
DYNAMIC ANALYSES FOR
DATA RACE DETECTION
Lecture by Rohan Padhye
17-355/17-665/17-819: Program Analysis

Material from past lectures by Jonathan Aldrich, based in large part on slides by John
Erickson, Stephen Freund, Madan Musuvathi, Mike Bond, and Man Cao

Lecture Goals
• What is a data race, and what is data race free execution?

• Subtleties of data races and memory models
• Why taking advantage of “harmless races” is almost certainly a bad idea

• Lockset analysis for data race detection

• Happens-before based data race detection
• And high performance implementations, e.g. as in FastTrack

SEQUENTIAL CONSISTENCY

First things First
Assigning Semantics to Concurrent Programs

• What does this program mean?

• Sequential Consistency [Lamport ‘79]
Program behavior = set of its thread interleavings

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;

Recall: Semantics of WHILE|| from midterm

Exercise 1:

• What are the possible final values for variables `t` and `u` after
running this program, assuming sequential consistency?

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0;

Sequential Consistency Explained

X = 1;
F = 1;

t = F;
u = X;

int X = F = 0; // F = 1 implies X is initialized

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X; X = 1;

F = 1;

t = F;

u = X;

X = 1;

F = 1;

t = F;

u = X;

t=1, u=1 t=0, u=1 t=0, u=1 t=0, u=0 t=0, u=1 t=0, u=1

t=1 implies u=1

Naturalness of Sequential Consistency
• Sequential Consistency provides two crucial abstractions

• Program Order Abstraction
• Instructions execute in the order specified in the program

A ; B
means “Execute A and then B”

• Shared Memory Abstraction
• Memory behaves as a global array, with reads and writes done immediately

• We implicitly assume these abstractions for sequential programs
• As we will see, we can only rely on these abstractions under certain conditions in a

concurrent context

WHAT IS A DATA RACE ?

• The term “data race” is often overloaded to mean different
things

• Precise definition is important in designing a tool

Data Race
• Two accesses conflict if
• they access the same memory location, and
• at least one of them is a write

Write X – Write X
Write X – Read X
Read X – Write X
Read X – Read X

• A data race is a pair of conflicting accesses that happen
concurrently

“Happen Concurrently”
• A and B happen concurrently if
• there exists a sequentially consistent execution in which they

happen one after the other

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Data races are almost always no good
• What are some consequences of a data race, even when

assuming sequential consistency?

Unintended Sharing
• Threads accidentally sharing objects

Thread 1

void work() {
static int local = 0;
…
local += …
…

}

Thread 2

void work() {
static int local = 0;
…
local += …
…

}

Data Race

Atomicity Violation
• When code that is meant to execute atomically…
• That is, without interference from other threads

• …suffers interference from some other thread

Thread 1

void Bank::Update(int a)
{

int t = bal;
bal = t + a;

}

Thread 2

void Bank::Withdraw(int a)
{

int t = bal;
bal = t - a;

}

Data Race

Ordering Violation
• Incorrect signaling between a producer and a consumer

Thread 1

work = null;
CreateThread (Thread 2);
work = new Work(); Thread 2

ConsumeWork(work);

Data Race

But,….

AcquireLock(){
while (!CAS (lock, 0, 1)) {}

}

ReleaseLock() {
lock = 0;

}

Data Race ?

Acceptable Concurrent Conflicting Accesses

• Implementing synchronization (such as locks) usually requires
concurrent conflicting accesses to shared memory

• Innovative uses of shared memory
• Fast reads
• Double-checked locking
• Lazy initialization
• Setting dirty flag
• ...

• Need mechanisms to distinguish these from erroneous conflicts

Solution: Programmer Annotation
• Programmer explicitly annotates variables as “synchronization”
• Java – volatile keyword
• C++ – std::atomic<> types

Data Race
• Two accesses conflict if
• they access the same memory location, and
• at least one of them is a write

• A data race is a pair of concurrent conflicting accesses to
locations not annotated as synchronization
• Recall: “Concurrent” means there exists a sequentially consistent

execution in which they happen one after the other

• Equivalent definition: a pair of conflicting accesses where one
doesn’t happen before the other
• Program order
• Synchronization order
• Acquire/release, wait-notify, fork-join, volatile read/write

Exercise 2: Is there a data race?
If so, on what variable(s)?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

21

Is there a data race?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

22

Consider regular compiler
transformations/optimizations

Before:

data = 42;
flag = true;

23

After:

flag = true;
data = 42;

Possible behavior

T1:

flag = true;

data = 42;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

24

Consider regular compiler
transformations/optimizations

Before:

if (flag)

t = data;

25

After:

t2 = data;

if (flag)

t = t2;

Possible behavior

T1:

data = 42;
flag = true;

T2:

t2 = data;

if (flag)

t = t2;

Initially:
int data = 0;

boolean flag = false;

26

How do we fix this?

T1:

data = 42;
flag = true;

T2:

if (flag)

t = data;

Initially:
int data = 0;

boolean flag = false;

27

Using “synchronized” keyword in Java

T1:

data = ...;
synchronized (m) {
flag = true;

}

T2:

boolean f;

synchronized (m) {

f = flag;

}

if (f)

... = data;

Initially:
int data = 0;

boolean flag = false;

28

… Implemented via locks

T1:

data = ...;
acquire(m);
flag = true;

release(m);

T2:

boolean f;

acquire(m);

f = flag;

release(m);

if (f)

... = data;

Initially:
int data = 0;

boolean flag = false;

Happens-beforerelationship

29

Using “volatile” keyword in Java

T1:

data = ...;
flag = true;

T2:

if (flag)

... = data;

Initially:
int data = 0;

volatile boolean flag = false;

Happens-beforerelationship

30

Data Race vs Race Conditions
• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program
• Due to events, device interaction, thread interleaving, …
• Race conditions can be very bad!

Data Race vs Race Conditions
• Data Races != Race Conditions
• Confusing terminology

• Race Condition
• Any timing error in the program
• Due to events, device interaction, thread interleaving, …
• Race conditions can be very bad!

• Data races are neither sufficient nor necessary for a race
condition
• Data race is a good symptom for a race condition

DATA-RACE-FREEDOM SIMPLIFIES
LANGUAGE SEMANTICS

Advantage of Eliminating All Data Races

• Defining semantics for concurrent programs becomes
surprisingly easy

• In the presence of compiler and hardware optimizations

Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly sharedOK for sequential programs

if X is not modified between L1 and L3

Can Break Sequential Consistent Semantics

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X = 1;
M2: Y = 1;

M1: X = 1;
M2: Y = 1;

u == 1 è v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

Data Race

Can A Compiler Do This?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

t,u,v are local variables
X,Y are possibly sharedOK for sequential programs

if X is not modified between L1 and L3

OK for concurrent programs
if there is no data race on X or
if there is no data race on Y

Key Observation [Adve& Hill '90]
• Many sequentially valid (compiler & hardware) transformations

also preserve sequential consistency
• Provided the program is data-race free

• Forms the basis for modern C++, Java semantics
data-race-free à sequential consistency

otherwise à weak/undefined semantics

DATA RACE DETECTION

Overview of Data Race Detection Techniques

• Static data race detection

• Dynamic data race detection

• Lock-set

• Happen-before

• DataCollider

Static Data Race Detection
• Advantages:
• Reason about all inputs/interleavings
• No run-time overhead
• Adapt well-understood static-analysis techniques
• Annotations to document concurrency invariants

• Example Tools:
• RCC/Java type-based
• ESC/Java "functional verification"

(theorem proving-based)

Static Data Race Detection
• Advantages:
• Reason about all inputs/interleavings
• No run-time overhead
• Adapt well-understood static-analysis techniques
• Annotations to document concurrency invariants

• Disadvantages of static:
• Undecidable...
• Tools produce “false positives” or “false negatives”
• May be slow, require programmer annotations
• May be hard to interpret results

Dynamic Data Race Detection
• Advantages
• Can avoid “false positives”
• No need for language extensions or sophisticated static analysis

• Disadvantages
• Run-time overhead (5-20x for best tools)
• Memory overhead for analysis state
• Reasons only about observed executions
• sensitive to test coverage
• (some generalization possible...)

Tradeoffs: Static vs Dynamic
• Coverage
• generalize to additional traces?

• Soundness
• all reported warnings are actually races

• Completeness
• every actual data race is reported

• Overhead
• run-time slowdown
• memory footprint

• Programmer overhead

Definition Refresh
• A data race is a pair of concurrent conflicting accesses to

unannotated locations (i.e. not locks or volatile variables)

• Problem for dynamic data race detection
• Very difficult to catch the two accesses executing concurrently

X = 1;
F = 1;

t = F;
u = X;

X = 1;

F = 1;

t = F;

u = X;

Happen
Concurrently

Solution
• Lockset
• Infer data races through violation of locking discipline

• Happens-before
• Infer data races by generalizing a trace to a set of traces with the same

happens-before relation

LOCKSET ALGORITHM
Eraser [Savage et.al. ‘97]

Lockset Algorithm Overview
• Checks a sufficient condition for data-race-freedom
• Consistent locking discipline
• Every data structure is protected by a single lock
• All accesses to the data structure made while holding the lock

• Example:
// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

RecvQueue is
consistently protected

by RecvQueueLk

ProcQueue is
consistently protected

by ProcQueueLk

Inferring the Locking Discipline
• How do we know which lock protects what?
• Asking the programmer is cumbersome

• Solution: Infer from the program
AcquireLock(A);
AcquireLock(B);
x ++;
ReleaseLock(B);
ReleaseLock(A);

AcquireLock(B);
AcquireLock(C);
x ++;
ReleaseLock(C);
ReleaseLock(B);

X is protected by
A, or B, or both

X is protected by
B, or C, or both

X is protected
by B

LockSet Algorithm
• Two data structures:
• LocksHeld(t) = set of locks held currently by thread t

• Initially set to Empty
• LockSet(x) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread t acquires lock l
• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 ∪ {𝑙}

• When thread t releases lock l
• 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 = 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑 𝑡 − {𝑙}

• When thread t accesses location x
• 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 = 𝐿𝑜𝑐𝑘𝑆𝑒𝑡 𝑥 ∩ 𝐿𝑜𝑐𝑘𝑠𝐻𝑒𝑙𝑑(𝑡)
• Report “data race” when LockSet(x) becomes empty

LockSet Algorithm
• No warnings à no data races on the current execution
• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race
• Thread-local initialization

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0

AcquireLock(SendQueueLk);
SendQueue.Enqueue(pkt);
ReleaseLock(SendQueueLk); // Process a packet

AcquireLock(SendQueueLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(SendQueueLk);

LockSet Algorithm
• No warnings à no data races on the current execution
• The program followed consistent locking discipline in this execution

• Warnings does not imply a data race
• Object read-shared after thread-local initialization

A = new A();
A.f = 0;

// publish A
globalA = A; f = globalA.f;

Maintain A State Machine Per Location

Init Local
to T

Thread T
Read /
Write

Read
Shared

Thread T’
Read Any Thread

Read

Thread T
Read /
Write

Shared

Any Thread
Write

Any Thread
Write

Any Thread
Read / Write
Run LockSet Algorithm

LockSet Algorithm
• State machine misses some data races

// Initialize a packet
pkt = new Packet();
pkt.Consumed = 0;

AcquireLock(WrongLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(WrongLk);

// Process a packet
AcquireLock(SendQueueLk);
pkt = SendQueue.Top();
pkt.Consumed = 1;
ReleaseLock(SendQueueLk);

LockSet Algorithm
• Does not handle locations consistently protected by different

locks during a particular execution

// Remove a received packet
AcquireLock(RecvQueueLk);
pkt = RecvQueue.RemoveTop();
ReleaseLock(RecvQueueLk);

… // process pkt

// Insert into processed
AcquireLock(ProcQueueLk);
ProcQueue.Insert(pkt);
ReleaseLock(ProcQueueLk);

Pkt is protected by
RecvQueueLk

Pkt is thread local

Pkt is protected by
ProcQueueLk

HAPPENS-BEFORE

Happens-Before Relation [Lamport '78]
• A concurrent execution is a partial-order determined by communication

events
• The program cannot “observe” the order of concurrent non-communicating

events

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++?

Happens-Before Relation [Lamport '78]
• A concurrent execution is a partial-order determined by communication

events
• The program cannot “observe” the order of concurrent non-communicating

events

• Both executions form the same happens-before relation

ReleaseLock

AcquireLock

x++

y++

ReleaseLock

AcquireLock

x++

y++

Constructing the Happens-Before Relation

• Program order
• Total order of thread

instructions

• Synchronization order
• Total order of accesses to the

same synchronization

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock

Happens-Before Relation And Data Races
• If all conflicting accesses are

ordered by happens-before
• à data-race-free execution
• à All linearizations of partial-order

are valid program executions

• If there exists conflicting accesses
not ordered

• à a data race

ReleaseLock

AcquireLock

x++

x++

ReleaseLock

AcquireLock

Happens-Before and Data-Races
• Not all unordered conflicting accesses are data races

• There is no data race on X
• But, there is a data race on Y
• Remember:
• Exists unordered conflicting access à Exists data race

X = 1;
Y = 1;

if(Y == 1)
X = 2;

Init: X = Y = 0;

IMPLEMENTING HAPPENS-
BEFORE ANALYSES

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...

1

2

3

4

5 5

1

2

3

4

5

4

3

2

1

6 6 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 7 7

vol = 1

tmp = vol

acq(m)

Precise
Happens-
Before

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 1 5 0

0 1 0

0 2 0

1 3 0

1 4 0

1 3 5

0 0 4

0 0 3

0 0 2

0 0 1

6 4 0 1 6 0 1 3 6

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

7 4 5 1 7 0 1 3 7

vol = 1

tmp = vol

acq(m)

1 0 0

2 0 0

2 0 0

2 0 0

2 0 0 1 3 0

0 1 0

0 1 0

1 1 0

1 2 0

1 1 1

0 0 1

0 0 1

0 0 1

0 0 1

2 2 0 1 3 0 1 1 2

rel(m)

acq(m)

rel(m)

acq(m)

rel(m)

2 2 1 1 3 0 1 1 2

vol = 1

tmp = vol

acq(m)

Exercise on vector clocks and partial
ordering
� VC = [t1, t2,… tN]

� What is VCa ⊑ VCb?

� What is VCa ⊔ VCb?

� What are sufficient and necessary conditions
for there to be a data race between two
accesses having vector clocks VCa and VCb?

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

A’s local time B’s local time

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

B-steps with B-time ≤ 1
happen before
A’s next step

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 13 0

4 10 1

? Yes

? Yes

O(n) time

x = 0

4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1

x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1

x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx VCA ?

5 1 ? No4 8

O(n) time

VectorClocks for Data-Race Detection
� Sound

– Warning è data-race exists
� Complete

– No warnings è data-race-free execution

� Performance
– slowdowns > 50x
– memory overhead

81

FASTTRACK

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...RaceTrack [YRC 05]
MultiRace [PS 03]

Hybrid Race Detector [OC 03]
...

FastTrack
[Flanagan-Freund 09]

Dynamic Data-Race Detection
Pr

ec
is

io
n

Cost

Happens
Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
Goldilocks [EQT 07]

DJIT+ [ISZ 99,PS 03]
TRaDe [CB 01]

...RaceTrack [YRC 05]
MultiRace [PS 03]

Hybrid Race Detector [OC 03]
...

FastTrack
[Flanagan-Freund 09]

• Design Criteria:
- sound & complete
(find at least 1st data race on each var)

- efficient
• Insight:

• HB relation is a partial order
• But all accesses to a var are
almost always totally ordered

x = 0

4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 13 0

4 10 1

? Yes

? Yes

O(n) time

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

Write-Write and Write-Read Data Races

?

?
?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

?
?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

O(1)

x = 0

4 1

4 0

2 8

0 8

2 1 1@B

VCA VCB Lm Wx

0 0 4@AWrite-Write Check: Wx VCA ?

4 1 ? Yes1@B

(1 ≤ 1?)

O(1) time

Last Write
"Epoch"

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

x = 0

rel(m)

acq(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

Write-Read Check:

5 1 ? No8@B

Wx VCA ?

O(1) time(8 ≤ 1?)

Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Data Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...

Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Data Races -- Unordered Reads

?

fork

? ?

x = 0

x = 0
-

VCA VCB Wx Rx

7 0

fork
7@A7 0

7 1 7@A8 0

read x
7 1 7@A8 0

7@A8 0
x = 2

read x

8 1

-

-

-

1@B
O(1)

O(n)

Read-Write Check: Rx VCA ?

8 08 1 ? No

O(n)

Thread A Thread B Thread C Thread D

read y

y = 10

read y

? ?

O(n)

Thread A Thread B Thread C Thread D

read y

y = 10

read y

Thread A Thread B Thread C Thread D

read y

y = 10

read y

y = 3

?

O(n)

?

?

Thread A Thread B Thread C Thread D

read y

y = 10

read y

y = 3

?

Forget VC for Rx
and switch back

to "last read epoch"

O(1)

Slowdown (x Base Time)

4.1

8.6

21.7

31.6

89.8

20.2

8.5

0

5

10

15

20

25

30

35

40

45

50

Empty Eraser MultiRace Goldilocks Basic VC DJIT+ FastTrack

� FastTrack allocated ~200x fewer VCs

(Note: VCs for dead objects are garbage collected)

� Improvements
– accordion clocks [CB 01]
– analysis granularity [PS 03, YRC 05]

Checker Memory
Overhead

Basic VC,
DJIT+ 7.9x

FastTrack 2.8x
Empty 2.0x

Memory Usage

Eclipse 3.4
� Scale

– > 6,000 classes
– 24 threads
– custom sync. idioms

� Precision (tested 5 common tasks)
– Eraser: ~1000 warnings
– FastTrack: ~30 warnings

� Performance on compute-bound tasks
– > 2x speed of other precise checkers
– same as Eraser

FUZZING TECHNIQUES

Fuzzing can also find data races
� Idea: Catch races “red handed”. Loosely,

– Pause thread execution when writing to X
– If another thread reaches a statement that

reads or writes X then we have observed
concurrent conflicting accesses!

� Analysis does not care about locks or other
synchronization primitives.

– Consistent locking will make the above
condition impossible to trigger.

Race Fuzzer
� Run-time Overhead

– No overhead of tracking synchronization,
locks, or vector clocks (hey, that rhymes!)

– But pausing threads forever can lead to
deadlocks

– Pausing threads for a short while (e.g.
sleep(1000)) adds overhead for every write
access, though this approach is very effective.

� Solution idea:
– Instead of “pausing” thread, just deprioritize

it in the OS scheduler

Race Fuzzing
� Randomized scheduling still depends on luck
� Can do systematic schedule exploration with a

bounded number of context switches
� Sophisticated randomized algorithms like PCT

can give probabilistic guarantees of uncovering
concurrency bugs with a bounded number of
“ordering constraints”.

� Or use heuristics, e.g. TSVD uses an initial run
to infer “likely” happens-before relationships
based on wall-clock timestamps to select
candidate “racing pairs”.

Lecture Takeaways
� Data race: two accesses, one of which is a write,

with no happens-before relation
� Data races are subtle

– Compiler optimizations, hardware reordering make
racy program behavior hard to predict

– Better to synchronize consistently
� Lockset analysis: intuitive, fast

– But many false warnings
� Happens-before data race detection

– Sound; OK speed if carefully implemented
� Stress testing

– Sound and fast; Can catch data races red handed
– Needs assumptions to prune the space of possible

races

Key References
� Hans-J. Boehm and Sarita V. Adve, "You Don't Know Jack About

Shared Variables or Memory Models", CACM 2012.
� Leslie Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", CACM 1978.
� Martin Abadi, Cormac Flanagan, and Stephen N. Freund, "Types

for Safe Locking: Static Race Detection for Java", TOPLAS
2006.

� Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu, "Finding and
Reproducing Heisenbugs in Concurrent Programs", OSDI 2008.

� Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. "Extended static
checking for Java", PLDI 2002.

� S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson, "Eraser: A dynamic data race detector for multi-
threaded programs", TOCS 1997.

Key References
� Friedemann Mattern, "Virtual Time and Global States of

Distributed Systems", Workshop on Parallel and Distributed
Algorithms 1989.

� Yuan Yu, Tom Rodeheffer, and Wei Chen, "RaceTrack: Efficient
detection of data race conditions via adaptive tracking", SOSP
2005.

� Eli Pozniansky and Assaf Schuster, "MultiRace: Efficient on-the-fly
data race detection in multithreaded C++ programs", Concurrency
and Computation: Practice and Experience 2007.

� Robert O'Callahan and Jong-Deok Choi, "Hybrid Dynamic Data Race
Detection", PPOPP 2003.

� Cormac Flanagan and Stephen N. Freund, "FastTrack: efficient and
precise dynamic race detection", CACM 2010.

� Cormac Flanagan and Stephen N. Freund, "The RoadRunner dynamic
analysis framework for concurrent programs", PASTE 2010.

Key References
� John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk

Olynyk, "Effective Data-Race Detection for the Kernel", OSDI
2010.

� Madanlal Musuvathi, Sebastian Burckhardt, Pravesh Kothari, and
Santosh Nagarakatte, "A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs", ASPLOS 2010.

� Michael D. Bond, Katherine E. Coons, Kathryn S. McKinley, "PACER:
proportional detection of data races", PLDI 2010.

� Cormac Flanagan and Stephen N. Freund, "Adversarial memory for
detecting destructive races", PLDI 2010.

� Koushik Sen. “Race directed random testing of concurrent
programs”. PLDI 2010.

� Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. “Efficient scalable thread-safety-violation detection:
finding thousands of concurrency bugs during testing”, SOSP 2019.

Bonus slides on the Java
Memory Model (JMM)

Behaviors Allowed in JMM

112

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Behaviors Allowed in JMM

113

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Behaviors Allowed in JMM

114

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Behaviors Allowed in JMM

115

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Valid due to lack
of happens-before

ordering

Behaviors Allowed in JMM

116

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

latest value

future value

Assertion
failure!

Behaviors Allowed in JMM

117

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Assertion
failure!

Behaviors Allowed in JMM

118

r = data;
flag = 1;

T1 T2

int data = flag = 0;

while (flag == 0) {}
data = 1;

assert r == 0;

Requires returning future value or
reordering to trigger the assertion failure

Can this assert trigger in JVMs?
Do you think the JMM allows it?

119

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = y;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

The JVM and the JMM

120

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = y;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

JMM disallows
r2 == 1 because

of causality
requirements

– Ševčík and Aspinall, ECOOP, 2008

The JVM and the JMM

121

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

The JVM and the JMM

122

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

The JVM and the JMM

123

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

The JVM and the JMM

124

r1 = x;
y = r1;

T1 T2

r2 = y;
if (r2 == 1) {
r3 = r2;
x = r3;

} else x = 1;

assert r2 == 0;

int x = y = 0;

However, in a
JVM, after

redundant read
elimination

r2 = y;
x = 1;

r2 = y;
If (r2 == 1)
x = r2;

else x = 1;

Assertion
failure

possible!

Moral: Just say no to data races
Don’t try hacks based on the memory model
• Unless you are as good as Doug Lea

• Or you have formalized the memory model rules in a tool
• And even then, are the rules right?

Author of java.util.concurrent

