
Lecture 17: Satisfiability Modulo
Theories

17-355/17-665/17-819: Program Analysis
Rohan Padhye
March 24, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

1(c) J. Aldrich, C. Le Goues, R. Padhye
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Sometimes we need to reason about formulas
• Verification: verification condition generation turns a Hoare triple into

a formula
o Is that formula valid (i.e. always true – the precondition always implies the

postcondition)?
• Symbolic execution: builds path conditions as execution proceeds

o Is that path condition satisfiable (i.e. potentially true given the right inputs)?
• More applications: test generation, program synthesis, program

repair, …

• Can tools automatically reason about formula validity or satisfiability?

2(c) J. Aldrich, C. Le Goues, R. Padhye

First step: reduce validity to satisfiability
• Formula validity: "x . F(x) is true

o (x stands for the free variables of F)

• Equivalent to ¬$x . F(x) is false
• Equivalent to ¬$x . ¬F(x) is true

o This is asking whether ¬F(x) is satisfiable

3(c) J. Aldrich, C. Le Goues, R. Padhye

Satisfiability modulo theories
• Satisfiability is for Boolean formulas

o Variables, Boolean operators such as Ù Ú ¬
• Verification conditions, path conditions, etc. have other

elements
o Integer, real constants and variables
o Operations over numbers like < > + -

• We can enhance satisfiability checkers to incorporate theories
o Presburger arithmetic can prove that 2 * x = x + x
o The theory of arrays can prove that assigning x[y] to 3 and then looking

up x[y] yields 3

4(c) J. Aldrich, C. Le Goues, R. Padhye

Satisfiability (SAT) solving
• Let’s start by considering Boolean formulas: variables connected with Ù Ú ¬
• First step: convert to conjuctive normal form (CNF)

o A conjunction of disjunctions of (possibly negated) variables

• If formula is not in CNF, we transform it: use De Morgan’s laws, the double
negative law, and the distributive laws:

5(c) J. Aldrich, C. Le Goues, R. Padhye

SAT solving goal
• Prove that a formula is satisfiable by giving a satisfying assignment

o A map from formula variables to Boolean values

• Example: is satisfiable
o A satisfying assignment is

• Example: is unsatisfiable
o No satisfying assignment exists

6(c) J. Aldrich, C. Le Goues, R. Padhye

SAT is NP-complete
• Cook-Levin theorem [1970s] proved NP-completeness

o In NP, because can verify a satisfying assignment by evaluating the
formula

o NP-hard by reduction to polynomial-time acceptance by a
nondeterministic Turing machine

• Simple solution approach: try all satisfying assignments
o Takes O(2n) time for an n-variable formula

7(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland [1961]

o Still exponential in theory, but on many problems is much faster than trying all
assignments

• Key innovation #1: unit propagation

o In this example, a appears alone. It must be true.

8(c) J. Aldrich, C. Le Goues, R. Padhye

X X X

DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all
assignments

• Key innovation #1: unit propagation
• Key innovation #2: pure literal elimination

o This example is simplified from the previous slide, based on unit propagation
o Note that b appears only positively. Setting b to true can only help us, not hurt us!

9(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all
assignments

• Key innovation #1: unit propagation
• Key innovation #2: pure literal elimination
• When we are stuck, we guess (and backtrack later if necessary)

o Let’s guess that c is true! Then we get
o We apply unit propagation to set d=true. Unfortunately the result is

so we failed to find a satisfying assignment

10(c) J. Aldrich, C. Le Goues, R. Padhye

DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all
assignments

• Key innovation #1: unit propagation
• Key innovation #2: pure literal elimination
• When we are stuck, we guess (and backtrack later if necessary)

o Now let’s guess that c is false! Then we get
o We apply unit propagation to set d=true and the formula is satisfied

11(c) J. Aldrich, C. Le Goues, R. Padhye

The Full DPLL Algorithm

12(c) J. Aldrich, C. Le Goues, R. Padhye

Heuristic: Apply unit
propagation first because it
creates more units and pure
literals. Pure literal assignment
only removes entire clauses.

Try both assignments of the
chosen literal. If we assume Ú
is short-circuiting, then this
implements backtracking.

Practice: Applying DPLL
• Show how DPLL (unit propagation, pure literal elimination,

choosing a literal, backtracking) applies to the following formula:

13(c) J. Aldrich, C. Le Goues, R. Padhye

From SAT to SMT
• We’d like to check the satisfiability of formulas like

• Includes arithmetic and the theory of unknown functions
o E.g. we assume f is some mathematical function

• We may have solvers for each theory, but how can we combine them?
o Note that separate satisfying assignments for two theories might not be compatible!

• SMT’s solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell

14(c) J. Aldrich, C. Le Goues, R. Padhye

Nelson-Oppen replaces expressions with
variables

15(c) J. Aldrich, C. Le Goues, R. Padhye

Now we have formulas in two theories
• Theory of uninterpreted functions

• Congruence closure:

• Theory of arithmetic

16(c) J. Aldrich, C. Le Goues, R. Padhye

Theories communicate
using equalities

Combining Theories using DPLL
• Consider the following source formula:
• We can convert each subformula to a variable:

• Now we solve with DPLL and get a satisfying assignment:
• We ask the theories if this assignment is feasible

o The theory of arithmetic says no. p1, p2, and p4 can’t all be true, because p1 and p2
together imply y ≥ 1

• We add a clause expressing this and run DPLL again on

• One satisfying assignment is
o We check this against the theories and it succeeds

17(c) J. Aldrich, C. Le Goues, R. Padhye

Details on equality
• Sometimes a theory doesn’t tell us an equality, but rather that

one of two equalities are true
o That’s fine—we just encode this as a formula and give it to DPLL. For

example:

o DPLL will choose which equalities are true, and we try those with other
theories.

18(c) J. Aldrich, C. Le Goues, R. Padhye

SMT uses a variant of DPLL called DPLL(T)
• T is for Theory
• Differences vs. plain DPLL

o DPLL(T) doesn’t use pure literal elimination
§ Variables may not be independent when they represent a formula – so setting x to

true can hurt you, even when x is a pure literal!
§ For example:

• Can’t just set x > 10 to true, because x < 7 will be false

o DPLL(T) supports adding clauses to the formula
§ To represent knowledge gained from theories, as mentioned above

19(c) J. Aldrich, C. Le Goues, R. Padhye

How to solve arithmetic
• Approach #1: Substitution

o If we have y = x+1, we can eliminate y by substituting it with x+1
everywhere

o High school math!

• Approach #2: Fourier-Motzkin Elimination
o Applies when we have inequalities rather than equalities
o Transform all inequalities mentioning x into A ≤ x or x ≤ B
o Then eliminate X, replacing the inequalities with A ≤ B

§ Detail: if there are multiple inequalities, we conjoin the cross product of them

20(c) J. Aldrich, C. Le Goues, R. Padhye

Modern tooling: SMT-lib

21(c) J. Aldrich, C. Le Goues, R. Padhye

Modern tooling: Z3 w/ SMT-lib

22(c) J. Aldrich, C. Le Goues, R. Padhye

