Lecture 17: Satisfiability Modulo
Theories

17-355/17-665/17-819: Program Analysis
Rohan Padhye
March 24, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

https://creativecommons.org/licenses/by/4.0/

Sometimes we need to reason about formulas

 Verification: verification condition generation turns a Hoare triple into
a formula

o Isthat formula valid (i.e. always true - the precondition always implies the
postcondition)?

« Symbolic execution: builds path conditions as execution proceeds
o Is that path condition satisfiable (i.e. potentially true given the right inputs)?

« More applications: test generation, program synthesis, program
repair, ...

« (Can tools automatically reason about formula validity or satisfiability?

(c) J. Aldrich, C. Le Goues, R. Padhye

First step: reduce validity to satisfiability

« Formula validity: vx . F(x) is true
o (X stands for the free variables of F)

« Equivalent to —3x . F(x) is false

e Equivalent to —3x . —F(x) is true
o This is asking whether —F(x) is satisfiable

(c) J. Aldrich, C. Le Goues, R. Padhye

Satistiability modulo theories

« Satisfiability is for Boolean formulas
o Variables, Boolean operators such as A v —

 Verification conditions, path conditions, etc. have other
elements
o Integer, real constants and variables
o Operations over numbers like <> + -

« We can enhance satisfiability checkers to incorporate theories
o Presburger arithmetic can prove that 2 * x = x + X

o The theory of arrays can prove that assigning x[y] to 3 and then looking
up x[v] yields 3

(c) J. Aldrich, C. Le Goues, R. Padhye

Satisfiability (SAT) solving

« Let's start by considering Boolean formulas: variables connected with A v —

 First step: convert to conjuctive normal form (CNF)
o A conjunction of disjunctions of (possibly negated) variables
(av —=b) A(—avec)Aa(bve)
 |f formula is not in CNF, we transform it: use De Morgan'’s laws, the double
negative law, and the distributive laws:

—(PvQ®) <= —-PAr-—-Q
—(PAQ) < —-Pv-—-Q
——P << P
(PA(@QVR) < (PAQ)Vv(PAR))
(Pv(@AR) < (PvQ)A(PVR))

(c) J. Aldrich, C. Le Goues, R. Padhye

SAT solving goal

« Prove that a formula is satisfiable by giving a satisfying assignment
o A map from formula variables to Boolean values

 Example: X v Y is satisfiable
o Asatisfying assignmentis X +— true,Y +— false

« Example: X A =X is unsatisfiable
o No satisfying assignment exists

(c) J. Aldrich, C. Le Goues, R. Padhye

SAT is NP-complete

« Cook-Levin theorem [1970s] proved NP-completeness

o In NP, because can verify a satisfying assignment by evaluating the
formula

o NP-hard by reduction to polynomial-time acceptance by a
nondeterministic Turing machine

« Simple solution approach: try all satistying assignments
o Takes O(2") time for an n-variable formula

(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice

« Developed by Davis, Putnam, Logemann, and Loveland [1961]

o Still exponential in theory, but on many problems is much faster than trying all
assignments

« Key innovation #1: unit propagation
bve)AM)A(Hvevd A(—evd)A(—ecv —dv H) A (bvd)

o Inthis example, a appears alone. It must be true.

(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice

« Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all
assignments

« Key innovation #1: unit propagation
- Key innovation #2: pure literal elimination

bl A (cvd) A (—cvd) A (—cv —d) A bed)
o This example is simplified from the previous slide, based on unit propagation
o Note that b appears only positively. Setting b to true can only help us, not hurt us!

(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice

« Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all
assignments

« Key innovation #1: unit propagation
- Key innovation #2: pure literal elimination

« When we are stuck, we guess (and backtrack later if necessary)
(cvd)A(—cvd)A(—cv —d)
o Let's guess that cis truel Then we get (d) A (—d)

o We apply unit propagation to set d=true. Unfortunately the result is
so we failed to find a satisfying assignment (true) A (false)

(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice

Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all
assignments

Key innovation #1: unit propagation

Key innovation #2: pure literal elimination

When we are stuck, we guess (and backtrack later if necessary)
(cvd)A(—cvd)A(—cv —d)

o Now let's guess that c is false! Then we get (d)
o We apply unit propagation to set d=true and the formula is satisfied

(c) J. Aldrich, C. Le Goues, R. Padhye

The Full DPLL Algorithm

function DPLL(¢)
if = true then
return true
end if Heuristic: Apply unit

if ¢ contains a false clause then propagation first because it
return false creates more units and pure
literals. Pure literal assignment

end if only removes entire clauses.
for all unit clauses [in ¢ do

¢ <« UNIT-PROPAGATE(L, ¢)
end for
for all literals [occurring pure in ¢ do
¢ < PURE-LITERAL-ASSIGN(, ¢)

Try both assignments of the
chosen literal. If we assume v

is short-circuiting, then this
end for implements backtracking.

[< CHOOSE-LITERAL()

return DPLL(¢ A l) v DPLL(¢ A =)
end function

Practice: Applying DPLL

« Show how DPLL (unit propagation, pure literal elimination,
choosing a literal, backtracking) applies to the following formula:

(avb)alave)a(—mave)a(av —c)A(—av —c) A (—d)

(c) J. Aldrich, C. Le Goues, R. Padhye

From SAT to SMT

We'd like to check the satisfiability of formulas like f(f(@) = fy)) =a ~

f(0) =a+ 2 A

r =1y
Includes arithmetic and the theory of unknown functions
o E.g.we assume fis some mathematical function

We may have solvers for each theory, but how can we combine them?
o Note that separate satisfying assignments for two theories might not be compatible!

SMT's solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell

(c) J. Aldrich, C. Le Goues, R. Padhye

Nelson-Oppen replaces expressions with
variables

f(fz)=fy) =a ~ [f(0)=a+2 N

|
<

(c) J. Aldrich, C. Le Goues, R. Padhye

Now we have formulas in two theories

« Theory of uninterpreted functions « Theory of arithmetic

f(el) =a el =e2—e3
e2 = f(x) ed = 0

e3 = f(y) ed = a + 2
f(ed) = e5 =1y

r =1y

. Congruence closure:
. . i
for all f,z, and vy, if x = y then f(z) = f(y) using equalities

Combining Theories using DPLL

 Consider the following source formula: x 20 Ay =z + 1 /\ y>2vy<1l)
* We can convert each subformula to a variable: \pl A D2 A (P3N p4(

- Now we solve with DPLL and get a satisfying assignment: pl,p2, —p3, p4

« We ask the theories if this assignment is feasible

o The theory of arithmetic says no. p1, p2, and p4 can't all be true, because p1 and p2
together imply y > 1

- We add a clause expressing this and run DPLL again on
plAP2 A (p3 v pd) A (—pl v —p2 v —p4)

One satisfying assignment is pl,p2,p3, —p4

o We check this against the theories and it succeeds

(c) J. Aldrich, C. Le Goues, R. Padhye

Details on equality

« Sometimes a theory doesn't tell us an equality, but rather that
one of two equalities are true

o That's fine—we just encode this as a formula and give it to DPLL. For
example: (el =e2 v el # €2) A (€2 =e3 v €2 # €3)

o DPLL will choose which equalities are true, and we try those with other
theories.

(c) J. Aldrich, C. Le Goues, R. Padhye

SMT uses a variant of DPLL called DPLL(T)

« Tis for Theory

 Differences vs. plain DPLL

o DPLL(T) doesn’t use pure literal elimination

= Variables may not be independent when they represent a formula - so setting x to
true can hurt you, even when x is a pure literal!

= For example: (X> 10V£E<3)/\(X>10Vl’<9)/\($<7)
Can'tjust set x > 10 to true, because x <7 will be false

o DPLL(T) supports adding clauses to the formula
= To represent knowledge gained from theories, as mentioned above

(c) J. Aldrich, C. Le Goues, R. Padhye

How to solve arithmetic

« Approach #1: Substitution

o If we havey = x+1, we can eliminate y by substituting it with x+1
everywhere

o High school math!

« Approach #2: Fourier-Motzkin Elimination
o Applies when we have inequalities rather than equalities
o Transform all inequalities mentioning x into A<xorx<B

o Then eliminate X, replacing the inequalities with A< B
= Detail: if there are multiple inequalities, we conjoin the cross product of them

(c) J. Aldrich, C. Le Goues, R. Padhye

Modern tooling: SMT-lib

SMT-LIB

THE SATISFIABILITY MODULO THEORIES LIBRARY

Theories

SMT-LIB logics refer to one or more theories below. Click on a theory's name to see its declaration in Version 2.x of the

format.

ArraysEx
Functional arrays with extensionality
FixedSizeBitVectors
Bit vectors with arbitrary size
Core
Core theory, defining the basic Boolean operators
FloatingPoint
Floating point numbers
Ints
Integer numbers
Reals
Real numbers
Reals_lInts
Real and integer numbers
Strings

Unicode character strinas and reaular exnressions

SMT-
COMP

The International
Satisfiability Modulo
Theories (SMT)

Competition.
GitHub

Home

Introduction
Benchmark Submission
Publications

SMT-LIB

Previous Editions

SMT-COMP 2021

Rules

Benchmarks

Tools

Specs

Parallel & Cloud Tracks
Participants

Results

Slides

SAT Performance

Correct Score Y| Time Score A Division <
0.10587024 0.00161216 Equality-+LinearAvitt
iteElminator+MathSAT | 0.08416589 0.00358447 Equality-+!
npir 0.02936727 0.00424783 Equality
0.00616228 0.00599641 QF_Nor
S 0.00553133 0.00393864
0.00262204 0.00188031 QF_Nor
0.00157784 0.00059486 QF_Eq
0.00145186 0.0022273 QF_L
0.00125507 0.00027314
0.00093358 0.00069896 QF_Bitve
0.00093134 -0.00090887 QF_Equality+Nor
0.00055932 -0.00228172 QF _FPAitt
0.00013178 0.00015434 QF_Equality+LinearAritt
0.00010454 0.00020464 QF_Equality+Bitv
9.601e-05 0.00035558 QF_L rRealArt
UNSAT Performance
Correct Score Y| Time Score V
0.05633672 0.03589274 Equality+Nor Arith
0.02120632 0.0072311 QF_Nonl
0.01061534 0.04760987 Equality-+1 rAitt

\L)J. AlULILIL, L. LE JUUC>, N. Frdullyc

Z3 Online Demonstrator

Input
SMT-LIB 2 script

; Variable declarations
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun ¢ () Int)

; Constraints|

(assert (> a 0))
(assert (> b 0))
(assert (> ¢ 0))

; Solve
(check-sat)
(get-model)

(assert (= (+ (*aa) (*b b)) (* c)

@l SMT-LIB 2 Standard

Reset Execute

Modern tooling: Z3 w/ SMT-lib

& 73 sources

Output

Z3 output
sat
(model
(define-fun ¢ () Int
15)
(define-fun b () Int
)]
(define-fun a () Int
12)
)
Summary
Command z3-in -T:30
Execution time 0.083 s
Version z3-4.4.1

(c) J. Aldrich, C. Le Goues, R. Padhye

