
Lecture 25: Review of
Program Analysis

17-355/17-665/17-819: Program Analysis
Rohan Padhye
April 28, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

1(c) 2022 J. Aldrich, C. Le Goues, R. Padhye
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

What is this course about?
• Program analysis is the systematic examination of a program to

determine its properties.
• From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn: What we learned:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

2(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• Principal techniques:
o Dynamic:

§ Testing: Direct execution of code on test data in a controlled environment.
§ Analysis: Tools extracting data from test runs.

o Static:
§ Inspection: Human evaluation of code, design documents (specs and models),

modifications.
§ Analysis: Tools reasoning about the program without executing it.

o …and their combination.

3(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

4(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Soundness and Completeness
• An analysis is “sound” if every claim it makes is true
• An analysis is “complete” if it makes every true claim

• Soundness/Completeness correspond to under/over-
approximation depending on context.
o E.g. compilers and verification tools treat “soundness” as over-

approximation since they make claims over all possible inputs
o E.g. code quality tools often treat “sound” analyses as under-

approximation because they make claims about existence of bugs

5(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Complete Analysis

True Properties
(e.g. defects,
optimization
opportunities)

Sound
Analysis

Unsound
and

Incomplete
Analysis

6(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Soundness and Completeness Tradeoffs
• Sound + Complete is impossible in general (Rice’s theorem)

• Most practical tools attempt to be either sound or complete
for some specific application, using approximation

• Multiple classes of sound/complete techniques may exist,
with trade-offs for accuracy and performance.

• Program analysis is a rich field because of the constant and
never-ending battle to balance these trade-offs with ever-
increasing software complexity

7(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

True Properties
(e.g. defects)

Sound
Analysis

1

Sound
Analysis

2

Sound
Analysis

3

Fundamental concepts
• Abstraction

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the

underlying language.

• Program proofs as inductive invariants.
• Implementation

o You do not understand analysis until you have written several.

8(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

What you were supposed to get
• Beautiful and elegant theory

o Mostly discrete mathematics, symbolic reasoning, inductive proofs
o This is traditionally a “white-board” course [using slides while we’re on Zoom]

• Build awesome tools
o Engineering of program analyses, compilers, and bug finding tools make great use of

many fundamental ideas from computer science and software engineering
• New way to think about programs

o Representations, control/data-flow, input state space
• Appreciate the limits and achievements in the space

o What tools are impossible to build?
o What tools are impressive that they exist at all?
o When is it appropriate to use a particular analysis tool versus another?
o How to interpret the results of a program analysis tool?

9(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

The WHILE language – Example program
y := x;
z := 1;
if y > 0 then

while y > 1 do
z := z * y;
y := y – 1

else
skip

• Sample program computes z = x!
using y as a temp variable.

• WHILE uses assignment statements,
if-then-else, while loops.

• All vars are integers.
• Expressions only arithmetic (for

vars) or relational (for conditions).
• No I/O statements. Inputs and

outputs are implicit.
o Later on, we may use extensions with

explicit `read x` and `print x`.

10(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

WHILE abstract syntax
• Categories:

o S ∈ Stmt statements
o a ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n ∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::= and | or | …
o opr ::= < | ≤ | = | > | ≥ | ...

Concrete syntax is
similar, but adds things
like (parentheses) for
disambiguation during
parsing

11(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular

patterns.
o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.
o Basically, a glorified “grep” that knows about the syntax but not

semantics of a language.

12(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

CodeQL

13(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

• A language for
querying code.
Developed by GitHub.

• Supports many
common languages.

• Library of common
programming patterns
and optimizations.

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

Operational Semantics of WHILE
• The meaning of WHILE expressions depend on the values of variables

o What does 𝑥+5 mean? It depends on 𝑥.
o If 𝑥 = 8 at some point, we expect 𝑥+5 to mean 13

• The value of integer variables at a given moment is abstracted as a function:
𝐸 ∶ 𝑉𝑎𝑟 → 𝑍

• We will augment our notation of big-step evaluation to include state:

𝐸, 𝑎 ⇓ 𝑛
• So, if 𝑥 ↦ 8 ∈ 𝐸, then 𝐸, 𝑥 + 5 ⇓ 13

14(c) J. Aldrich, C. Le Goues, R. Padhye

Big-Step Semantics for WHILE expressions

• Similarly for other arithmetic and boolean expressions

15(c) J. Aldrich, C. Le Goues, R. Padhye

Big-Step Semantics for WHILE statements

16(c) J. Aldrich, C. Le Goues, R. Padhye

Small-Step Semantics for WHILE statements

17(c) J. Aldrich, C. Le Goues, R. Padhye

Small-Step Semantics for WHILE statements

18(c) J. Aldrich, C. Le Goues, R. Padhye

Proofs by Structural Induction

19(c) J. Aldrich, C. Le Goues, R. Padhye

Proofs by Structural Induction
• Prove that WHILE is deterministic. That is, if the program

terminates, it evaluates to a unique value.

20(c) J. Aldrich, C. Le Goues, R. Padhye

Rule for while is recursive;
doesn’t depend only on

subexpressions

• Can prove for expressions via induction over syntax, but not for
statements.

• But there’s still a way.

Structural Induction over Derivations

21

To prove:

(c) J. Aldrich, C. Le Goues, R. Padhye

Data-Flow Analysis
Computes universal properties about program state at specific
program points. (e.g. will x be zero at line 7?)

• About program state
o About data store (e.g. variables, heap memory)
o Not about control (e.g. termination, performance)

• At program points
o Statically identifiable (e.g. line 7, or when foo() calls bar())
o Not dynamically computed (E.g. when x is 12 or when foo() is invoked 12 times)

• Universal
o Reasons about all possible executions (always/never/maybe)
o Not about specific program paths (see: symbolic execution, testing)

22(c) J. Aldrich, C. Le Goues, R. Padhye

WHILE3ADDR:
An Intermediate Representation

23(c) J. Aldrich, C. Le Goues, R. Padhye

• Simpler, more uniform than WHILE syntax
• Categories:

o I ∈ Instruction instructions
o x, y ∈ Var variables
o n ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n
o opa ::= + | - | * | / | …
o opr ::= < | ≤ | = | > | ≥ | ...
o P ∈ Numà I

24(c) 2021 Le Goues, Aldrich, Padhye

Classic Data-Flow Analyses
• Zero Analysis
• Integer Sign Analysis
• Constant Propagation
• Reaching Definitions
• Live Variables Analysis

• Available Expressions
• Very Busy Expressions
• …

25(c) J. Aldrich, C. Le Goues, R. Padhye

Partial Order & Join on set 𝐿

26(c) J. Aldrich, C. Le Goues, R. Padhye

𝑙, ⊑ 𝑙- : 𝑙, is at least as precise as 𝑙-

𝑙, ⊔ 𝑙-: join or least-upper-bound… “most precise generalization”

𝐿 is a join-semilattice iff: 𝑙, ⊔ 𝑙- always exists and is unique ∀𝑙,, 𝑙- ∈ 𝐿

⊤ (“top”) is the maximal element

Fixed point of Flow Functions

27(c) J. Aldrich, C. Le Goues, R. Padhye

(𝜎!, 𝜎", 𝜎#, … , 𝜎$) →
%! (𝜎′!, 𝜎′", 𝜎′#, … , 𝜎′$)

𝜎′" = 𝑓& 𝑥 ≔ 10 (𝜎!)

𝜎′# = 𝑓& 𝑦 ≔ 0 (𝜎")

𝜎′' = 𝑓& 𝑥 ≔ 𝑦 (𝜎()

𝜎′! = 𝜎!

𝜎′) = 𝜎# ⊔ 𝜎*

𝜎′(= 𝑓& if 𝑥 = 10 goto 7 +(𝜎))

𝜎′, = 𝑓& if 𝑥 = 10 goto 7 -(𝜎))

…

(𝜎', 𝜎(, 𝜎), … , 𝜎*) = 𝑓+(𝜎', 𝜎(, 𝜎), … , 𝜎*)
Fixed point!

Correctness theorem:
If data-flow analysis is well designed*, then
any fixed point of the analysis is sound.

Kildall’s Algorithm

28(c) J. Aldrich, C. Le Goues, R. Padhye

Worklist Algorithm Terminates at Fixed Point

29(c) J. Aldrich, C. Le Goues, R. Padhye

Program Traces and DataFlow Soundness

30(c) J. Aldrich, C. Le Goues, R. Padhye

Fixed Point Theorem

31(c) J. Aldrich, C. Le Goues, R. Padhye

Least Fixed Point (LFP)

32(c) J. Aldrich, C. Le Goues, R. Padhye

Merge Over Paths (MOP)

33(c) J. Aldrich, C. Le Goues, R. Padhye

34(c) J. Aldrich, C. Le Goues, R. Padhye

Reaching Definitions

Live Variables

35(c) J. Aldrich, C. Le Goues, R. Padhye

Flow functions map backward! (out --> in)

36(c) J. Aldrich, C. Le Goues, R. Padhye

Constant Propagation

Extend WHILE3ADDR with functions

37(c) J. Aldrich, C. Le Goues, R. Padhye

Interprocedural CFG

38(c) J. Aldrich, C. Le Goues, R. Padhye

3:	return	𝑦

1:	fun 𝑑𝑜𝑢𝑏𝑙𝑒(𝑥)

2:	𝑦 ≔ 2 ∗ 𝑥

4:	fun 𝑚𝑎𝑖𝑛()

7:	z	:=	10	/	w

5:	𝑧 ≔ 5

local

6:	𝑤 ≔ 𝑑𝑜𝑢𝑏𝑙𝑒(𝑧)
returnw

call

8:	𝑧 ≔ 0

9:	𝑤 ≔ 𝑑𝑜𝑢𝑏𝑙𝑒(𝑧)
call

10:	…
localreturnw

𝑓! return 𝑦 "#$%"&! 𝜎 = 𝑣 ↦ 𝜎 𝑣 𝑣 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑠} ∪ {𝑥 ↦ 𝜎(𝑦)}

𝑓! 𝑥 ≔ 𝑔 𝑦 '()*' 𝜎 = 𝜎 \ ({𝑥} ∪ 𝐺𝑙𝑜𝑏𝑎𝑙𝑠)

𝑓! 𝑥 ≔ 𝑔 𝑦)*'' 𝜎 = 𝑣 ↦ 𝜎 𝑣 𝑣 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑠} ∪ {𝑓𝑜𝑟𝑚𝑎𝑙 𝑔 ↦ 𝜎 𝑦 }

Context-Sensitive Analysis Example

39(c) J. Aldrich, C. Le Goues, R. Padhye

Context 𝝈𝒊𝒏 𝝈𝒐𝒖𝒕

<main, T> T {w->Z, Z->Z}

<double, N> {x->N} {x->N, y->N}

<double, Z> {x->Z} {x->Z, y->Z}

Key Idea: Worklist of Contexts

40(c) J. Aldrich, C. Le Goues, R. Padhye

41(c) J. Aldrich, C. Le Goues, R. Padhye

Extending WHILE3ADDR with Pointers

42(c) J. Aldrich, C. Le Goues, R. Padhye

Andersen’s Analysis

43(c) J. Aldrich, C. Le Goues, R. Padhye

Steensgaard’s Analysis - Example

44(c) J. Aldrich, C. Le Goues, R. Padhye

Steensgaard’s Analysis

45(c) J. Aldrich, C. Le Goues, R. Padhye

Analyzing Functional Programming Languages

46(c) J. Aldrich, C. Le Goues, R. Padhye

Simple 0-CFA Example

47(c) J. Aldrich, C. Le Goues, R. Padhye

0-CFA with Constant Propagation

48(c) J. Aldrich, C. Le Goues, R. Padhye

m-CFA

49(c) J. Aldrich, C. Le Goues, R. Padhye

Hoare Triple
{ P } S { Q }

• P is the precondition
• Q is the postcondition
• S is any statement (in WHILE, at least for our class)

• Semantics: if P holds in some state E and if <S; E> ß E’ , then Q
holds in E’
o This is partial correctness: termination of S is not guaranteed
o Total correctness additionally implies termination, and is written [P] S [Q]

Semantics of Hoare Triples
• A partial correctness assertion ⊨ 𝑃 𝑆 𝑄 is defined formally to

mean:

• How would we define total correctness [𝑃] 𝑆 [𝑄]?

• This is a good formal definition—but it doesn’t help us prove many
assertions because we have to reason about all environments. How
can we do better?

Derivation Rules for Hoare Logic
• Judgment form ⊢ 𝑃 𝑆 𝑄 means “we can prove the Hoare triple 𝑃 𝑆 𝑄 “

Hoare Triples and Weakest Preconditions
• Theorem: {P} S {Q} holds if and only if P Þ wp(S,Q)

o In other words, a Hoare Triple is still valid if the precondition is stronger
than necessary, but not if it is too weak

o Can use this to prove {P} S {Q} by computing wp(S,Q) and checking
implication.

• Question: Could we state a similar theorem for a strongest
postcondition function?
o e.g. {P} S {Q} holds if and only if sp(S,P) Þ Q
o A: Yes, but it’s harder to compute (see text for why)

Proving loops correct
• First consider partial correctness

o The loop may not terminate, but if it does, the postcondition will hold
• {P} while B do S {Q}

o Find an invariant Inv such that:
§ P Þ Inv

• The invariant is initially true
§ { Inv && B } S {Inv}

• Each execution of the loop preserves the invariant
§ (Inv && ¬B) Þ Q

• The invariant and the loop exit condition imply the postcondition

What if we just went forwards?

55(c) J. Aldrich, C. Le Goues, R. Padhye

Proof Obligation:

Generate “fresh” math variables
for every mutable program
variable

Dealing with conditional paths

56(c) J. Aldrich, C. Le Goues, R. Padhye

Dynamic Symbolic Execution:

Static Symbolic Execution:

Symbolic Execution of Statements (DSE)

57(c) J. Aldrich, C. Le Goues, R. Padhye

Symbolic Execution with Branching (DSE)

58(c) J. Aldrich, C. Le Goues, R. Padhye

Symbolic Execution of Loops

59(c) J. Aldrich, C. Le Goues, R. Padhye

Bounded exploration (k-limited)

Concolic Execution

60(c) J. Aldrich, C. Le Goues, R. Padhye

1. Input: x=0, y=1
• Path: (2*y != x)
• Next: (2*y == x) :: SAT

2. Input: x=2, y=1
• Path: (2*y == x) && (x <= y+10)
• Next: (2*y == x) && (x > y+10) :: SAT

3. Input: x=22, y=11
• Path: (2*y == x) && (x > y+10)
• Bug found!!

Input
Pick

Input’Random
Mutation ProgramExecute

Save?
Execution feedback

No

Yes

Add
Input’

Initial
Input

Input
Input

Input

Seeds

Coverage
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
New branch
coverage?

61

<foo></foo> <woo>?</oo>

Coverage-Guided Fuzzing with AFL

Satisfiability (SAT) solving
• Let’s start by considering Boolean formulas: variables connected with Ù Ú ¬
• First step: convert to conjuctive normal form (CNF)

o A conjunction of disjunctions of (possibly negated) variables

• If formula is not in CNF, we transform it: use De Morgan’s laws, the double
negative law, and the distributive laws:

62(c) J. Aldrich, C. Le Goues, R. Padhye

The Full DPLL Algorithm

63(c) J. Aldrich, C. Le Goues, R. Padhye

Heuristic: Apply unit
propagation first because it
creates more units and pure
literals. Pure literal assignment
only removes entire clauses.

Try both assignments of the
chosen literal. If we assume Ú
is short-circuiting, then this
implements backtracking.

Satisfiability Modulo Theories
• Theory of uninterpreted functions

• Congruence closure:

64(c) J. Aldrich, C. Le Goues, R. Padhye

• Theory of arithmetic

Theories communicate
using equalities

Program Synthesis Overview
• A mathematical characterization of program synthesis: prove that

• In constructive logic, the witness to the proof of this statement is a
program P that satisfies property φ for all input values x

• What could the inferred program P be?
o Historically, a protocol, interpreter, classifier, compression algorithm,

scheduling policy, cache coherence policy, …

• How is property φ expressed?
o Historically, as a formula, a reference implementation, input/output pairs,

traces, demonstrations, a sketch, …

65(c) J. Aldrich, C. Le Goues, R. Padhye

Overview of CEGIS

Oracle-guided component-based synthesis
• Program input variables
• Input to each

component
• Output of each

component
• Output of the program

67(c) J. Aldrich, C. Le Goues, R. Padhye

Automatic Program Repair

68(c) J. Aldrich, C. Le Goues, R. Padhye

bug-fixing patch

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 69

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = α; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 11 110 0 1 fail

inhibit = 1, up_sep = 11, down_sep = 110
bias = α, PC = true

Line 4

inhibit = 1, up_sep = 11, down_sep = 110
bias = α, PC= α > 110

Line 7

inhibit = 1, up_sep = 11, down_sep = 110
bias = α, PC= α ≤ 110

Line 8

70

Dynamic analysis
• Observe program behavior during execution on one or more inputs.
• Examples:

o Code coverage (à Greybox fuzzing, fault localization)
o Performance Profiling

§ Code profiling, memory profiling, algorithmic profiling
o Invariant Generation
o Concolic Execution
o Data structure analysis
o Concurrency analysis: Race detection
o Concurrency analysis: Deadlock detection
o Taint Analysis (à Security & Privacy)
o … (many many more)

Infer Likely Invariants
Program: (input= N >0)
i := 0
while i != N:
i := i + 1

Loop Invariants to Evaluate

• i = 0

• i < 0

• i <= 0

• i > 0

• i >= 0

• N = 0

• N < 0

• N <= 0

• N >= 0

• N > 0

• i == N

• i < N

• i <= N

• i > N

• i >= N

Collecting execution info
• What to collect? Only what’s necessary
• Key idea (again): Abstraction
• Examples:

o Code coverage à Log branches
o Profiling à Log loops, function calls, allocations, frees, etc.
o Invariant generation à Log predicates over vars in scope
o Concolic execution à Track symbolic values; log branch constraints
o Race detection à Track locks, vector clocks; log accesses

Stack Machine Bytecode
Instruction (at <label>)
• Push <const>
• Load <var>
• Store <var>
• Dup
• Add
• Invoke <func> <nargs>
• Jump <label’>
• Jump-if-zero <label’>

Stack (before à after)
• … à … <const>
• … à … E(var)
• ... val à … // E[var ↦ val]
• … val à … val val
• … val1 val2 à … (val1+val2)
• … val1 val2 … valnargs à … result
• … à … // PC = label’
• … val à … // PC = val ? PC+1 : label’

Data Races
• A data race is a pair of conflicting accesses

that happen concurrently
X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Data Races Can Break
Sequentially Consistent Semantics

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X = 1;
M2: Y = 1;

M1: X = 1;
M2: Y = 1;

u == 1 è v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

Data Race

Lockset Algorithm Overview
• Checks a sufficient condition for data-race-freedom

• Consistent locking discipline
o Every data structure is protected by a single lock
o All accesses to the data structure made while holding the lock

• Example:
// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

RecvQueue is
consistently protected

by RecvQueueLk

ProcQueue is
consistently protected

by ProcQueueLk

Happens-Before Relation And Data Races
• If all conflicting accesses are

ordered by happens-before

• à data-race-free execution
• à All linearizations of

partial-order are valid
program executions

• If there exists conflicting
accesses not ordered

• à a data race

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 13 0

4 10 1

? Yes

? Yes

O(n) time

Vector
Clocks

Static vs Dynamic Analysis
• Over-approximation vs Under-approximation
• When is one better than other? Tradeoffs!

o Soundness/Completeness
§ Static analysis often “sound” for over-approximate reasoning (e.g. verification)
§ Dynamic Analysis can be ”sound” for under-approximate reasoning (e.g. hot spots or bugs).
§ Neither technique is complete in general.

o Scalability
§ Static analysis often scales super-linearly with program size
§ Dynamic analysis tries to scale linearly with execution length

o Feasibility
§ Static analysis may be impossible with incomplete information (e.g. dynamically loaded code,

dependency injection, multi-language code, hardware interaction)
§ Dynamic analysis is only useful when appropriate program inputs are available

Course Evaluations – cmu.smartevals.com

81(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

17-355 (Undergrad) 17-665 (Masters) 17-819 (PhD)

Claim participation points on Canvas after filling out eval: ”Lecture 25 Quiz”

https://canvas.cmu.edu/courses/27636/quizzes/82271

Next Steps – Course Project
• Checkpoint due tonight (April 28)
• Recitation and OH reserved for project discussions
• Project Presentations (May 9)

o In-person 1-4pm at GHC 4307
o Bring your laptops and adapters, if any
o 6 min talks (firm time limit) + ~2min Q&A
o Email me in advance if you need to Zoom in (talk must be recorded)

• Project Report due May 9 at midnight

82(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

