Lecture 3a: Semantics &
WHILE3ADDR

17-355/17-665/17-819: Program Analysis
Rohan Padhye
Jan 25, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

https://creativecommons.org/licenses/by/4.0/

S

Review: WHILE abstract syntax

statements

arithmetic expressions (AExp)

program variables (Vars)

number literals

boolean expressions (BExp)

r .= a

skip

S1; So

if b then S else S5
while bdo S

b

true
false
not b

b1 opy b2
ai opr a2

a

and | or
< | < |
> | >
+] =[]/

Review: Proofs by Structural Induction

F opa n= +|=|x]/
| a1 OPq G2
« To prove VYa € Aexp: P(a) by induction on structure of syntax

o Base cases: show that P(x) and P(n) holds

o Inductive cases: show that
= P(ay) AP(ay) = P(a; + a,)
" P(ay) AP(ay) = P(a; * ay)

= P(ay) AP(ay) = P(ay/ay)

(c) J. Aldrich, C. Le Goues, R. Padhye

Review: Proofs by Structural Induction

Example. Let L(a) be the number of literals and variable occurrences in some expression a
and O(a) be the number of operators in a. Prove by induction on the structure of a that Va €

Aexp . L(a) = O(a) + 1:

Base cases:
e Casea=mn.L(a)=1and O(a) =0
e Casea=1z.L(a) =1and O(a) =0
Inductive case 1: Case a = a1 + a9
e By definition, L(a) = L(a1) + L(a2) and O(a) = O(a1) + O(az2) + 1.
e By the induction hypothesis, L(a1) = O(a1) + 1 and L(a2) = O(a2) + 1.
e Thus, L(a) = O(a1) + O(a2) +2 = O(a) + 1.

The other arithmetic operators follow the same logic.

Review: Proofs by Structural Induction

« Prove that small-step and big-step semantics of expressions produce
equivalent results.

Va € AExp . (FE,a) —», n<{(E,a) | n

« Can be proved via structural induction over syntax. (Exercise)

(c) J. Aldrich, C. Le Goues, R. Padhye

Proofs by Structural Induction

* Prove that WHILE is deterministic. That is, if the program
terminates, it evaluates to a unique value.

VaeAexp. VE . Vn,n'eN. (E,a) | nA{E,a)|n =n=n
VP eBexp. VE Vb,V € B. (E,PYybAa(E,PYLY =b=1
VS . VE,E E" . (E,S | E' A(E,8) || E" = E' = E"

Rule for while is recursive;
doesn’t depend only on (E,by | true (F,S;whilebdoS) | E’
. (E,while bthen S) | E’
subexpressions

big-whiletrue

Can prove for expressions via induction over syntax, but not for
statements.

« But there's still a way.

(c) J. Aldrich, C. Le Goues, R. Padhye

To prove: | /S . VE,E',E". (E,S)|| E' A\(E,S) | E" = E' =E"

Structural Induction over Derivations

Base case: the one rule with no premises, skip: let D :: (E,S) | E',and let D' :: (E, S) | E"

D ::=(E, skip) | E

By inversion, the last rule used in D’ (which, again, produced E”) must also have been the
rule for skip. By the structure of the skip rule, we know E” = E.

Inductive cases: We need to show that the property holds when the last rule used in D was
each of the possible non-skip WHILE commands. I will show you one representative case; the
rest are left as an exercise. If the last rule used was the while-true statement:

Dy :: (E,b) | true Dy ::(E,Sy| E1 Ds3::{Ej,wvhilebdo S) || E’
D (E,whilebdo S) | E’

Pick arbitrary E” such that D’ :: (E,while bdo S) || E”

By inversion, D’ must use either the while-true or the while-false rule. However,
having proved that boolean expressions are deterministic (via induction on syntax), and given
that D contains the judgment (E,b) || true, we know that D’ cannot be the while-false
rule, as otherwise it would have to contain a contradicting judgment (E, b) | false.

So, we know that D’ is also using while-true rule. In its derivation, D’ must also have
subderivations Dj, :: (E,S) | E} and Dj :: (E{,while bdo S) || E”. By the induction hypoth-
esis on Dy with Dj, we know E1 E}. Using this result and the induction hypothesis on Ds
with Dj, we have E” = J.

S

Review: WHILE abstract syntax

statements

arithmetic expressions (AExp)

program variables (Vars)

number literals

boolean expressions (BExp)

r .= a

skip

S1; So

if b then S else S5
while bdo S

b

true
false
not b

b1 opy b2
ai opr a2

a

and | or
< | < |
> | >
+] =[]/

WHILE syntax

Abstract representation that corresponds well to concrete syntax

Useful for recursive or inductive reasoning

Sometimes challenging to track how data and control flows in
program execution order

3-address-code is commonly used by compilers to represent

Imperative language code.
o AST -> 3-address transformation is straightforward.

(c) J. Aldrich, C. Le Goues, R. Padhye

WHILESADDR

* W=X*y+7

e if bthen S1 else S2

« lit=x*y
22W=1+72

* 1:if b then goto 4
2:52
3:goto 5
4: 51
5 ...

(c) J. Aldrich, C. Le Goues, R. Padhye

10

WHILESADDR:
An Intermediate Representation

« Simpler, more uniform than WHILE syntax

» (Categories:
o | € Instruction instructions

o X, y€eVvar variables
o n € Num number literals
¢ Syntax:
o I ::= X :=n | x :=y | x :=y op z
| goto n | if x op, 0 goto n
o op, ::=+ | = | * | / | .
o op, ::=< | = | =[|>] 2]

o P € Num=—> |/

(c) J. Aldrich, C. Le Goues, R. Padhye

11

Exercise: Translate while b do S to WHILESADDR

» (Categories:
o | € Instruction instructions

o X, y€eVvar variables
o n € Num number literals
* Syntax:
o I :::=xz:=n|x:=y | x :=yopz
| goto n | if x op, 0 goto n
o op, ::=+ | = | x| /| .
o op, ::=< | = | =|>] 2|

o P € Num~-> |/

(c) J. Aldrich, C. Le Goues, R. Padhye

12

While3Addr Extensions (more later)

I ::= X :=n | x :=y | x :=yopz | goton | if x op, 0 goto n
x = £(y)
return x
X = y.m(2)
read x
print x
X 1= &p
X = *p
*p 1= X

= vy.f
X.f = vy

(c) J. Aldrich, C. Le Goues, R. Padhye

WHILE3ADDR Semantics

« Configuration (state) includes environment + program counter:

c € EXN

 Evaluation occurs with respect to a global program that maps
labels to instructions: P € N — [

PrF< E.n>vw< E'.n' >

(c) J. Aldrich, C. Le Goues, R. Padhye

14

P)= 9=
P+ {(E,ny~(Elx »m],n+1)

step-const

Pl = &:=1
P (E,n)~(Elr = E(y)],n +1)

step-copy

Pn)=xz:=yopz E(y)op E(z) =m
P+ {(E,n)~ (Elx »m],n+1)

step-arith

P(n) = gotom
P (E,ny~{(E,m)

step-goto

P(n) =if x op, 0 gotom E(z) op, 0 = true
P+ <{E,n)~ (E,m)

step-iftrue

P(n) =ifz op, 0 gotom E(x)opr 0 = false ,
tep-iffal
Pr{(E,n)~ {(E,n+1) P ae

(c) 2021 Le Goues, Aldrich, Padhye

15

