Lecture 25: Review of
Program Analysis

17-355/17-665/17-819: Program Analysis
Rohan Padhye
April 28, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

https://creativecommons.org/licenses/by/4.0/

What is this course about?

* Program analysis is the systematic examination of a program to
determine its properties.

« From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

+ We willHlearn: What we learned:

o How to unambiguously define the meaning of a program, and a
programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to
determine its properties.

 Principal techniques:
o Dynamic:

= Analysis: Tools extracting data from test runs.
o Static:

= Analysis: Tools reasoning about the program without executing it.
o ...and their combination.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Soundness and Completeness

« An analysis is “sound” if every claim it makes is true
« An analysis is “complete” if it makes every true claim

« Soundness/Completeness correspond to under/over-
approximation depending on context.

o E.g. compilers and verification tools treat “soundness” as over-
approximation since they make claims over all possible inputs

o E.g.code quality tools often treat “sound” analyses as under-
approximation because they make claims about existence of bugs

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Complete Analysis

RESEARCH

institute for Carnegie Mellon University
I S SOFTWARE

School of Computer Science

Soundness and Completeness Tradeoffs

« Sound + Complete is impossible in general (Rice's theorem)

« Most practical tools attempt to be either sound or complete
for some specific application, using approximation

« Multiple classes of sound/complete techniques may exist,
with trade-offs for accuracy and performance.

« Program analysis is a rich field because of the constant and
never-ending battle to balance these trade-offs with ever-
increasing software complexity

SOFTWARE
RESEARCH

institute for Carnegie Mellon University
School of Computer Science

Fundamental concepts

Abstraction
o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

The importance of semantics.

o We prove things about analyses with respect to the semantics of the
underlying language.

Program proofs as inductive invariants.

Implementation
o You do not understand analysis until you have written several.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

What you were supposed to get

Beautiful and elegant theory
o Mostly discrete mathematics, symbolic reasoning, inductive proofs
o This is traditionally a “white-board” course [using slides while we're on Zoom]

Build awesome tools

o Engineering of progrgm analyses, compilers, and bu§ finding tools make great use of
idea

many fundamenta s from computer science and software engineering

New way to think about programs
o Representations, control/data-flow, input state space

Appreciate the limits and achievements in the space

o What tools are impossible to build?

o What tools are impressive that they exist at all?

o Whenis it appropriate to use a particular analysis tool versus another?
o How to interpret the results of a program analysis tool?

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

The WHILE language - Example program

« Sample program computes z = x!
using y as a temp variable.

« WHILE uses assignment statements,

if-then-else, while loops.
All vars are integers.

z 1=z *Y; « Expressions only arithmetic (for
vy 1=y — 1 vars) or relational (for conditions).
* No I/0 statements. Inputs and
else . outputs are implicit.
skip o Later on, we may use extensions with

institute for
SOFTWARE
RESEARCH

Carnegie Mellon University
School of Computer Science

explicit "read x" and "printx .

WHILE abstract syntax

IST

Categories: Concrete syntax is
o S € Stmt statements similar, but adds things
o a € Aexp arithmetic expressions like (parentheses) for
o Xy €Var variables disambiguation during
o n € Num number literals parsing
o P € BExp boolean predicates
o | €labels statement addresses (line numbers)
Syntax:
o S ::=x:=a | skip | S; ; S,
| if P then S; else S, | while P do S
o a ::= x | n | a; op, a;
0 opy ::=+ [= | x| /|
o P = true | false | not P | P, op, P, | al op, a2
o op, ::= and | or |
o opy ::=< | = | =]>]z]

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Our first static analysis: AST walking

« One way to find “bugs” is to walk the AST, looking for particular
patterns.

o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.

o Basically, a glorified “grep” that knows about the syntax but not
semantics of a language.

(c) 2022 J. Aldrich, C. Le Goues, R. Padhye 12

CodeQL

« Alanguage for
querying code.
Developed by GitHub.

* Supports many
common languages.

« Library of common

programming patterns
and optimizations.

I S institute for Carnegie Mellon University

SOFTWARE

CodeQL queries 1.23
Dashboard / Java queries

Inefficient empty string test

Created by Documentation team, last modified on Mar 28, 2019

Name: Inefficient empty string test

Description: Checking a string for equality with an empty string is inefficient.
ID: java/inefficient-empty-string-test

Kind: problem

Severity: recommendation

Precision: high

Query: InefficientEmptyStringTest.ql > Expand source

When checking whether a string s is empty, perhaps the most obvious solution is to write something like s.equals("") (or

""" equals(s)). However, this actually carries a fairly significant overhead, because String.equals performs a number of type
tests and conversions before starting to compare the content of the strings.

Recommendation

The preferred way of checking whether a string s is empty is to check if its length is equal to zero. Thus, the condition is s. length()
== 0. The length method is implemented as a simple field access, and so should be noticeably faster than calling equals.

Note that in Java 6 and later, the String class has an isEmpty method that checks whether a string is empty. If the codebase does
not need to support Java 5, it may be better to use that method instead.

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

RESEARCH School of Computer Science

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

Operational Semantics of WHILE

The meaning of WHILE expressions depend on the values of variables
o What does x+5 mean? It depends on x.
o If x = 8 at some point, we expect x+5 to mean 13

The value of integer variables at a given moment is abstracted as a function:

E:Var - Z

We will augment our notation of big-step evaluation to include state:

(E,a) Un

So, if{x » 8} € E, then(E,x+5) 1 13

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Big-Step Semantics for WHILE expressions

big-int big-var

CE,n) I n E,z) | E(z)

<Eaa1> U ni <E7 a'2> U' 12
<E,CL1 + a2> U n1 + no

big-add

 Similarly for other arithmetic and boolean expressions

Big-Step Semantics for WHILE statements

(E,by | false
(E,whilebdo S) | E

big-whilefalse

(E,b) | true (F,S;whilebdoS) | E’
(FE,while bthen S) | £’

big-whiletrue

Small-Step Semantics for WHILE statements

(E,S1) —(E',S57)
(E,S81;82) = (E',51; S2)

small-seq-congruence

Il
(E,skip; Soy — (B, 8qy 1

Small-Step Semantics for WHILE statements

(E,by =y V'
(E,if bthen S; else Sy) — (FE, if b’ then S; else S5)

small-if-congruence

11-i
(E,if true then S; else Sy) — (F,S71) small-iftrue

18

Proofs by Structural Induction

Example. Let L(a) be the number of literals and variable occurrences in some expression a
and O(a) be the number of operators in a. Prove by induction on the structure of a that Va €

Aexp . L(a) = O(a) + 1:

Base cases:
e Casea=mn.L(a)=1and O(a) =0
e Casea=1z.L(a) =1and O(a) =0
Inductive case 1: Case a = a1 + a9
e By definition, L(a) = L(a1) + L(a2) and O(a) = O(a1) + O(az2) + 1.
e By the induction hypothesis, L(a1) = O(a1) + 1 and L(a2) = O(a2) + 1.
e Thus, L(a) = O(a1) + O(a2) +2 = O(a) + 1.

The other arithmetic operators follow the same logic.

19

Proofs by Structural Induction

* Prove that WHILE is deterministic. That is, if the program
terminates, it evaluates to a unique value.

VaeAexp. VE . Vn,n'eN. (E,a) | nA{E,a)|n =n=n
VP eBexp. VE Vb,V € B. (E,PYybAa(E,PYLY =b=1
VS . VE,E E" . (E,S | E' A(E,8) || E" = E' = E"

Rule for while is recursive;

doesn’t depend only on
subexpressions

Can prove for expressions via induction over syntax, but not for
statements.

« But there's still a way.

(c) J. Aldrich, C. Le Goues, R. Padhye 20

To prove: | /S . VE,E',E". (E,S)|| E' A\(E,S) | E" = E' =E"

Structural Induction over Derivations

Base case: the one rule with no premises, skip: let D :: (E,S) | E',and let D' :: (E, S) | E"

D ::=(E, skip) | E

By inversion, the last rule used in D’ (which, again, produced E”) must also have been the
rule for skip. By the structure of the skip rule, we know E” = E.

Inductive cases: We need to show that the property holds when the last rule used in D was
each of the possible non-skip WHILE commands. I will show you one representative case; the
rest are left as an exercise. If the last rule used was the while-true statement:

Dy :: (E,b) | true Dy ::(E,Sy| E1 Ds3::{Ej,wvhilebdo S) || E’
D (E,whilebdo S) | E’

Pick arbitrary E” such that D’ :: (E,while bdo S) || E”

By inversion, D’ must use either the while-true or the while-false rule. However,
having proved that boolean expressions are deterministic (via induction on syntax), and given
that D contains the judgment (E,b) || true, we know that D’ cannot be the while-false
rule, as otherwise it would have to contain a contradicting judgment (E, b) | false.

So, we know that D’ is also using while-true rule. In its derivation, D’ must also have
subderivations Dj, :: (E,S) | E} and Dj :: (E{,while bdo S) || E”. By the induction hypoth-
esis on Dy with Dj, we know E1 E}. Using this result and the induction hypothesis on Ds
with Dj, we have E” = J.

Data-Flow Analysis

Computes universal properties about program state at specific
program points. (e.g. will x be zero at line 7?)

e About program state
o About data store (e.g. variables, heap memory)
o Not about control (e.g. termination, performance)

« At program points
o Statically identifiable (e.g. line 7, or when foo() calls bar())
o Not dynamically computed (E.g. when x is 12 or when foo() is invoked 12 times)

e Universal
o Reasons about all possible executions (always/never/maybe)
o Not about specific program paths (see: symbolic execution, testing)

(c) J. Aldrich, C. Le Goues, R. Padhye

22

WHILESADDR:
An Intermediate Representation

« Simpler, more uniform than WHILE syntax

» (Categories:
o | € Instruction instructions

o X, y€eVvar variables
o n € Num number literals
¢ Syntax:
o I ::= X :=n | x :=y | x :=y op z
| goto n | if x op, 0 goto n
o op, ::=+ | = | * | / | .
o op, ::=< | = | =[|>] 2]

o P € Num=—> |/

(c) J. Aldrich, C. Le Goues, R. Padhye

23

P)= 9=
P+ {(E,ny~(Elx »m],n+1)

step-const

Pl = &:=1
P (E,n)~(Elr = E(y)],n +1)

step-copy

Pn)=xz:=yopz E(y)op E(z) =m
P+ {(E,n)~ (Elx »m],n+1)

step-arith

P(n) = gotom
P (E,ny~{(E,m)

step-goto

P(n) =if x op, 0 gotom E(z) op, 0 = true
P+ <{E,n)~ (E,m)

step-iftrue

P(n) =ifz op, 0 gotom E(x)opr 0 = false ,
tep-iffal
Pr{(E,n)~ {(E,n+1) P ae

(c) 2021 Le Goues, Aldrich, Padhye

24

Classic Data-Flow Analyses

« Zero Analysis
 Integer Sign Analysis

« Constant
« Reaching
 Live Varia

Propagation
Definitions

oles Analysis

 Available Expressions
» Very Busy Expressions

(c) J. Aldrich, C. Le Goues, R. Padhye

25

Partial Order & Join on set L

[E1l, : [isatleastaspreciseasl,

reflexive: VI : [= [
transitive: Vii,lo,l3: 1 Elo Alo El3 =11 & I3
anti-symmetric: Vig,lo :[LElb Al El; =11 =1

[, U l,: join or least-upper-bound... “most precise generalization”

L is a join-semilattice iff: [; U [, always exists and is unique V4, [, € L

T (“top”) is the maximal element

(c) J. Aldrich, C. Le Goues, R. Padhye

26

Fixed point of Flow Functions

fz
(09,01,02, ...,05) = (0 (0,0 1,05, ...,0)
I
00 = 0p
Fixed point! 0-,1 - fz[[x = 10]] (O-O)

(09,04, 0y, ...,) = (09, 01,09, ..., 0p) o'y = fzly = 0](o1)

0-’3 = 0>y LI O~
Correctness theorem: o4 = f,lif x = 10 goto 7] (03)

If data-flow analysis is well designed*, then

fixed point of th lysis i d. |
any fixed point of the analysis is soun o'y = f,[if x = 10 goto 7] (%)

0’9 = fzllx = yl(og)

(c) J. Aldrich, C. Le Goues, R. Padhye

27

Kildall's Algorithm

worklist = J
for Node n in cfg

input[n] = output[n] = 1
add n to worklist
input [0] = initialDataflowInformation

while worklist i1s not empty
take a Node n off the worklist
output [n] = flow(n, input[n])
for Node J in succs(n)
newInput = 1input[]j] u output[n]
if newInput # input|[j]
input []] = newlnput
add j to worklist

28

Worklist Algorithm Terminates at Fixed Point

At the fixed point, we therefore have the following equations satisfied:

oo £ o1

VieP: (| f[[P[j]]](O'j))

jepreds(i)

I

oF)

The worklist algorithm shown above computes a fixed point when it terminates. We can prove
this by showing that the following loop invariant is maintained:

Vi . (35 € preds(i) such that f[P[j]](c;) & 0;) = i € worklist

29

Program Traces and DataFlow Soundness

A trace T of a program P is a potentially infinite sequence
{co,c1,...} of program configurations, where ¢y = Ep,1 is
called the initial configuration, and for every 7 > 0 we have
P ¢~ cit1

The result (o, | n € P) of a program analysis running or
program P is sound iff, for all traces T" of P, for all ¢ suct
that 0 < ¢ < length(T'), a(c;) E op,

30

Fixed Point Theorem

Theorem 2 (A fixed point of a locally sound analysis is globally sound). If a dataflow analysis’s
flow function f is monotonic and locally sound, and for all traces T we have a(co) E oo where oy is the
initial analysis information, then any fixed point {oy, | n € P} of the analysis is sound.

Proof. To show that the analysis is sound, we must prove that for all program traces, every
program configuration in that trace is correctly approximated by the analysis results. We
consider an arbitrary program trace 1" and do the proof by induction on the program configu-
rations {¢;} in the trace.

31

Least Fixed Point (LFP)

The least fixed point solution of a composite flow function
F is the fixed-point result ¥* such that F(X*) = ¥* and
VY (F(X)=XY)= (Z*=X).

32

Merge Over Paths (MOP)

We first enumerate all paths 7 of the form m = mni,ng,... in the control-flow graph,
where n; are the instructions (nodes) in the path. For each such path m, we successively
apply flow functions to form the sequence of tuples II = {o1,n1),{02,n2),... such that
on;, = f[P[nm,]](omn,_,), where II; is the j-th tuple in the sequence and oy is the initial data
flow information. We then join over all o values computed for an instruction : to get the MOP:

MOP(7) = |_|{c7 | {0,y € Some II for P}

The MOP solution is the most precise result if we consider all possible program paths
through the CFG, even though it may be less precise than the optimal solution due to the
consideration of infeasible paths. The MOP is computable when flow functions are distributive
over join.

Distributivity A function f is distributive iff f(oq) u f(o3) = f(o1 L 09)

33

Reaching Definitions
frolI](o)

KILLRD n

KILLgp

GENgp|
GENgp|

1]

n.

I]

Xz .

Xz .

n

n

—. 0 — KILLRDIII]] U GENRD[[I]]

= {Zm | x,, € DEFS(z)}

=

= {zn}
-

if I is not an assignment

if I is not an assignment

Live Variables

Flow functions map backward! (out --> in)

KILL v [1 I defines x}
GENLvﬂII — {m I uses a:}

|
~—
&

Constant Propagation

o

=

Var — Lcop

01 Elift 02 ij Vax € Var : 0'1(33) C 0'2(56)

01 |—|lzft 02
[ft
Ll ft
acp(n)
alz’ft(E)
go

{x — o1(x) uoo(x) | x € Var}
{r — T |z € Var}
{x — 1L | x € Var}

n
{x — acp(E(x)) | x € Var}
Tiift

Extend WHILE3ADDR with functions

F = funf(z){n:1} .

P o |octumms | fi) fun double(x) : int
Y :=2%
return y

fun main() : void
z:=0
w := double(z)

Sy OU & W N =

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Interprocedural CFG

1: fun double(x) 4: fun main() 1: fun double(x) ind
2:y:=2 xx 5., .= 2 : Yy :=2=%
3: return y
call
3: return y A 6:w = double(z) . .
oretuny 4: fun main()
| | y 5: z:=5
| | 7:z:=10
| 2= 10/w 6: w:= double(z)
i i 8:7:=0 7: VARES 10/w
. | ” 8 : z:=0
I ca
| . 9:w = double(z) 9: w = double(z)
return ;
e Y local
10: ... fzlx = gWMliocar(0) = o \ ({(x} U Globals)

fzlx = gW)lcan(o) = {v = a(w)| v € Globals} U {formal(g) » o(y)}

fzlreturn :V]]returnx(a) ={v - o()|v € Globals} U {x » a(y)}
(c) J. Aldrich, C. Le Goues, R. Padhye

Context-Sensitive Analysis Example

1: fundouble(x) : int Context Tin Tout
2 Y:=2% <main, T> T {w->Z, Z->2}
3: returny <double, N> >N} (>N, y->N}
4: fun main() <double, Z> {x->2} {x->Z, y->Z}
D : Z:=9

6: w:= double(z)

7 z:=10/w

8 : z:=0

9: w:= double(z)

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Key Idea: Worklist of Contexts

val worklist : Set|Context] fun;ti(:l:_Ayil;EzﬁFc(tcg;th?;)ut

val analyzing : Set[Context] ADDilanalysing, ciz)
val results : Map|Context, Summary] o' . < INTRAPROCEDURAL(ctZ, 0ip)
val callers : Map|Context, Set|Context]] REMOVE(analyzing, ctz)

if o), £ 0oy then
results[ctx] « Summary(oin, Cout L 0hyy)
for c € callers|ctx] do
ADD(worklist, c)

function ANALYZEPROGRAM
initCtx «— GETCTX(main,nil,0, T)
worklist «— {initCtz}
results[initCtz] < Summary(T, 1)

. : end for
while NOTEMPTY(worklist) do end if
ctx «— REMOVE(worklist) ,
return o

out

ANALYZE(ctz, results|ctx].input) end function

end while
end function

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

function RESULTSFOR(ctz, 0;y,)
if ctz € dom(results) then
if iy, © results[ctx].input then
return results|ctz].output > existing results are good
else
results|[ctz].input < results[ctz].input L 0, = keep track of more general input
1 end if function ANALYZE(ctx, 0;p)
else
results[ctz] = Summary(oip, L) > initially optimisti Oout < Tesults [Ctx] .output
end if ADD(analyzing, ctx)
if ctx € analyzing then / I
return results[ctz].output = L if it hasn’t been analyzed yet; otherwis Oout < INTRAP ROCEDURAL(Ct:U) Uin)
else REMOVE(analyzing, ctx)
return ANALYZE(ctz, results|ctx].input) T
end function results[ctx] « Summary(oin, Cout L 0hyy)
function FLOW([n: z := f(y)], ctzx, 0,,) for c € callers[ctz] do
Oin < [formal(f) — on(y)] s ADD(worklist, c)
calleeCtx «— GETCTX(f, ctx,n, 0;y) end for
Oout <—RESULTSFOR(calleeCtx, 0;y) end if
ADD(callers|calleeCtx], ctx) return o, ,
return o, [z — ooy[result]] end function

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Extending WHILESADDR with Pointers

p = &z taking the address of a variable

p:=gq copying a pointer from one variable to another
xp := q assigning through a pointer

p :=xq dereferencing a pointer

42

Andersen’s Analysis

address-o
lp:=&a] =l ep 4 P29 beq
l- €D
o
lp:=q] —p=2gq Py
=29 hep keg assign
assign lyET
[*p :=q] — *p 2 q
p2xq l,eq Il er
dereference L Ep dereference

IIP3=*CI]]‘—>p2*q

43

Steensgaard'’s Analysis - Example

[
A
3

=

!

U s O DN =
e (O YT s o,
|
Wi ¢
Ny

Steensgaard'’s Analysis
join (£1,42)

copy if (find (41) == find(£2))
p := q] < join(xp, =q) return
a4 nyp < *51
[p := &x] — join(xp, x) address-of No «— xfo
union (£1,42)
[p = *q] — join(xp, #+q) dereference join (n1,n2)
assign

[*p := q] — join(**p, *q)

45

Analyzing Functional Programming Languages

e € FEzxpressions ...or labelled terms
t € Term ...or unlabelled expressions
| ¢ L labels
e = t
t = Azx.e
x

(e1) (e2)

letx = e1 in ey
if eg then e else e,
n| e +e| ..

46

Simple 0-CFA Example
(Az.(x® + lb)C)d(g)e)g

(o(z) E o(a)) var
({\z.z + 1} C o(d)) lambda

(0(e) S a(x)) A (o(c) S alg)) Pl function-flow
(a(3) E a(e)) const

(a(1) E (b)) const

(o(a) +70(b) E o(c)) plus

0-CFA with Constant Propagation

((Af-(f*3%)0) (A (29 + 17))7)"

Var v Lab L by rule
e Af.f3 | lambda
j Ax.x +1 | lambda
T Az.z +1 | apply
a Ax.xz + 1 var
b 3 const
i 3 apply
g 3 var
h 1 const
0 4 add
c 1 apply
k 4 apply

mM-CFA

letadd = \x. \y. x + vy
let add5 = (add 5)%
let add6 = (add 6)%°
let main = (add5 2)™

Var / Lab, L notes
add, e (Az. A\y. x + y, o)
X, ad 5)
add5, e (A\y. x + vy, ab)
X, ab 6
add6, e (A\y. z + vy, ab)
main, e (4

49

Hoare Triple
(P}S{0}

P is the precondition
Q is the postcondition
« Sis any statement (in WHiLE, at least for our class)

. Semantics: if P holds in some state E and if <S; E> U E’, then O
holds in £’

o This is partial correctness: termination of Sis not guaranteed
o Total correctness additionally implies termination, and is written [P] S [O]

Semantics of Hoare Triples

« A partial correctness assertion = {P} S {Q} is defined formally to
mean:

VENE'(E=PA{(E,S)| E)= E' &= Q

« How would we define total correctness [P] S [Q]?

« This is a good formal definition—but it doesn’t help us prove many
assertions because we have to reason about all environments. How
can we do better?

Derivation Rules for Hoare Logic

« Judgment form r {P} S {Q} means “we can prove the Hoare triple {P} S {Q}"

assign

— {P} skip {P} PP - {[a/x]|P} z:=a {P}

- (P} 51 {P') - (P} S2{@) ,,, P ABSIQ) - (P A=} 5 {Q)
— {P} S1; S2 {Q} {P} if b then S; else Sy {Q}

f

P =P - {P} S{Q} FR=0Q
= {P'} S1{Q'}

consq

Hoare Triples and Weakest Preconditions

« Theorem: {P} S {Q} holds if and only if P = wp(S5,Q)

o In other words, a Hoare Triple is still valid if the precondition is stronger
than necessary, but not if it is too weak

o Can use this to prove {P} S {Q} by computing wp(S,Q) and checking
implication.

« Question: Could we state a similar theorem for a strongest
postcondition function?
o e.g.{P}S{Q}holdsifand onlyifsp(S,P)= Q
o A:Yes, butit's harder to compute (see text for why)

Proving loops correct

 First consider partial correctness
o The loop may not terminate, but if it does, the postcondition will hold

« {P}while Bdo S {Q}
o Find an invariant Inv such that:

= P=lInv
« Theinvariantis initially true

= {Inv&&B}S{lnv}
Each execution of the loop preserves the invariant

= (Inv && —B) = Q
« Theinvariant and the loop exit condition imply the postcondition

What if we just went forwards?

P}

L= 61 Generate “fresh” math variables
T = €9 for every mutable program
’ variable

{Q}

Proof Obligation:
Va, : ([xo/x|P A 21 = [zo/x]e1 A x2 = ([x1/x]e2)) = [z2/2]Q

(c) J. Aldrich, C. Le Goues, R. Padhye

55

Dealing with conditional paths

{true}
1f (g; < O) . Dynamic Symbolic Execution:
Y= — Vzo,Yyo€Z: (xo <0 Ayp=—x0) = yo =0
else : Vxo,yo € Z: (xo = 0 Ayo = zg) = yo = 0
Y =X
{y =0

Static Symbolic Execution:

Vo, Yo €Z: (o <0=yo = —zo) v (x0 = 0= yo =20)) = yo =0

56

Symbolic Execution of Statements (DSE)

big-ski
(g,%,skip) || {g,%) S

(9,%,81) | {g",) (g',X,s2) | {g",E")
<ga Z) S1, 32> ’U <g”7 Z”>

big-seq

(E,ay | as
(g,25,x :=a)y | {g, 2|z — as])

big-assign

Symbolic Execution with Branching (DSE)

<27 b> U g, g N g’SAT <g A g’, 2, 81> U <gll’ E,>
(9,%, i1 b then s else 55,) § {¢", ')

big-iftrue

049" gA—g'SAT {gn—g,%, s {g", %)
(g,%,if b then s; else s9,) | (", X"

big-iffalse

58

Symbolic Execution of Loops

Bounded exploration (k-limited)

k>0 &by g gnag'sat {(gang, X, s;whilex 1 bdo sy | (g", ¥

{(g,X,whilex bdo s,) | (¢", X"

3,0l g g A —g'SAT
<97 2,,whileg bdo 87> J <g A _'gla Z>

big-whilefalse

big-whiletrue

59

Concolic Execution

o J o Uordbds W DN

e
N B O O

int double
return 2x*v;

}

veld bar(int %X, i1int %)

zZ
i 3

do
(z
R

}

(int v) {

uble (y);
== x) {
(x > y+10)
ERROR;

{

{

Input: x=0, y=1

e Path: (2*y I=x)

e Next: (2*y ==x) :: SAT
Input: x=2, y=1

e Path: (2*y == x) && (x <=y+10)
 Next: (2*y == x) && (x > y+10) :: SAT
Input: x=22, y=11

e Path: (2*y ==x) && (x > y+10)

e Bug found!!

(c) J. Aldrich, C. Le Goues, R. Padhye

60

Coverage-Guided Fuzzing with AFL

Seeds
<foo></foo> <wo0>?</00>
Initial Pick Random Execute
—_— Input . Input’ Program
Add
’ Coverage
In P ut Instrumentgation

Execution feedback

coverage

New branch
coverage?

% -

61

Satisfiability (SAT) solving

« Let's start by considering Boolean formulas: variables connected with A v —

 First step: convert to conjuctive normal form (CNF)
o A conjunction of disjunctions of (possibly negated) variables
(av =b)A(—ave)Aa(bve)
 |f formula is not in CNF, we transform it: use De Morgan'’s laws, the double
negative law, and the distributive laws:

(P M) = Pk
—(PAQ) < —-Pv-—-Q
———P << P
(PA(Q@VR) < (PAQ)V(PAR))
(Pv(Q@AR)) < (PvQ)A(PvVR))

(c) J. Aldrich, C. Le Goues, R. Padhye

The Full DPLL Algorithm

function DPLL(¢)
if = true then
return true
end if Heuristic: Apply unit

if ¢ contains a false clause then propagation first because it
return false creates more units and pure
literals. Pure literal assignment

end if only removes entire clauses.
for all unit clauses [in ¢ do

¢ «— UNIT-PROPAGATE((, ¢)
end for
for all literals [occurring pure in ¢ do
¢ < PURE-LITERAL-ASSIGN(, ¢)

Try both assignments of the
chosen literal. If we assume v

is short-circuiting, then this
end for implements backtracking.

[< CHOOSE-LITERAL(®)
return DPLL(¢ A [) v DPLL(¢ A —1)

end function

63

Satisfiability Modulo Theories

« Theory of uninterpreted functions « Theory of arithmetic
f(el) =a el =e2—e3
e2 = f(x) ed = 0
e3 = f(y) ed =a + 2
f(e4) = e5 =1y
r =Y

. Congruence closure:
: . i
for all f,z, and vy, if x = y then f(z) = f(y) using equalities

64

Program Synthesis Overview

A mathematical characterization of program synthesis: prove that

AP . Vz . o(z, P(x))
In constructive logic, the witness to the proof of this statement is a
program P that satisfies property ¢ for all input values x

What could the inferred program P be?

o Historically, a protocol, interpreter, classifier, compression algorithm,
scheduling policy, cache coherence policy, ...

How is property ¢ expressed?

o Historically, as a formula, a reference implementation, input/output pairs,
traces, demonstrations, a sketch, ...

(c) J. Aldrich, C. Le Goues, R. Padhye

65

Overview of CEGIS

Any search algorithm: Usually a solver, but
e.g., a solver, enumerative can be a test suite,
search, stochastic search. end-user, etc.

P e S st Ai(xi P(x))

Specification @ .o~ - =
Sketch S ¢¥
C— e
Xi+|

no
counterexample

Form of active learning (a
special case of machine

learning). Fail P

Oracle-guided component-based synthesis

inputo

Program input variable y

1 71 := input!

Input to each N
component Q = Ui:1 Yz

Output of each R = N
= : s
component Uimi e 27)
Output of the program 7 7 z?)
) Z?)

m+ N +1 return z7

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Automatic Program Repair

AUTONMATICHE .
Eernin macil- — > ©

bug-fixing patch

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

EVALUATE FITNESS

N

DISCARD

ACCEPT

]

. AN

MUTATE

@r ~ims arw o

\/ VVV

OUTPUT

69

int 1s upward(i1nt inhibit,
int bias;
if (inhibit)

‘ bias = a;

else Dbias =

1f (bias > down sep)
return 1;

else return 0O;

OO\IO\U‘Ilhu)l\)}

N©)

K }

inhibit up_sep down_sep | Observed Expected
output Output
1 11 110 0 1

up sep ;

int up sep, 1int down_sep);\\

_
-

fail

inhibit =1, up_sep =11, down_sep =110 Line 4
bias=a, PC = true

Line 7

inhibit =1, up_sep =11, down_sep =110
bias=a, PC=a > 110

inhibit =1, up_sep =11,
bias = a, PC=

70

Dynamic analysis

« Observe program behavior during execution on one or more inputs.

- Examples:
o Code coverage (= Greybox fuzzing, fault localization)
o Performance Profiling

= Code profiling, memory profiling, algorithmic profiling

Invariant Generation

Concolic Execution

Data structure analysis

Concurrency analysis: Race detection

Concurrency analysis: Deadlock detection

Taint Analysis (= Security & Privacy)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Infer Likely Invariants

Program: (input: N >0) Loop Invariants to Evaluate
i :=0 -+ =0
while i != N: L
1 := 1+ 1 o
i>=0
N=0
N<O
N<=0
N>=0
N>0
i==N

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Collecting execution info

« What to collect? Only what's necessary
« Key idea (again): Abstraction

« Examples:

o Code coverage - Log branches
Profiling > Log loops, function calls, allocations, frees, etc.
Invariant generation - Log predicates over vars in scope
Concolic execution - Track symbolic values; log branch constraints
Race detection - Track locks, vector clocks; log accesses

o O O O

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Stack Machine Bytecode

Instruction (at <label>) Stack (before = after)

* Push <const> ¢ ...2..<const>

 Load <var> e E(var)

e Store <var> e ...val—> .. //E[var » val]

* Dup e ...val > .. valval

- Add « ...val,val, 2 ... (val;+val,)

 Invoke <func> <nargs> ...valyval;...valpyes 2 ... result

* Jump <label> ... // PC = label’

* Jump-if-zero <label> « ..val—> .. //PC=val?PC+1:label

. L . .
institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

Data Races

« A data race is a pair of conflicting accesses
that happen concurrently

X = 1; to=_F:
F=1; u = X;
X =1;
F =1; Happen
Concurrently

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Data Races Can Break
Sequentially Consistent Semantics

Init: X=Y=0; Init: X=Y=0;

. — Y*C. . — Y*C.
L1: t = X*5; T— L1: t = X*5; ST = 1
L2: u = Y; M2: Yl = 1- L2: u = Y; M2: Y = 1
L3:v=)§5; B W L3: v = t; : ’

\ \ IR ,

|

possiblyu==18&&v==0

Data Race

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Lockset Algorithm Overview

 Checks a sufficient condition for data-race-freedom

« Consistent locking discipline
o Every data structure is protected by a single lock
o All accesses to the data structure made while holding the lock

« Example:

RecvQueue is
consistently protected
by RecvQueuelk

// Remove a received packet
AcquirelLock(RecvQueuelk);
pkt = RecvQueue.
ReleaseLock(RecvQueuelk);

.. // process pkt

ProcQueue is
consistently protected
by ProcQueuelk

// Insert into processed
AcquireLock(ProcQueuelk);

B
ReleaselLock(ProcQueuelk);

SOFTWARE

institute for
RESEARCH

School of Computer Science

Happens-Before Relation And Data Races

If all conflicting accesses are
ordered by happens-before ReleaseLock

- data-race-free execution

- All linearizations of AcquireLock
partial-order are valid

program executions é it

If there exists conflicting ReleaseLock
accesses not ordered é
x++

- a data race

AcquireLlock

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

VC, VG L, W, R,

Vector 4 | 1 2 8 2 |1 310 0|1
Clocks " |

Il
o

Write-Write Check: W, VC22

30| | 4]1]7? Yes

Read-Write Check: R, VCO.?

ol1|C [4]1]? Yes

O(n) time

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Static vs Dynamic Analysis

« Qver-approximation vs Under-approximation

 When is one better than other? Tradeoffs!

o Soundness/Completeness
= Static analysis often “sound” for over-approximate reasoning (e.g. verification)
= Dynamic Analysis can be "sound” for under-approximate reasoning (e.g. hot spots or bugs).
= Neither technique is complete in general.

o Scalability
= Static analysis often scales super-linearly with program size
= Dynamic analysis tries to scale linearly with execution length

o Feasibility

= Static analysis may be impossible with incomplete information (e.g. dynamically loaded code,
dependency injection, multi-language code, hardware interaction)

= Dynamic analysis is only useful when appropriate program inputs are available

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Course Evaluations - cmu.smartevals.com

17-355 (Undergrad

S—

17-665 (Masters) 17-819 (PhD)

Claim participation points on Canvas after filling out eval: “Lecture 25 Quiz”

81

https://canvas.cmu.edu/courses/27636/quizzes/82271

Next Steps - Course Project

Checkpoint due tonight (April 28)
Recitation and OH reserved for project discussions

Project Presentations (May 9)

o In-person 1-4pm at GHC 4307/

o Bring your laptops and adapters, if any

o 6 min talks (firm time limit) + ~2min Q&A

o Email me in advance if you need to Zoom in (talk must be recorded)

Project Report due May 9 at midnight

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

