
Lecture 19:
Program Synthesis

17-355/17-665/17-819: Program Analysis
Rohan Padhye
March 31, 2022

* Course materials developed with Jonathan Aldrich amd Claire Le Goues
With slide inspiration gratitude to Emina Torlak and Ras Bodik

1(c) J. Aldrich, C. Le Goues, R. Padhye
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Program Synthesis Overview
• A mathematical characterization of program synthesis: prove

that

• In constructive logic, the witness to the proof of this statement is
a program P that satisfies property φ for all input values x

2(c) J. Aldrich, C. Le Goues, R. Padhye

Program Synthesis Overview
• A mathematical characterization of program synthesis: prove

that

• In constructive logic, the witness to the proof of this statement is
a program P that satisfies property φ for all input values x

• What could the inferred program P be?
o Historically, a protocol, interpreter, classifier, compression algorithm,

scheduling policy, cache coherence policy, …

• How is property φ expressed?
o Historically, as a formula, a reference implementation, input/output

pairs, traces, demonstrations, a sketch, …
3(c) J. Aldrich, C. Le Goues, R. Padhye

Exercise: specify P_max(list)
• Specify a program 𝑃!"#(𝑙) that finds the maximum number in a

list 𝑙. How many different ways can you do it?

4(c) J. Aldrich, C. Le Goues, R. Padhye

Expressing User Intent
• How do we constrain the program to be synthesized?

o Express what we know about the problem and/or solution
o Usually incomplete

• Two forms of specification can constrain synthesis
o Observable behavior: input/output relations, executable specification,

safety property
o Structural properties: constraints on internal computation, such as a

sketch, template, assertions about structure (e.g. number of iterations)

5(c) J. Aldrich, C. Le Goues, R. Padhye

The Search Space of Programs
• Constraining the search space can help make synthesis feasible

o Subset of a real programming language?
o Grammar for combining fixed set of operators and control structures?
o DSL?
o Logic?

6(c) J. Aldrich, C. Le Goues, R. Padhye

Two approaches to searching for programs
• Deductive synthesis

o Maps a high-level specification to an implementation, using a theorem prover
o Efficient, provably correct
o Require complete specifications, sufficient axiomatization of the domain

§ Can be as complicated as writing the program itself!
o Used for e.g. controllers
o A lot like compilation!

• Inductive synthesis
o Takes a partial, perhaps multi-modal specification and constructs a program

that satisfies it
o Flexible in specification requirements, require no axioms
o May be less efficient, weaker guarantees on correctness/optimality
o Search techniques: brute-force, probabilistic, genetic programming, logical

reasoning
o Major current focus of research

7(c) J. Aldrich, C. Le Goues, R. Padhye

Inductive synthesis
Find a program correct on a set of inputs and hope (or verify) that
it’s correct on other inputs.

A partial program syntactically defines the candidate space.

Inductive synthesis search phrased as a constraint problem.

Program found by (symbolic) interpretation of a (space of)
candidates, not by deriving the candidate.

So, to find a program, we need only an interpreter,
not a sufficient set of derivation axioms.

Exercise: validate P_max(list)
• Given a candidate program 𝑃!"#(𝑙) that finds the maximum

number in a list 𝑙, how can you check if it is correct?

15(c) J. Aldrich, C. Le Goues, R. Padhye

Overview of CEGIS

reg6 * 4 + 1

Partial or
multi-modal
specification

of the desired
program

Solves $P . j(x1, P(x1))
˄ … ˄ j(xn P(xn)) for

representative inputs
x1,…,xn

s4addl(reg6, 1)

A program P from
the given space of

candidates that
satisfies j on all

(usually bounded)
inputs

expr :=
const | reg6 |
s4addl(expr, expr) |
...

CEGIS: Counterexample-guided
Inductive Synthesis

[Solar-Lezama et al., ASPLOS 06]

A syntactic sketch
describing the shape of

the desired program;
defines the space of

candidate programs to
search. Can be tuned for

performance.

Sketching intuition

18

spec: int foo (int x) {
return x + x;

}

sketch:int bar (int x) implements foo {
return x << ??;

}

result: int bar (int x) implements foo {
return x << 1;

}

Extend the language with two constructs

𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an
int constant meeting 𝜙

EXAMPLE: BIT COUNTING

1. bit[W] countBits(bit[W] x)

2. {

3. int count = 0;

4. for (int i = 0; i < W; i++) {

5. if (x[i]) count++;

6. }

7. return count;

8. }

Intuition
Bit string:ABCDEFGHIJKLMNOP
Bits >> 1: 0ABCDEFGHIJKLMNO
Mask: 0101010101010101
Result: 0A0C0E0G0I0K0M0O

Bit string:ABCDEFGHIJKLMNOP
Mask: 0101010101010101
Result: 0B0D0F0H0J0L0N0P

0B 0D 0F 0H 0J 0L 0N 0P
+ 0A 0C 0E 0G 0I 0K 0M 0O
= A+B C+D E+F G+H I+J K+L M+N O+P

Repeat

0 A+B+C+D 0 E+F+G+H 0 I+J+K+L 0 M+N+O+P

0000 A+B+C+D+E+F+G+H 0000 I+J+K+L+M+N+O+P

0000 0000 000 A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P

1. bit[W] countSketched(bit[W] x)

2. implements countBits {

3. loop (??) {

4. x = (x & ??) +

5. ((x >> ??) & ??);

6. }

7. return x;

8. }

1. bit[W] countSketched(bit[W] x)
2. {
3. x = (x & 0x5555) +
4. ((x >> 1) & 0x5555);
5. x = (x & 0x3333) +
6. ((x >> 2) & 0x3333);

7. x = (x & 0x0077) +
8. ((x >> 8) & 0x0077);
9. x = (x & 0x000F) +
10. ((x >> 4) & 0x000F);
11. return x;
12. }

Oracle-Guided Inductive Synthesis
1. Generalize CEGIS (counterexample-guided inductive synthesis)

o From sketches to arbitrary programs

2. Synthesize programs from components

39(c) J. Aldrich, C. Le Goues, R. Padhye

CEGIS: A Mathematical View
• Let’s formalize Counterexample-Guided Inductive Synthesis (CEGIS)
• Consider a formalization of synthesizing a max function for lists

• CEGIS iterates between synthesis from examples and
counterexample generation

• How do we generate a counterexample?

40(c) J. Aldrich, C. Le Goues, R. Padhye

Counterexample generation, formalized
• Let’s say we have a candidate program Pmax. Does it meet the spec?

o Here’s how that can be formalized:

• By De Morgan’s Law, this is equivalent to disproving the negation:

• This finds a list l and a corresponding incorrect output m
• Let’s tweak this to generate the correct output, m*:

• We can use this to help generate the next version of Pmax

41(c) J. Aldrich, C. Le Goues, R. Padhye

Oracle-Guided Component-Based Program
Synthesis (from examples)
• Goal: given a set of N components 𝑓), … , 𝑓* and a set of 𝑇 input/output pairs

𝛼+, 𝛽+ … 𝛼,, 𝛽, , synthesize a function f such that: ∀𝑖 ∈ [0, 𝑇]: 𝑓 𝛼- = 𝛽-.
• We search for programs of a particular form:

42(c) J. Aldrich, C. Le Goues, R. Padhye

Put inputs in variables

Compute N functions,
each of which has

arguments

Choices: fill in the ?s
• What order are the functions in?
• What variables are passed to each function?
• What variable is returned?

The program is defined by a set of variables
• Program input variables
• Input to each

component
• Output of each

component
• Output of the program

43(c) J. Aldrich, C. Le Goues, R. Padhye

Program variables are specified by location
variables
• Location variable lx specifies where x is

defined
• L is the set of location variables

(again: component inputs, component results,
program inputs, and program result)

44(c) J. Aldrich, C. Le Goues, R. Padhye

Example of Location Variables
• Imagine we have one input and one component, +
• Here’s a sample program:

• This can be specified by the location variables

45(c) J. Aldrich, C. Le Goues, R. Padhye

Practice with Location Variable Encodings
Assume two components, * and <<, each of which takes two inputs
and produces a single output. Provide a map which assigns values
to location variables that describe the following straight-line code.
For your reference, the variables are:
z0 = input0

z1 = input1

z2 = z0 << z1 // component <<
z3 = z2 * z2 // component *
return z2

46(c) J. Aldrich, C. Le Goues, R. Padhye

Well-formedness constraints on the generated
program
• Component inputs come from locations 0…M

o M = number of inputs + number of functions N

• Component outputs defined after program
inputs

• One component per line

• Component inputs are defined before use

47(c) J. Aldrich, C. Le Goues, R. Padhye

Functionality constraints
• Variables defined at the same location are the same (have the same value)

o Basically: define value flow from definition to use

• The program inputs and outputs match a test case pair
o We repeat this for all test cases

• Functional components obey their specification

48(c) J. Aldrich, C. Le Goues, R. Padhye

Component-Based Synthesis, Overall
• We conjoin the well-formedness and functionality constraints

into one big formula
• We have an SMT solver solve that formula
• The result is a witness, assigning integer values to each location

variable
o We can then convert the witness into a program
o Line i of the program:

• We can then put this into a CEGIS loop:

49(c) J. Aldrich, C. Le Goues, R. Padhye

