Lecture 22: Dynamic Analysis

17-355/17-665/17-819: Program Analysis
Rohan Padhye
April 14, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

https://creativecommons.org/licenses/by/4.0/

What is dynamic analysis?

« Observe program behavior during execution on one or more inputs.

- Examples:
o Code coverage (= Greybox fuzzing, fault localization)
o Performance Profiling

= Code profiling, memory profiling, algorithmic profiling

Invariant Generation

Concolic Execution

Data structure analysis

Concurrency analysis: Race detection

Concurrency analysis: Deadlock detection

Taint Analysis (= Security & Privacy)

... (many many more)

O O O O O O O

Frogramming Languages

Motivation: Invariants for Program Verification

AD.GIIB. uuotf 3

Proof of a Program: FIND

C. A. R. Hoagre
Queen’s University,* Belfast, Ireland

A proof is given of the correctness of the algorithm “Find.”
First, an informal description is given of the purpose of the
program and the method used. A systematic technique is de-
scribed for constucting the program proof during the process
of coding it, in such o way as to prevent the intrusion of
logical errors. The proof of termination is treated as o sep-
arate exercise. Finally, some conclusions relating to general
programming methodology are drawn.

KEY WORDS AND PHRASES: proofs of prog , progr i hod

ology, prog: d ion, prog cor
CR CATEGORIES: 4.0, 4.22, 5.21, 5.23, 5.24

theory of programming

1. Introduction

In a number of papers (1, 2, 3] the desirability of proving
the correctness of programs has been suggested and this
has been illustrated by proofs of simple example programs.
In this paper the construction of the proof of a useful,
efficient, and nontrivial program, using a method based on
invariants, is shown. It is suggested that if a proof is con-
structed as part of the coding process for an algorithm, it
is hardly more laborious than the traditional practice of
program testing.

: ond
. ion meience

< vmeuce University
sort the whole array. If the array is small, thinwould be a
good method; but if the array is large, the timne talisii to
sort it will also be large. The Find program is designed to
take advantage of the weaker requirements to save much
of the time which would be involved in a full sort.

The usefulness of the Find program arises from its
application to the problem of finding the median or other
quantiles of a set of observations stored in a computer
array. For example, if N is odd and f is set to (N + 1)/2,
the effect of the I'ind program will be to place an observa-
tion with value equal to the median in A[f]. Similarly the
first quartile may be found by setting f to (N + 1)/4,
and =0 on.

The method used is based on the principle that the
desired effect of Find is to move lower valued elements of
the array to one end—the “left-hand” end—and higher
valued elements of the array to the other end—the “‘right-
hand” end. (See Table I(a)). This suggests that the array
be scanned, starting at the left-hand end and moving right-
ward. Any element encountered which is small will re-
main where it is, but any element which is large should be
moved up to the right-hand end of the array, in exchange
for a small one. In order to find such a small element, a
separate scan is made, starting at the right-hand end and
moving leftward. In this scan, any large element encoun-
tered remains where it is; the first small element encoun-
tered is moved down to the left-hand end in exchange for
the large element already encountered in the rightward
scan. Then both scans can be resumed until the next ex-
change is necessarv. The process is repeated until the
scans meet somewhere in the middle of the armay. It is
then known that all elements to the left of this meeting
point will be small, and all elements to the right will be

lawema YWU'l oLz o . e

Finding invariants manually

e Hoare's post-condition:
he required result is:

VP, 91 < p < f<q <N D Alp] < Al < Alg))

. . . . [Found]
e Some intermediate invariants:

m<f&Vp gl <p<m<q<NDA[p) < Alq)
[m-invariant|

Similarly, n is intended to point to the rightmost element
of the middle part; it must never be less than f, and there
will always be a split just to the right of it:

f€<n&Vp, gl <p<n<qg<NDAp) < Alg)
[n-invariant]

begin
comment This program operates on an array A(l:\], and a
value of f(1 < f € N). Its effect is to rearrange the elements
of A in such a way that:
vr.q(1Sp<f<gSNDA[pISAlfIS Alg]); «——
integer m, n; comment
m < f & ypg(1Sp<m<gSNDA[pI<Alg)), «—
< n &yp,q(1<p<n<gSNDA[pI< Algl); «——
m:=1; n:=N,;
while m < ndo
begin integer r, 1, j, w;
comment
m < i & yp(1Sp<iDA[p]Sr), «—r

[J
F]nal Result jSn &waG<gENDr<Alg); «——
r:= Alf]; 1 :=m; j := n;
while 1 < j do
begin while Ali] < rdot := 1t + 1;
whiler < Alj]doj := 7 =1
comment Afj] < r < Ali); «—
if 1 < j then
begin w := Afi]; Ali] := A[j]; Alj) := w;
comment Ali] <r < Al);
ic=itl; jimj—1;
end
end increase 1 and decrease j;
iff <j)thenn :=j;
elseif i < fthenm := 1
else go to L
end reduce middle part;
L:
end Find

Insight

« Given a program location, if we could infer an invariant for that
location, we could have ...
o Loop invariants (location = loop head)

o Function pre-conditions (location = entry)
o Function post-conditions (location = exit)

« Can we do this automatically?

« Two insights:
o Aninvariant always holds on all executions
o We can detect spurious false invariants

Dynamic Invariant Detection

« What if we require that the program come equipped with inputs?
o An indicative workload
o High-coverage test cases

 Since an invariant holds on every execution (by definition), any
candidate invariant that fails even once can be tossed out!

« Plan: generate many candidate invariants, filter out the false
ones!

A bad idea

e Given:
- while b do ¢
e Instrument:

- while b do (print Inv1; print InvZ; ... ; €)
- Run on all tests, filter out on false

« How many candidate invariants are there?

Templates

e Given program variables x, y, and z

- X=C constant
-x!1=0 non-zero

- X>=C bounds
-y=ax+Db linear

- X<y ordering

- (x+y)%b=a math functions
-Z=ax+by+c linear

e« At most three variables at a time: finite!

Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001).
Dynamically discovering likely program invariants to support program evolution.
IEEE transactions on software engineering, 27(2), 99-123.

Daikon

« The Daikon invariant detection algorithm

o For every program location

= For all triples of in-scope variables
Instantiate invariant templates to obtain candidate invariants
Instrument program

* For every test case
o Run instrumented program
o Filter out any falsified candidate invariant

« Running time: cubic in in-scope variables, linear in test suite,
linear in program

Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001).
Dynamically discovering likely program invariants to support program evolution.

IEEE transactions on software engineering, 27(2), 99-123.

Exercise: Infer Likely Invariants

Program: (input: N >0) Loop Invariants to Evaluate
1:=20 + =0
while 1 != N: :=Oo
1 :=1+1 Lo
. i>=0
« N=0
« N<O
« N<=0
- N>=0
« N>0
.« i==N
« i<N
. i<=N
« i>N

- i>=N

Daikon: Limitations

e False Negatives
- If your invariant does not fit a template, Daikon cannot find it
- Example: l+u-1<=2p<=1+u (bsearch pivot)
- Example: The required result is:

Vp, 91 < p <f<q<NDAp] £ Al < Alg)
[Found]

e Nothing prevents Daikon from finding these

e But each increase in the language of candidate invariants
bloats the complexity

Daikon: Limitations

e False Positives from limited input

- If you only test your sorting program on one input, [4;2;3],
Daikon will learn output[0] = 2

- But making high-coverage, high-adequacy tests is easy, no? That's
why we're doing formal verification. Oh, right.
e False Positives from linguistic coincidence
- EX: ptr % 4 ==
- Ex: x <= MAX_INT
- Not false, but not related to correctness.

Dynamic Invariant Detection (DIG)

e Daikon is ill-suited for richer languages of invariants (e.g.,
non-linear relations, array relations, etc.) because all
candidate invariants must be listed and considered.

e |dea:
- Instead of listing invariants, list values, and induce invariants via

constraint solving
- Ex: instead of printing x>y, x<y, x>=y, etc., just print out x and y
and figure out which is true later

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A
Dynamic Invariant Genera tor for Polynomial and Array Invariants. ACM Trans. Softw. Eng.
Methodol. 23, 4, Article 30 (September 2014)

© 00 N O O & W N =

o = S S S
W N = O

q = 0 /quotient
r = X //remainder
while r > y:
a = 1
b =y
while r > 2b:
[L] // loop invariant
a = 2a
b = 2b

rF = & «— D
Q=49+ a
return q

Dig Example: Cohen’s Division
def intdiv(x, y):

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng.
Methodol. 23, 4, Article 30 (September 2014)

Cohen's Division on input (15,2)

© 00 N O O & W N =

o = S S S
W NN = O

def intdiv(x, y):
q = 0 /quotient
r = X //remainder
while r > y:
a = 1
b =y
while r > 2b:
[L] // loop invariant

a = 2a
b = 2b
r = r - b

qQ =q + a
return q

15
15
15

15
15

NN e
N BN O
S~ O O |1KQ

- N = |

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng.
Methodol. 23, 4, Article 30 (September 2014)

© 00 N O O & W N =

o = S S S
W NN = O

Cohen's Division on input (4,1)

def intdiv(x, y):
q = 0 /quotient

r = X //remainder
while r > y:
a =1
b =y

while r > 2b:
[L] // loop invariant

a = 2a
b = 2b
r = — Db
qQ =9 *+ a

return q

r yla b q r
15 211 2 0 15
15 212 4 0O 15
15 2|1 2 4 7
4 1|1 1 0 4
4 1|12 2 0 4

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A
Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng.
Methodol. 23, 4, Article 30 (September 2014)

© 00 N O O & W N =

=
N = O

13

Cohen'’s Division Desires

def intdiv(x, y):
q = 0 /quotient

r = X //remainder
while r > y:
a =1
b =y

while r > 2b:
[L] // loop invariant

a = 2a
b = 2b
r = — Db
qQ =9 *+ a

return q

r yla b q r
15 211 2 0 15
15 212 4 0O 15
15 2|1 2 4 7
4 1|1 1 0 4
4 1|12 2 0 4

{b=ya,xr=qy+rr>2ya}
“Geometric Invariant Inference”
Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A

Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. Softw. Eng.
Methodol. 23, 4, Article 30 (September 2014)

Dynamic Analysis: Recap

« Observe program behavior during execution on one or more inputs.

- Examples:
o Code coverage (= Greybox fuzzing, fault localization)
o Performance Profiling

= Code profiling, memory profiling, algorithmic profiling

Invariant Generation

Concolic Execution

Data structure analysis

Concurrency analysis: Race detection

Concurrency analysis: Deadlock detection

Taint Analysis (= Security & Privacy)

... (many many more)

O O O O O O O

Collecting execution info

Runtime monitoring

o Combination of OS-level interrupts, introspection of exec state (registers,
program counter), and saved debug info

o Examples: gdb (ddd), Java Debug Interface (VisualVM)

Run on a specialized VM

o e.g. valgrind

Instrument at compile time
o e.g., Aspects, logging

Instrument bytecode on-the-fly
o Python: sys.settrace; Java: ASM toolkit with a javaagent or classloader

Collecting execution info

« What to collect? Only what's necessary
« Key idea (again): Abstraction

« Examples:

o Code coverage - Log branches
Profiling > Log loops, function calls, allocations, frees, etc.
Invariant generation - Log predicates over vars in scope
Concolic execution - Track symbolic values; log branch constraints
Race detection - Track locks, vector clocks; log accesses

o O O O

Techniques for Instrumentation

« Choice of program representation is critical
o Source code

o Abstract syntax trees

o Control-flow graph (e.g. LLVM)

o Bytecode (e.g. JVM .class files, Python .pyc)

o Assembly / Machine code
W

hich one is best? Depends.
o ASTs good for expression-level instrumentation (e.g. concolic testing)
o CFGs for basic-block-level logic (e.g. branch coverage, loop profiling)
o Bytecode/assembly for tracking low-level details sans types, etc.

= May be the only thing available when instrumenting closed source or otherwise
precompiled third-party libraries

AST-level instrumentation

« Most general form: Replace every node with a callback to a node
“handler”, which interprets the expression/statement

« Example:
o Original:a+(b-1)
o Instrumented: add(var('a’, a), sub(var('b’, b), const(1))
o Default Handler: function add(x1, x2) { return x1 + x2; }
o Logging Handler:
= function add(x1, x2) { printf("Adding %s + %s2", X1, x2); return x1 + x2; }
o Concolic Handler:

= function var(name, val) { concolic.track(name, val); return concolic.get(name); }
= function add(x1, x2) { return concolic.add(x1, x2); }

« Sample tool: Jalangi (JavaScript)

Bytecode Instrumentation

- Bytecode: Mid-to-low-level IR used by somewhat dynamic
language runtimes (e.g. JVM, Python, WebAssembly)

« Often use a stack machine representation
o Accesses and manipulates a stack of values
o Instructions are simple and operate on stack values

o Very easy to write an AST-to-stack-machine compiler
= Pre-order tree traversal to emit code (“emit” operands first, then “emit” node)

o Bytecode can be interpreted (e.g. CPython) or JIT-compiled to assembly
(e.g. JVM HotSpot)

Stack Machine Bytecode

Stack (before = after)

Instruction (at <label>)

Push <const>

Load <var>

Store <var>

Dup

Add

nvoke <func> <nargs>

Jump <label>
Jump-if-zero <label>

.. 2 ... <const>

... 2 ... E(var)

..val—> ... // E[var » val]

... val = ... val val

... val; val, = ... (val,+val,)

..valyvaly ... valags =2 ... result

e D // PC = label

..val—> .. [//PC=val?PC+1:label

Exercise: Convert to stack-machine bytecode

« x=foo(a + bar())

Exercise: Instrument bytecode

 Replace all “a + b" with call to “my_add(a, b)”

« What to search for:

« What to replace with:

Exercise: Instrument bytecode

« For each conditional branch executed, we want to print 1 if taken
and 0O if not taken.

« What to search for:

« What to replace with:

Static vs Dynamic Analysis

« Qver-approximation vs Under-approximation

« When is one better than other? Tradeoffs!

o Soundness/Completeness
= Static analysis often “sound” for over-approximate reasoning (e.g. verification)
= Dynamic Analysis can be "sound” for under-approximate reasoning (e.g. hot spots or bugs).
= Neither technique is complete in general.

o Scalability
= Static analysis often scales super-linearly with program size
= Dynamic analysis tries to scale linearly with execution length

o Feasibility

= Static analysis may be impossible with incomplete information (e.g. dynamically loaded code,
dependency injection, multi-language code, hardware interaction)

= Dynamic analysis is only useful when appropriate program inputs are available

