points)

• f1.py (25 points)

• f2.py (25 points)

• sum.py (25 points)

1

https://classroom.github.com/a/hJ_Zq_kL


The starter repository already provides a full concolic execution driver in concolic.py,
which executes a subject program, gets back constraints, invokes a SAT/SMT solver, figures out
the next path to execute, and keeps doing this until all feasible paths are exhausted. However, the
repository does not have an instrumentation engine that collects constraints for subject programs.

Your task will be to simulate the instrumentation engine by hard-coding logic within the sub-
ject programs to collect path constraints on behalf of the concolic execution engine. Once you add
the proper constraint-collecting logic, the engine will be able to successfully execute all paths and
report bugs if any are found.

To complete and submit this task, please refer to the Concolic Execution section of the README
in the starter repository for detailed instructions on how to setup and use the provided code, how
to modify the appropriate files with your implementation, and how to test and prepare your im-
plementation for submission.

2


