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Program Synthesis Overview
• A mathematical characterization of program synthesis: prove 

that

• In constructive logic, the witness to the proof of this statement is 
a program P that satisfies property φ for all input values x
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Program Synthesis Overview
• A mathematical characterization of program synthesis: prove 

that

• In constructive logic, the witness to the proof of this statement is 
a program P that satisfies property φ for all input values x

• What could the inferred program P be?
o Historically, a protocol, interpreter, classifier, compression algorithm, 

scheduling policy, cache coherence policy, …

• How is property φ expressed?
o Historically, as a formula, a reference implementation, input/output 

pairs, traces, demonstrations, a sketch, …
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Exercise: specify P_max(list)
• Specify a program 𝑃!"#(𝑙) that finds the maximum number in a 

list 𝑙.  How many different ways can you do it?
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Expressing User Intent
• How do we constrain the program to be synthesized?

o Express what we know about the problem and/or solution
o Usually incomplete

• Two forms of specification can constrain synthesis
o Observable behavior: input/output relations, executable specification, 

safety property
o Structural properties: constraints on internal computation, such as a 

sketch, template, assertions about structure (e.g. number of iterations)
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The Search Space of Programs
• Constraining the search space can help make synthesis feasible

o Subset of a real programming language?
o Grammar for combining fixed set of operators and control structures?
o DSL?
o Logic?
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Two approaches to searching for programs
• Deductive synthesis

o Maps a high-level specification to an implementation, using a theorem prover
o Efficient, provably correct
o Require complete specifications, sufficient axiomatization of the domain

§ Can be as complicated as writing the program itself!
o Used for e.g. controllers
o A lot like compilation!

• Inductive synthesis
o Takes a partial, perhaps multi-modal specification and constructs a program 

that satisfies it
o Flexible in specification requirements, require no axioms
o May be less efficient, weaker guarantees on correctness/optimality
o Search techniques: brute-force, probabilistic, genetic programming, logical 

reasoning
o Major current focus of research
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Inductive synthesis
Find a program correct on a set of inputs and hope (or verify) that 
it’s correct on other inputs.  

A partial program syntactically defines the candidate space.

Inductive synthesis search phrased as a constraint problem.  

Program found by (symbolic) interpretation of a (space of) 
candidates, not by deriving the candidate. 

So, to find a program, we need only an interpreter, 
not a sufficient set of derivation axioms.



Exercise: validate P_max(list)
• Given a  candidate program 𝑃!"#(𝑙) that finds the maximum 

number in a list 𝑙, how can you check if it is correct?
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Overview of CEGIS



reg6 * 4 + 1

Partial or 
multi-modal 
specification 

of the desired 
program

Solves $P . j(x1, P(x1))
˄ … ˄ j(xn P(xn)) for 

representative inputs 
x1,…,xn

s4addl(reg6, 1)

A program P from 
the given space of 

candidates that 
satisfies j on all 

(usually bounded) 
inputs

expr :=
const | reg6 | 
s4addl(expr, expr) | 
... 

CEGIS: Counterexample-guided 
Inductive Synthesis

[Solar-Lezama et al., ASPLOS 06]

A syntactic sketch 
describing the shape of 

the desired program; 
defines the space of 

candidate programs to 
search. Can be tuned for 

performance. 



Sketching intuition

18

spec: int foo (int x) { 
return x + x; 

} 

sketch:int bar (int x) implements foo {
return x << ??;

} 

result: int bar (int x) implements foo {
return x << 1;

} 

Extend the language with two constructs

𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an 
int constant meeting 𝜙



EXAMPLE: BIT COUNTING



1. bit[W] countBits(bit[W] x)

2. { 

3. int count = 0;

4. for (int i = 0; i < W; i++) { 

5. if (x[i]) count++; 

6. } 

7. return count; 

8. } 



Intuition
Bit string:ABCDEFGHIJKLMNOP
Bits >> 1: 0ABCDEFGHIJKLMNO
Mask: 0101010101010101
Result: 0A0C0E0G0I0K0M0O

Bit string:ABCDEFGHIJKLMNOP
Mask: 0101010101010101
Result: 0B0D0F0H0J0L0N0P

0B  0D  0F  0H  0J  0L  0N  0P
+ 0A  0C  0E  0G  0I  0K  0M  0O
= A+B C+D E+F G+H I+J K+L M+N O+P

Repeat

0 A+B+C+D 0 E+F+G+H 0 I+J+K+L 0 M+N+O+P

0000 A+B+C+D+E+F+G+H 0000 I+J+K+L+M+N+O+P

0000 0000 000 A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P



1. bit[W] countSketched(bit[W] x) 

2. implements countBits { 

3. loop (??) {

4. x = (x & ??) + 

5. ((x >> ??) & ?? ); 

6. }

7. return x; 

8. }



1. bit[W] countSketched(bit[W] x) 
2. { 
3. x = (x & 0x5555) + 
4. ((x >> 1) & 0x5555); 
5. x = (x & 0x3333) + 
6. ((x >> 2) & 0x3333); 

7. x = (x & 0x0077) + 
8. ((x >> 8) & 0x0077); 
9. x = (x & 0x000F) + 
10. ((x >> 4) & 0x000F); 
11. return x; 
12. }



Oracle-Guided Inductive Synthesis
1. Generalize CEGIS (counterexample-guided inductive synthesis)

o From sketches to arbitrary programs

2. Synthesize programs from components
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CEGIS: A Mathematical View
• Let’s formalize Counterexample-Guided Inductive Synthesis (CEGIS)
• Consider a formalization of synthesizing a max function for lists

• CEGIS iterates between synthesis from examples and 
counterexample generation

• How do we generate a counterexample?
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Counterexample generation, formalized
• Let’s say we have a candidate program Pmax.  Does it meet the spec?

o Here’s how that can be formalized:

• By De Morgan’s Law, this is equivalent to disproving the negation:

• This finds a list l and a corresponding incorrect output m
• Let’s tweak this to generate the correct output, m*:

• We can use this to help generate the next version of Pmax
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Oracle-Guided Component-Based Program 
Synthesis (from examples)
• Goal: given a set of N components 𝑓), … , 𝑓* and a set of 𝑇 input/output pairs 

𝛼+, 𝛽+ … 𝛼,, 𝛽, , synthesize a function f such that: ∀𝑖 ∈ [0, 𝑇]: 𝑓 𝛼- = 𝛽-.
• We search for programs of a particular form:
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Put inputs in variables

Compute N functions, 
each of which has 

arguments

Choices: fill in the ?s
• What order are the functions in?
• What variables are passed to each function?
• What variable is returned?



The program is defined by a set of variables
• Program input variables
• Input to each 

component 
• Output of each 

component
• Output of the program
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Program variables are specified by location 
variables
• Location variable lx specifies where x is 

defined
• L is the set of location variables

(again: component inputs, component results, 
program inputs, and program result)
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Example of Location Variables
• Imagine we have one input and one component, +
• Here’s a sample program:

• This can be specified by the location variables
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Practice with Location Variable Encodings
Assume two components, * and <<, each of which takes two inputs 
and produces a single output.  Provide a map which assigns values 
to location variables that describe the following straight-line code.  
For your reference, the variables are:
z0 = input0

z1 = input1

z2 = z0 << z1 // component <<
z3 = z2 * z2 // component *
return z2
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Well-formedness constraints on the generated 
program
• Component inputs come from locations 0…M

o M = number of inputs + number of functions N

• Component outputs defined after program 
inputs

• One component per line

• Component inputs are defined before use
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Functionality constraints
• Variables defined at the same location are the same (have the same value)

o Basically: define value flow from definition to use

• The program inputs and outputs match a test case pair
o We repeat this for all test cases

• Functional components obey their specification
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Component-Based Synthesis, Overall
• We conjoin the well-formedness and functionality constraints 

into one big formula
• We have an SMT solver solve that formula
• The result is a witness, assigning integer values to each location 

variable
o We can then convert the witness into a program
o Line i of the program:

• We can then put this into a CEGIS loop:
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