
Lecture 14–15: Hoare Logic
17-355/17-665/17-819: Program Analysis

Rohan Padhye
March 15 & 17, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Logical Reasoning about Code
• So far, we’ve reasoned about code using operational semantics

o And built program analyses that abstract those semantics

• Axiomatic semantics define meaning of a program in terms of
assertions
o Enables logic-based reasoning about code

• Enables verification
o Prove arbitrary properties about code – not just ones built into a

particular analysis
o Goes back to Turing (1949): “Checking a Large Routine”
o Hoare developed rules in the 1960s for verifying the WHILE language

Axiomatic Semantics
• An axiomatic semantics consists of:

o A language for stating assertions about programs,
o Rules for establishing the truth of assertions

• Some typical kinds of assertions:
o This program terminates
o If this program terminates, the variables x and y have the same value

throughout the execution of the program
o The array accesses are within the array bounds

• Assertions are in a logic, e.g. first-order logic
o Alternatives include temporal logic, linear logic, etc.

Assertion Language

• We’ll be a bit sloppy and mix logical and program variables like 𝑥
• We’ll treat Boolean expressions as a special case of assertions

Hoare Triple
{ P } S { Q }

• P is the precondition
• Q is the postcondition
• S is any statement (in WHILE, at least for our class)

• Semantics: if P holds in some state E and if <S; E> ß E’ , then Q
holds in E’
o This is partial correctness: termination of S is not guaranteed
o Total correctness additionally implies termination, and is written [P] S [Q]

Exercise: Exploring Hoare Triples
• What are reasonable pre- or post- conditions for the following

incomplete Hoare triples?
1. { true } x := 5 { }
2. { } x : = x + 3 { x = y + 3 }
3. { } x := x * 2 + 3 { x > 1 }
4. { x = a } if (x < 0) then x := -x { }
5. { false } x := 3 { }
6. { x < 0 } while (x != 0) x := x – 1 { }

Hoare Triple
{ P } S { Q }

• P is the precondition
• Q is the postcondition
• S is any statement (in WHILE, at least for our class)

• Semantics: if P holds in some state E and if <S; E> ß E’ , then Q
holds in E’
o This is partial correctness: termination of S is not guaranteed
o Total correctness additionally implies termination, and is written [P] S [Q]

Assertion Semantics
• 𝐸 ⊨ 𝑃 means P is true in E
• Rules:

Semantics of Hoare Triples
• A partial correctness assertion ⊨ 𝑃 𝑆 𝑄 is defined formally to

mean:

• How would we define total correctness [𝑃] 𝑆 [𝑄]?

• This is a good formal definition—but it doesn’t help us prove many
assertions because we have to reason about all environments. How
can we do better?

Derivation Rules for Logical Formulas
• We can define rules for proving the validity of logical formulas

o ⊢ 𝑃 is read “we can prove 𝑃“

• Example rule:

Derivation Rules for Hoare Logic
• Judgment form ⊢ 𝑃 𝑆 𝑄 means “we can prove the Hoare triple 𝑃 𝑆 𝑄 “

• Question: What should be the rule for while b do S?

Strongest Postconditions
• Here are a number of valid Hoare Triples:

o {x = 5} x := x * 2 { true }
o {x = 5} x := x * 2 { x > 0 }
o {x = 5} x := x * 2 { x = 10 || x = 5 }
o {x = 5} x := x * 2 { x = 10 }

• Which one is best?

Strongest Postconditions
• Here are a number of valid Hoare Triples:

o {x = 5} x := x * 2 { true }
o {x = 5} x := x * 2 { x > 0 }
o {x = 5} x := x * 2 { x = 10 || x = 5 }
o {x = 5} x := x * 2 { x = 10 }

§ All are true, but this one is the most useful
§ x=10 is the strongest postcondition

• If {P} S {Q} and for all Q’ such that {P} S {Q’}, Q Þ Q’, then Q is
the strongest postcondition of S with respect to P
o check: x = 10 Þ true
o check: x = 10 Þ x > 0
o check: x = 10 Þ x = 10 || x = 5
o check: x = 10 Þ x = 10

Weakest Preconditions
• Here are a number of valid Hoare Triples:

o {x = 5 && y = 10} z := x / y { z < 1 }
o {x < y && y > 0} z := x / y { z < 1 }
o {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

• Which one is best?

Weakest Preconditions
• Here are a number of valid Hoare Triples:

o {x = 5 && y = 10} z := x / y { z < 1 }
o {x < y && y > 0} z := x / y { z < 1 }
o {y ≠ 0 && x / y < 1} z := x / y { z < 1 }

§ All are true, but this one is the most useful because it allows us to invoke the
program in the most general condition

§ y ≠ 0 && x / y < 1 is the weakest precondition

• If {P} S {Q} and for all P’ such that {P’} S {Q}, P’ Þ P, then P is the
weakest precondition wp(S,Q) of S with respect to Q

Hoare Triples and Weakest Preconditions
• Theorem: {P} S {Q} holds if and only if P Þ wp(S,Q)

o In other words, a Hoare Triple is still valid if the precondition is stronger
than necessary, but not if it is too weak

o Can use this to prove {P} S {Q} by computing wp(S,Q) and checking
implication.

• Question: Could we state a similar theorem for a strongest
postcondition function?
o e.g. {P} S {Q} holds if and only if sp(S,P) Þ Q
o A: Yes, but it’s harder to compute (see text for why)

Exercise: More Hoare Triples
Consider the following Hoare triples:

A) { z = y + 1 } x := z * 2 { x = 4 }
B) { y = 7 } x := y + 3 { x > 5 }
C) { false } x := 2 / y { true }
D) { y < 16 } x := y / 2 { x < 8 }

• Which of the Hoare triples above are valid?
• Considering the valid Hoare triples, for which ones can you write

a stronger postcondition? (Leave the precondition unchanged,
and ensure the resulting triple is still valid)

• Considering the valid Hoare triples, for which ones can you write
a weaker precondition? (Leave the postcondition unchanged,
and ensure the resulting triple is still valid)

Hoare Logic Rules
• Assignment

o { P } x := 3 { x+y > 0 }
o What is the weakest precondition P?

Hoare Logic Rules
• Assignment

o { P } x := 3 { x+y > 0 }
o What is the weakest precondition P?

§ What is most general value of y
such that 3 + y > 0?

§ y > -3

Hoare Logic Rules
• Assignment

o { P } x := 3 { x+y > 0 }
o What is the weakest precondition P?

• Assignment rule
o wp(x := e, P) = [e/x] P

§ Resulting triple: { [e/x] P } x := e { P }

Hoare Logic Rules
• Assignment

o { P } x := 3 { x+y > 0 }
o What is the weakest precondition P?

• Assignment rule
o wp(x := e, P) = [e/x] P

§ Resulting triple: { [e/x] P } x := e { P }
o [3 / x] (x + y > 0)
o = (3) + y > 0
o = y > -3

Hoare Logic Rules
• Assignment

o { P } x := 3*y + z { x * y - z > 0 }
o What is the weakest precondition P?

Hoare Logic Rules
• Assignment

o { P } x := 3*y + z { x * y - z > 0 }
o What is the weakest precondition P?

• Assignment rule
o wp(x := e, P) = [e/x] P

Hoare Logic Rules
• Assignment

o { P } x := 3*y + z { x * y - z > 0 }
o What is the weakest precondition P?

• Assignment rule
o wp(x := e, P) = [e/x] P
o [3*y+z / x] (x * y – z > 0)

Hoare Logic Rules
• Assignment

o { P } x := 3*y + z { x * y - z > 0 }
o What is the weakest precondition P?

• Assignment rule
o wp(x := e, P) = [e/x] P
o [3*y+z / x] (x * y – z > 0)
o = (3*y+z) * y - z > 0

Hoare Logic Rules
• Assignment

o { P } x := 3*y + z { x * y - z > 0 }
o What is the weakest precondition P?

• Assignment rule
o wp(x := e, P) = [e/x] P
o [3*y+z / x] (x * y – z > 0)
o = (3*y+z) * y - z > 0
o = 3*y2 + z*y - z > 0

Hoare Logic Rules
• Sequence

o { P } x := x + 1; y := x + y { y > 5 }
o What is the weakest precondition P?

Hoare Logic Rules
• Sequence

o { P } x := x + 1; y := x + y { y > 5 }
o What is the weakest precondition P?

• Sequence rule
o wp(S;T, Q) = wp(S, wp(T, Q))
o wp(x:=x+1; y:=x+y, y>5)

Hoare Logic Rules
• Sequence

o { P } x := x + 1; y := x + y { y > 5 }
o What is the weakest precondition P?

• Sequence rule
o wp(S;T, Q) = wp(S, wp(T, Q))
o wp(x:=x+1; y:=x+y, y>5)
o = wp(x:=x+1, wp(y:=x+y, y>5))

Hoare Logic Rules
• Sequence

o { P } x := x + 1; y := x + y { y > 5 }
o What is the weakest precondition P?

• Sequence rule
o wp(S;T, Q) = wp(S, wp(T, Q))
o wp(x:=x+1; y:=x+y, y>5)
o = wp(x:=x+1, wp(y:=x+y, y>5))
o = wp(x:=x+1, x+y>5)

Hoare Logic Rules
• Sequence

o { P } x := x + 1; y := x + y { y > 5 }
o What is the weakest precondition P?

• Sequence rule
o wp(S;T, Q) = wp(S, wp(T, Q))
o wp(x:=x+1; y:=x+y, y>5)
o = wp(x:=x+1, wp(y:=x+y, y>5))
o = wp(x:=x+1, x+y>5)
o = x+1+y>5

Hoare Logic Rules
• Sequence

o { P } x := x + 1; y := x + y { y > 5 }
o What is the weakest precondition P?

• Sequence rule
o wp(S;T, Q) = wp(S, wp(T, Q))
o wp(x:=x+1; y:=x+y, y>5)
o = wp(x:=x+1, wp(y:=x+y, y>5))
o = wp(x:=x+1, x+y>5)
o = x+1+y>5
o = x+y>4

Hoare Logic Rules
• Conditional

o { P } if x > 0 then y := z else y := -z { y > 5 }
o What is the weakest precondition P?

Hoare Logic Rules
• Conditional

o { P } if x > 0 then y := z else y := -z { y > 5 }
o What is the weakest precondition P?

• Conditional rule
o wp(if B then S else T, Q) = B Þ wp(S,Q) && ¬B Þ wp(T,Q)
o wp(if x>0 then y:=z else y:=-z, y>5)

Hoare Logic Rules
• Conditional

o { P } if x > 0 then y := z else y := -z { y > 5 }
o What is the weakest precondition P?

• Conditional rule
o wp(if B then S else T, Q) = B Þ wp(S,Q) && ¬B Þ wp(T,Q)
o wp(if x>0 then y:=z else y:=-z, y>5) = x>0 Þ wp(y:=z,y>5) && x≤0 Þ

wp(y:=-z,y>5)

Hoare Logic Rules
• Conditional

o { P } if x > 0 then y := z else y := -z { y > 5 }
o What is the weakest precondition P?

• Conditional rule
o wp(if B then S else T, Q) = B Þ wp(S,Q) && ¬B Þ wp(T,Q)
o wp(if x>0 then y:=z else y:=-z, y>5) = x>0 Þ wp(y:=z,y>5) && x≤0 Þ

wp(y:=-z,y>5)
= x>0 Þ z > 5 && x≤0 Þ -z > 5

Hoare Logic Rules
• Conditional

o { P } if x > 0 then y := z else y := -z { y > 5 }
o What is the weakest precondition P?

• Conditional rule
o wp(if B then S else T, Q) = B Þ wp(S,Q) && ¬B Þ wp(T,Q)
o wp(if x>0 then y:=z else y:=-z, y>5) = x>0 Þ wp(y:=z,y>5) && x≤0 Þ

wp(y:=-z,y>5)
= x>0 Þ z > 5 && x≤0 Þ -z > 5
= x>0 Þ z > 5 && x≤0 Þ z < -5

Hoare Logic Rules
• Loops

o { P } while (i < x) f=f*i; i := i + 1 { f = x! }
o What is the weakest precondition P?

Hoare Logic Rules
• Loops

o { P } while (i < x) f=f*i; i := i + 1 { f = x! }
o What is the weakest precondition P?

• Intuition
o Must prove by induction

§ Only way to generalize across number of times loop executes
o Need to guess induction hypothesis

§ Base case: precondition P
§ Inductive case: should be preserved by executing loop body

Proving loops correct
• First consider partial correctness

o The loop may not terminate, but if it does, the postcondition will hold
• {P} while B do S {Q}

o Find an invariant Inv such that:
§ P Þ Inv

• The invariant is initially true
§ { Inv && B } S {Inv}

• Each execution of the loop preserves the invariant
§ (Inv && ¬B) Þ Q

• The invariant and the loop exit condition imply the postcondition

Practice: Loop Invariants
Consider the following program:

{ N >= 0 }
i := 0;
while (i < N) do

i := N
{ i = N }

Which of the following loop invariants are correct? For those that are
incorrect, explain why.
A) i = 0
B) i = N
C) N >= 0
D) i <= N

Correctness Conditions
P Þ Inv

The invariant is initially true
{ Inv && B } S {Inv}

Loop preserves the invariant
(Inv && ¬B) Þ Q

Invariant and exit implies
postcondition

Loop Example
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Loop Example
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

How can we find a loop invariant?

Loop Example
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Replace N with j
Add information on range of j
Result: 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i])

How can we find a loop invariant?

Loop Example
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
{ s = (Σi | 0≤i<N • a[i]) }

Loop Example
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
{ s = (Σi | 0≤i<N • a[i]) }

Proof obligation #1

Proof obligation #2

Proof obligation #3&& j ≥ N

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Invariant is maintained
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Invariant is maintained
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Invariant and exit condition imply postcondition
0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

Þ s = (Σi | 0≤i<N • a[i])

Proof Obligations
• Invariant is initially true

{ N ³ 0 }

j := 0;

s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is initially true

{ N ³ 0 }

j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ³ 0) Þ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ³ 0) Þ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N ³ 0) Þ (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ³ 0) Þ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N ³ 0) Þ (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0
= (N ³ 0) Þ (0 ≤ N) // 0=0 is true, P && true is P

Proof Obligations
• Invariant is initially true

{ N ³ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ³ 0) Þ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N ³ 0) Þ (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0
= (N ³ 0) Þ (0 ≤ N) // 0=0 is true, P && true is P
= true

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

j := j + 1;

s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last element

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last element
// we have a problem – we need a[j+1] and a[j] to cancel out

Where’s the error?
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Where’s the error?
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Need to add element
before incrementing j

Corrected Code
• Prove array sum correct
{ N ³ 0 }
j := 0;
s := 0;

while (j < N) do

s := s + a[j];
j := j + 1;

end
{ s = (Σi | 0≤i<N • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

s := s + a[j];

j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last part of sum

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last part of sum
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s = (Σi | 0≤i<j • a[i])) // subtract a[j] from both sides

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

Þ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j • a[i]) + a[j]) // separate last part of sum
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

Þ (-1 ≤ j < N && s = (Σi | 0≤i<j • a[i])) // subtract a[j] from both sides
= true // 0 ≤ j Þ -1 ≤ j

Proof Obligations
• Invariant and exit condition implies postcondition

0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N
Þ s = (Σi | 0≤i<N • a[i])

Proof Obligations
• Invariant and exit condition implies postcondition

0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N
Þ s = (Σi | 0≤i<N • a[i])

= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])
Þ s = (Σi | 0≤i<N • a[i])

// because (j ≤ N && j ≥ N) = (j = N)

Proof Obligations
• Invariant and exit condition implies postcondition

0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N
Þ s = (Σi | 0≤i<N • a[i])

= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])
Þ s = (Σi | 0≤i<N • a[i])

// because (j ≤ N && j ≥ N) = (j = N)
= 0 ≤ N && s = (Σi | 0≤i<N • a[i]) Þ s = (Σi | 0≤i<N • a[i])

// by substituting N for j, since j = N

Proof Obligations
• Invariant and exit condition implies postcondition

0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N
Þ s = (Σi | 0≤i<N • a[i])

= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])
Þ s = (Σi | 0≤i<N • a[i])

// because (j ≤ N && j ≥ N) = (j = N)
= 0 ≤ N && s = (Σi | 0≤i<N • a[i]) Þ s = (Σi | 0≤i<N • a[i])

// by substituting N for j, since j = N
= true // because P && Q Þ Q

Practice: Writing Proof Obligations
• For the program below and the invariant i <= N, write the proof obligations. The form of your answer should be

three mathematical implications.

{ N >= 0 }

i := 0;

while (i < N) do

i := N

{ i = N }

• Invariant is initially true:
• Invariant is preserved by the loop body:
• Invariant and exit condition imply postcondition:

Invariant Intuition
• For code without loops, we are simulating execution directly

o We prove one Hoare Triple for each statement, and each statement is executed once

• For code with loops, we are doing one proof of correctness for multiple loop
iterations
o Proof must cover all iterations

§ Don’t know how many there will be
o The invariant must be general yet precise

§ general enough to be true for every execution
§ precise enough to imply the postcondition we need

o This tension makes inferring loop invariants challenging

Can we also formalize proof obligations?
• Yes, with verification condition generation

o Bonus: we can get one formula for correctness of the whole program
o Rather than segmenting into several formulas that we prove individually

Can we also formalize proof obligations?
• Yes, with verification condition generation

o Bonus: we can get one formula for correctness of the whole program
o Rather than segmenting into several formulas that we prove individually

o Loops are special—as usual!

Verification Condition Generation - Summary &
Future Lectures
• Verification Conditions make axiomatic semantics practical.

• We can solve them automatically with SAT solvers

• We can compute verification conditions forward for use on unstructured code (=
assembly language). This is sometimes called symbolic execution.

• We can add extra invariants or drop paths (dropping is unsound) to help
verification condition generation scale.

• We can model exceptions, memory operations and data structures using
verification condition generation.

Heads up: Course Projects
• Scope: ~3 weeks of effort at end of course
• Some options

o Implement a non-trivial analysis and evaluate it on some code
o Empirically evaluate an existing analysis tool
o Contribute meaningfully to an open source analysis tool
o Explore an extension to the state of the art in program analysis

• Students in the Masters version (17-665) must engage with non-trivial
codebases
o Either the analysis framework or the target program must be in active use by

the developer community
• Students in the Ph.D. version (17-819) must engage in research in

some way
o OK to extend your current research work – can be empirical as well

