
Lecture 22: Dynamic Analysis
17-355/17-665/17-819: Program Analysis

Rohan Padhye
April 14, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


What is dynamic analysis?
• Observe program behavior during execution on one or more inputs.
• Examples:

o Code coverage (à Greybox fuzzing, fault localization)
o Performance Profiling

§ Code profiling, memory profiling, algorithmic profiling
o Invariant Generation
o Concolic Execution
o Data structure analysis
o Concurrency analysis: Race detection
o Concurrency analysis: Deadlock detection
o Taint Analysis (à Security & Privacy)
o … (many many more)



Motivation: Invariants for Program Verification



Finding invariants manually
• Hoare's post-condition:

• Some intermediate invariants: 



Final Result



Insight
• Given a program location, if we could infer an invariant for that 

location, we could have … 
o Loop invariants (location = loop head) 
o Function pre-conditions (location = entry)
o Function post-conditions (location = exit)

• Can we do this automatically?
• Two insights:

o An invariant always holds on all executions
o We can detect spurious false invariants



Dynamic Invariant Detection
• What if we require that the program come equipped with inputs?

o An indicative workload
o High-coverage test cases

• Since an invariant holds on every execution (by definition), any 
candidate invariant that fails even once can be tossed out!

• Plan: generate many candidate invariants, filter out the false 
ones!



A bad idea
• Given: 

– while b do c

• Instrument:
– while b do (print Inv1; print Inv2; … ; c) 
– Run on all tests, filter out on false

• How many candidate invariants are there?



Templates
• Given program variables x, y, and z

– x = c constant
– x != 0 non-zero
– x >= c bounds
– y = ax + b linear
– x < y ordering
– (x + y) % b = a math functions
– z = ax + by + c linear

• At most three variables at a time: finite!
Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). 

Dynamically discovering likely program invariants to support program evolution.
IEEE transactions on software engineering, 27(2), 99-123.



Daikon
• The Daikon invariant detection algorithm

o For every program location
§ For all triples of in-scope variables

• Instantiate invariant templates to obtain candidate invariants
• Instrument program

• For every test case
o Run instrumented program
o Filter out any falsified candidate invariant

• Running time: cubic in in-scope variables, linear in test suite, 
linear in program

Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). 
Dynamically discovering likely program invariants to support program evolution.

IEEE transactions on software engineering, 27(2), 99-123.



Exercise: Infer Likely Invariants
Program: (input= N >0)
i := 0
while i != N:
i := i + 1

Loop Invariants to Evaluate

• i = 0

• i < 0

• i <= 0

• i > 0

• i >= 0

• N = 0

• N < 0

• N <= 0

• N >= 0

• N > 0

• i == N

• i < N

• i <= N

• i > N

• i >= N



Daikon: Limitations
• False Negatives

– If your invariant does not fit a template, Daikon cannot find it
– Example: l + u – 1 <= 2p <= l + u  (bsearch pivot)
– Example: 

• Nothing prevents Daikon from finding these
• But each increase in the language of candidate invariants 

bloats the complexity



Daikon: Limitations
• False Positives from limited input

– If you only test your sorting program on one input, [4;2;3], 
Daikon will learn output[0] = 2

– But making high-coverage, high-adequacy tests is easy, no? That's 
why we're doing formal verification. Oh, right. 

• False Positives from linguistic coincidence
– Ex: ptr % 4 == 0 
– Ex: x <= MAX_INT
– Not false, but not related to correctness. 



Dynamic Invariant Detection (DIG)
• Daikon is ill-suited for richer languages of invariants (e.g., 

non-linear relations, array relations, etc.) because all 
candidate invariants must be listed and considered.

• Idea:
– Instead of listing invariants, list values, and induce invariants via 

constraint solving
– Ex: instead of printing x>y, x<y, x>=y, etc., just print out x and y 

and figure out which is true later

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A 
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng. 

Methodol. 23, 4, Article 30 (September 2014)



Dig Example: Cohen's Division

// quotient
// remainder

// loop invariant

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A 
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng. 

Methodol. 23, 4, Article 30 (September 2014)



Cohen's Division on input (15,2)

// quotient
// remainder

// loop invariant

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A 
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng. 

Methodol. 23, 4, Article 30 (September 2014)



Cohen's Division on input (4,1)

// quotient
// remainder

// loop invariant

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A 
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng. 

Methodol. 23, 4, Article 30 (September 2014)



Cohen's Division Desires

// quotient
// remainder

// loop invariant

“Geometric Invariant Inference”

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A 
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng. 

Methodol. 23, 4, Article 30 (September 2014)



Dynamic Analysis: Recap
• Observe program behavior during execution on one or more inputs.
• Examples:

o Code coverage (à Greybox fuzzing, fault localization)
o Performance Profiling

§ Code profiling, memory profiling, algorithmic profiling
o Invariant Generation
o Concolic Execution
o Data structure analysis
o Concurrency analysis: Race detection
o Concurrency analysis: Deadlock detection
o Taint Analysis (à Security & Privacy)
o … (many many more)



Collecting execution info
• Runtime monitoring

o Combination of OS-level interrupts, introspection of exec state (registers, 
program counter), and saved debug info

o Examples: gdb (ddd), Java Debug Interface (VisualVM)

• Run on a specialized VM 
o e.g., valgrind

• Instrument at compile time 
o e.g., Aspects, logging

• Instrument bytecode on-the-fly
o Python: sys.settrace; Java: ASM toolkit with a javaagent or classloader



Collecting execution info
• What to collect? Only what’s necessary
• Key idea (again): Abstraction
• Examples:

o Code coverage à Log branches
o Profiling à Log loops, function calls, allocations, frees, etc.
o Invariant generation à Log predicates over vars in scope
o Concolic execution à Track symbolic values; log branch constraints
o Race detection à Track locks, vector clocks; log accesses



Techniques for Instrumentation
• Choice of program representation is critical

o Source code
o Abstract syntax trees
o Control-flow graph (e.g. LLVM)
o Bytecode (e.g. JVM .class files, Python .pyc)
o Assembly / Machine code

• Which one is best? Depends.
o ASTs good for expression-level instrumentation (e.g. concolic testing)
o CFGs for basic-block-level logic (e.g. branch coverage, loop profiling)
o Bytecode/assembly for tracking low-level details sans types, etc. 

§ May be the only thing available when instrumenting closed source or otherwise 
precompiled third-party libraries



AST-level instrumentation
• Most general form: Replace every node with a callback to a node 

“handler”, which interprets the expression/statement
• Example:

o Original: a + (b – 1) 
o Instrumented: add(var(’a’, a), sub(var(‘b’, b), const(1))
o Default Handler: function add(x1, x2) { return x1 + x2; }
o Logging Handler: 

§ function add(x1, x2) { printf(“Adding %s + %s2”, x1, x2); return x1 + x2; }
o Concolic Handler:

§ function var(name, val) { concolic.track(name, val); return concolic.get(name); }
§ function add(x1, x2) { return concolic.add(x1, x2); }

• Sample tool: Jalangi (JavaScript)



Bytecode Instrumentation
• Bytecode: Mid-to-low-level IR used by somewhat dynamic 

language runtimes (e.g. JVM, Python, WebAssembly)
• Often use a stack machine representation

o Accesses and manipulates a stack of values
o Instructions are simple and operate on stack values
o Very easy to write an AST-to-stack-machine compiler

§ Pre-order tree traversal to emit code (”emit” operands first, then “emit” node)
o Bytecode can be interpreted (e.g. CPython) or JIT-compiled to assembly 

(e.g. JVM HotSpot)



Stack Machine Bytecode
Instruction (at <label>)
• Push <const>
• Load <var>
• Store <var>
• Dup
• Add
• Invoke <func> <nargs>
• Jump <label’>
• Jump-if-zero <label’>

Stack (before à after)
• … à … <const>
• … à … E(var)
• ... val à …     // E[var ↦ val]
• … val à … val val
• … val1 val2 à … (val1+val2)
• … val1 val2 … valnargs à … result
• … à …            // PC = label’
• … val à …    // PC = val ? PC+1 : label’



Exercise: Convert to stack-machine bytecode
• x = foo(a + bar())



Exercise: Instrument bytecode
• Replace all “a + b” with call to “my_add(a, b)”

• What to search for:

• What to replace with:



Exercise: Instrument bytecode
• For each conditional branch executed, we want to print 1 if taken

and 0 if not taken.

• What to search for:

• What to replace with:



Static vs Dynamic Analysis
• Over-approximation vs Under-approximation
• When is one better than other? Tradeoffs!

o Soundness/Completeness
§ Static analysis often “sound” for over-approximate reasoning (e.g. verification)
§ Dynamic Analysis can be ”sound” for under-approximate reasoning (e.g. hot spots or bugs). 
§ Neither technique is complete in general.

o Scalability
§ Static analysis often scales super-linearly with program size
§ Dynamic analysis tries to scale linearly with execution length

o Feasibility
§ Static analysis may be impossible with incomplete information (e.g. dynamically loaded code, 

dependency injection, multi-language code, hardware interaction)
§ Dynamic analysis is only useful when appropriate program inputs are available 


