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Sometimes we need to reason about formulas
• Verification: verification condition generation turns a Hoare triple into 

a formula
o Is that formula valid (i.e. always true – the precondition always implies the 

postcondition)?
• Symbolic execution: builds path conditions as execution proceeds

o Is that path condition satisfiable (i.e. potentially true given the right inputs)?
• More applications: test generation, program synthesis, program 

repair, …

• Can tools automatically reason about formula validity or satisfiability?
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First step: reduce validity to satisfiability
• Formula validity: "x . F(x) is true

o (x stands for the free variables of F)

• Equivalent to ¬$x . F(x) is false
• Equivalent to ¬$x . ¬F(x) is true

o This is asking whether ¬F(x) is satisfiable
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Satisfiability modulo theories
• Satisfiability is for Boolean formulas

o Variables, Boolean operators such as Ù Ú ¬
• Verification conditions, path conditions, etc. have other 

elements
o Integer, real constants and variables
o Operations over numbers like < > + -

• We can enhance satisfiability checkers to incorporate theories
o Presburger arithmetic can prove that 2 * x = x + x
o The theory of arrays can prove that assigning x[y] to 3 and then looking 

up x[y] yields 3
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Satisfiability (SAT) solving
• Let’s start by considering Boolean formulas: variables connected with Ù Ú ¬
• First step: convert to conjuctive normal form (CNF)

o A conjunction of disjunctions of (possibly negated) variables

• If formula is not in CNF, we transform it: use De Morgan’s laws, the double 
negative law, and the distributive laws:
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SAT solving goal
• Prove that a formula is satisfiable by giving a satisfying assignment

o A map from formula variables to Boolean values

• Example:                is satisfiable
o A satisfying assignment is 

• Example:                     is unsatisfiable
o No satisfying assignment exists
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SAT is NP-complete
• Cook-Levin theorem [1970s] proved NP-completeness

o In NP, because can verify a satisfying assignment by evaluating the 
formula

o NP-hard by reduction to polynomial-time acceptance by a 
nondeterministic Turing machine

• Simple solution approach: try all satisfying assignments
o Takes O(2n) time for an n-variable formula
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DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland [1961]

o Still exponential in theory, but on many problems is much faster than trying all 
assignments

• Key innovation #1: unit propagation

o In this example, a appears alone.  It must be true.
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DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all 
assignments

• Key innovation #1: unit propagation
• Key innovation #2: pure literal elimination

o This example is simplified from the previous slide, based on unit propagation
o Note that b appears only positively.  Setting b to true can only help us, not hurt us!
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DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all 
assignments

• Key innovation #1: unit propagation
• Key innovation #2: pure literal elimination
• When we are stuck, we guess (and backtrack later if necessary)

o Let’s guess that c is true!  Then we get
o We apply unit propagation to set d=true.  Unfortunately the result is 

so we failed to find a satisfying assignment
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DPLL: Efficient SAT solving in practice
• Developed by Davis, Putnam, Logemann, and Loveland

o Still exponential in theory, but on many problems is much faster than trying all 
assignments

• Key innovation #1: unit propagation
• Key innovation #2: pure literal elimination
• When we are stuck, we guess (and backtrack later if necessary)

o Now let’s guess that c is false!  Then we get
o We apply unit propagation to set d=true and the formula is satisfied
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The Full DPLL Algorithm
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Heuristic: Apply unit 
propagation first because it 
creates more units and pure 
literals.  Pure literal assignment 
only removes entire clauses.

Try both assignments of the 
chosen literal.  If we assume Ú
is short-circuiting, then this 
implements backtracking.



Practice: Applying DPLL
• Show how DPLL (unit propagation, pure literal elimination, 

choosing a literal, backtracking) applies to the following formula:
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From SAT to SMT
• We’d like to check the satisfiability of formulas like 

• Includes arithmetic and the theory of unknown functions
o E.g. we assume f is some mathematical function

• We may have solvers for each theory, but how can we combine them?
o Note that separate satisfying assignments for two theories might not be compatible!

• SMT’s solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell
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Nelson-Oppen replaces expressions with 
variables
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Now we have formulas in two theories
• Theory of uninterpreted functions

• Congruence closure: 

• Theory of arithmetic
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Combining Theories using DPLL
• Consider the following source formula:
• We can convert each subformula to a variable: 

• Now we solve with DPLL and get a satisfying assignment: 
• We ask the theories if this assignment is feasible

o The theory of arithmetic says no.  p1, p2, and p4 can’t all be true, because p1 and p2 
together imply y ≥ 1

• We add a clause expressing this and run DPLL again on

• One satisfying assignment is 
o We check this against the theories and it succeeds
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Details on equality
• Sometimes a theory doesn’t tell us an equality, but rather that 

one of two equalities are true
o That’s fine—we just encode this as a formula and give it to DPLL.  For 

example:

o DPLL will choose which equalities are true, and we try those with other 
theories.

18(c) J. Aldrich, C. Le Goues, R. Padhye



SMT uses a variant of DPLL called DPLL(T)
• T is for Theory
• Differences vs. plain DPLL

o DPLL(T) doesn’t use pure literal elimination
§ Variables may not be independent when they represent a formula – so setting x to 

true can hurt you, even when x is a pure literal!
§ For example:

• Can’t just set x > 10 to true, because x < 7 will be false

o DPLL(T) supports adding clauses to the formula
§ To represent knowledge gained from theories, as mentioned above
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How to solve arithmetic
• Approach #1: Substitution

o If we have y = x+1, we can eliminate y by substituting it with x+1 
everywhere

o High school math!

• Approach #2: Fourier-Motzkin Elimination
o Applies when we have inequalities rather than equalities
o Transform all inequalities mentioning x into A ≤ x or x ≤ B
o Then eliminate X, replacing the inequalities with A ≤ B

§ Detail: if there are multiple inequalities, we conjoin the cross product of them
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Modern tooling: SMT-lib
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Modern tooling: Z3 w/ SMT-lib

22(c) J. Aldrich, C. Le Goues, R. Padhye


