Lecture 2: Program Semantics

17-355/17-665/17-819: Program Analysis

Rohan Padhye

Jan 20, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Carnegie Mellon University School of Computer Science

Administrivia

- HW1 is out today CodeQL. Due next Thursday (Jan 27).
 - o Lots of references online
 - Recitation will have some practice problems
 - Submit via Canvas. Share link to your query + paste the code.
- Office hours are up on website
 - o Via Zoom
- Lecture notes/slides on website

Date	Торіс	Reading/Material
Jan 18	Introduction, Program Representation, and Syntactic Analysis	Text ch. 1 & 2, slides
Jan 20	Program Semantics	Text ch. 3

- Read after class; useful for HW and exams (won't always have slides)
- Text PDF updates frequently (usually before class); get latest copy
- For now, ignore 2.2, 2.4, 3.1.3 (WHILE3ADDR) We'll cover it next week

Learning Goals

- Define the meaning of programs using operational semantics
- Read and write inference rules and derivation trees
- Use big- and small-step semantics to show how WHILE programs evaluate
- Use structural induction to prove things about program semantics

Review: WHILE abstract syntax

- S statements
- *a* arithmetic expressions (AExp)
- x, y program variables (Vars)
- *n* number literals
- *b* boolean expressions (BExp)

We'll use these meta-variables frequently for ease of notation

and | or b true op_b x := a::=a::=xskip false op_r ::= < | \leq n $S_1; S_2$ not b > $a_1 op_a a_2$ ≥ if *b* then S_1 else S_2 ::= + | - | * | / $b_1 op_b b_2$ op_a while $b \operatorname{do} S$ $a_1 op_r a_2$

Questions to answer

- What is the "meaning" of a given WHILE expression/statement?
- How would we go about evaluating WHILE expressions and statements?
- How are the evaluator and the meaning related?

Three canonical approaches

- Operational semantics
 - How would I execute this?
 - o Interpreter
- Axiomatic semantics
 - What is true after I execute this?
 - Symbolic Execution
- Denotational semantics
 - What function is this trying to compute?
 - Mathematical modeling

Operational Semantics

- Specifies how expressions and statements should be evaluated depending on the form of the expression.
 - 0, 1, 2, . . . don't evaluate any further.
 - They are normal forms or values.
 - \circ 4 + 2 is evaluated by adding integers 4 and 2 to get 6.
 - Rule can be generalized for an expression containing only literals: n₁ + n₂
 - \circ a₁ + a₂ is evaluated by:
 - First evaluating expression a₁ to value n₁
 - Then evaluating expression a₂ to integer n₂
 - The result of the evaluation is the literal representing $n_1 + n_2$
 - Here, evaluation order is being defined as left-to-right (post-order AST traversal)
- Operational semantics *abstracts the execution of a concrete interpreter*.

Big-Step Semantics

- Uses down-arrow notation to denote evaluation to normal form.
- $a \Downarrow n$ is a *judgment* that expression a is evaluated to value n
- For example: (4 + 2) + 9 ↓ 15
- You can think of this as a logical proposition.
 The semantics of a language determines what judgments are provable.

Inference Rules

$\frac{premise_1 \quad premise_2 \quad \dots \quad premise_n}{conclusion}$

- A notation for defining semantics.
- If ALL of the premises above the line can be proved true, then the conclusion holds as well.

Carnegie Mellon University School of Computer Science

Let's Formalize the tiny ADD language

- Specifies how expressions and statements should be evaluated depending on the form of the expression.
 - 0, 1, 2, . . . don't evaluate any further.
 - They are normal forms or values.
 - 4 + 2 is evaluated by adding integers 4 and 2 to get 6.
 - Rule can be generalized for an expression containing only literals
 - \circ a₁ + a₂ is evaluated by:
 - First evaluating expression a₁ to value n₁
 - Then evaluating expression a₂ to integer n₂
 - The result of the evaluation is the literal representing $n_1 + n_2$
 - Here, evaluation order is being defined as left-to-right (post-order AST traversal)
- Operational semantics *abstracts the execution of a concrete interpreter*.

Big-step semantics for ADD

$$\frac{1}{n \Downarrow n}$$
 big-int

institute for **SOFTWARE**

$$\frac{a_1 \Downarrow n_1 \quad a_2 \Downarrow n_2}{a_1 + a_2 \Downarrow n_1 + n_2} \text{ big-add}$$

Carnegie Mellon University School of Computer Science

Derivation trees

institute for

$$\frac{1}{n \Downarrow n} \text{ big-int} \qquad \frac{a_1 \Downarrow n_1 \quad a_2 \Downarrow n_2}{a_1 + a_2 \Downarrow n_1 + n_2} \text{ big-add}$$

• Let's derive $(4 + 2) + 9 \Downarrow 15$ from the rules

$$\frac{4 \Downarrow 4 \quad 2 \Downarrow 2}{4+2 \Downarrow 6 \quad 9 \Downarrow 9}{(4+2)+9 \Downarrow 15}$$

• The derivation provides a proof of (4 + 2) + 9 ↓ 15 using only axioms and inference rules.

Carnegie Mellon University School of Computer Science

Operational Semantics of WHILE

- The meaning of WHILE expressions depend on the values of variables
 - What does x+5 mean? It depends on x.
 - If x = 8 at some point, we expect x+5 to mean 13
- The value of integer variables at a given moment is abstracted as a function: $E: Var \rightarrow Z$
- We will augment our notation of big-step evaluation to include state:

 $\langle E, a \rangle \Downarrow n$

• So, if $\{x \mapsto 8\} \in E$, then $\langle E, x + 5 \rangle \Downarrow 13$

institute fo

Carnegie Mellon University School of Computer Science

Big-Step Semantics for WHILE expressions

$$\frac{}{\langle E,n\rangle \Downarrow n} \ \textit{big-int} \quad \frac{}{\langle E,x\rangle \Downarrow E(x)} \ \textit{big-var}$$

$$\frac{\langle E, a_1 \rangle \Downarrow n_1 \quad \langle E, a_2 \rangle \Downarrow n_2}{\langle E, a_1 + a_2 \rangle \Downarrow n_1 + n_2} \text{ big-add}$$

• Similarly for other arithmetic and boolean expressions

States propagate in derivations

• Let $E_1 = \{x \mapsto 4\}$. What will x * 2 - 6 evaluate to in this state?

$$\frac{\langle E_1, x \rangle \Downarrow 4 \quad \langle E_1, 2 \rangle \Downarrow 2}{\langle E_1, x * 2 \rangle \Downarrow 8} \quad \langle E_1, 6 \rangle \Downarrow 6}{\langle E_1, (x * 2) - 6 \rangle \Downarrow 2}$$

 $\vdash \langle E_1, x * 2 - 6 \rangle \Downarrow 2$ (this evaluation is provable via a well-formed derivation)

- Statements do not evaluate to values.
- However, statements can have side-effects.
- Notation for statement evaluations: $\langle E, S \rangle \Downarrow E'$

$$\overline{\langle E, \texttt{skip}
angle \Downarrow E}$$
 big-skip

$$\frac{\langle E, a \rangle \Downarrow n}{\langle E, x := a \rangle \Downarrow E[x \mapsto n]} \text{ big-assign}$$

$$\frac{\langle E, S_1 \rangle \Downarrow E' \quad \langle E', S_2 \rangle \Downarrow E''}{\langle E, S_1; S_2 \rangle \Downarrow E''} \text{ big-seq}$$

$$\frac{\langle E,b\rangle \Downarrow \texttt{true} \quad \langle E,S_1\rangle \Downarrow E'}{\langle\texttt{if }b\texttt{ then }S_1\texttt{ else }S_2,E\rangle \Downarrow E'} \textit{ big-iftrue}$$

$$\frac{\langle E,b\rangle \Downarrow \texttt{false} \quad \langle E,S_2\rangle \Downarrow E'}{\langle\texttt{if }b\texttt{ then }S_1\texttt{ else }S_2,E\rangle \Downarrow E'} \textit{ big-iffalse}$$

• Exercise: Write the rule "big-while" for while $b \, \mathrm{do} \, S$

$$\frac{\langle E,b\rangle \Downarrow \texttt{false}}{\langle E,\texttt{while} \ b \ \texttt{do} \ S\rangle \Downarrow E} \ \textit{big-whilefalse}$$

$$\frac{\langle E,b\rangle \Downarrow \texttt{true} \quad \langle E,S;\texttt{while} \ \texttt{b} \ \texttt{do} \ S\rangle \Downarrow E'}{\langle E,\texttt{while} \ \texttt{b} \ \texttt{then} \ S\rangle \Downarrow E'} \ \textit{big-whiletrue}$$

$$\frac{\langle E,b\rangle \Downarrow \texttt{false}}{\langle E,\texttt{while} \ b \ \texttt{do} \ S\rangle \Downarrow E} \ \textit{big-whilefalse}$$

Alternate formulation (equivalent to previous slide):

$$\begin{array}{c|c} \underline{\langle E,b\rangle \Downarrow \texttt{true}} & \langle E,S \Downarrow E'\rangle & \langle E',\texttt{while} \ b \ \texttt{do} \ S \rangle \Downarrow E'' \\ \hline & \langle E,\texttt{while} \ b \ \texttt{then} \ S \rangle \Downarrow E'' \end{array} \ big-while true \ dent \ b \ \texttt{density} \ b \ \texttt{density} \ density \ b \ \texttt{density} \ b \ \texttt{dens$$

Big-Step Semantics: Discussion

- Rules suggest an AST interpreter
 - Recursively evaluate operands, then current node (post-order traversal)
- Disadvantages:
 - Cannot reason about non-terminating loops, e.g. while true do skip
 - Does not model intermediate states
 - Needed for semantics of concurrent execution models (e.g. Java threads)

Small-Step Operational Semantics

- Each step is an atomic rewrite of the program
- Execution is a sequence of (possibly infinite) steps $\circ \langle E_1, (x * 2) - 6 \rangle \rightarrow \langle E_1, (4 * 2) - 6 \rangle \rightarrow \langle E_1, 8 - 6 \rangle \rightarrow 2$
- Small arrow notation for single step:

$$\begin{array}{c} \langle E, a \rangle \rightarrow_a a' \\ \langle E, b \rangle \rightarrow_b b' \\ \langle E, S \rangle \rightarrow \langle E', S' \rangle \end{array}$$

(the subscripts on the arrows can be omitted when context is clear)

Small-Step Operational Semantics

• First define a multi-step notation: $\langle E, S \rangle \rightarrow^* \langle E', S' \rangle$

$$\overline{\langle E,S\rangle \! \rightarrow^{*} \langle E,S\rangle} \ \textit{multi-reflexive}$$

$$\frac{\langle E, S \rangle \rightarrow \langle E', S' \rangle \quad \langle E', S' \rangle \rightarrow^* \langle E'', S'' \rangle}{\langle E, S \rangle \rightarrow^* \langle E'', S'' \rangle} multi-inductive$$

• A terminating evaluation of a program P from initial state E_{in} is: $\langle E_{in}, P \rangle \rightarrow^* \langle E_{out}, skip \rangle$

Small-Step Semantics for WHILE expressions

• Axioms are similar:

$$\overline{\langle E, x \rangle} \rightarrow_a E(x)$$
 small-var

$$\overline{\langle E,n\rangle \rightarrow_a n}$$
 small-int

Small-Step Semantics for WHILE expressions

• Compound expressions

$$\frac{\langle E, a_1 \rangle \rightarrow_a a'_1}{\langle E, a_1 + a_2 \rangle \rightarrow_a a'_1 + a_2} \text{ small-add-left}$$

$$\frac{\langle E, a_2 \rangle \rightarrow_a a'_2}{\langle E, n_1 + a_2 \rangle \rightarrow_a n_1 + a'_2} \text{ small-add-right}$$

$$\overline{\langle E, n_1 + n_2 \rangle} \rightarrow_a n_1 + n_2$$
 small-add

$$\frac{\langle E, S_1 \rangle \to \langle E', S_1' \rangle}{\langle E, S_1; S_2 \rangle \to \langle E', S_1'; S_2 \rangle} \text{ small-seq-congruence}$$

$$\overline{\langle E, \mathtt{skip}; S_2 \rangle} \rightarrow \langle E, S_2 \rangle$$
 small-seq

$$\frac{\langle E,b\rangle \to_b b'}{\langle E, \text{if }b \text{ then } S_1 \text{ else } S_2\rangle \to \langle E, \text{if }b' \text{ then } S_1 \text{ else } S_2\rangle} \text{ small-if-congruence}$$

$$\overline{\langle E, \text{if true then } S_1 \text{ else } S_2 \rangle} \rightarrow \langle E, S_1 \rangle$$
 small-iftrue

• Exercise: Write the rule "small-while" for $ext{ while } b \operatorname{do} S$

$\overline{\langle E, \texttt{while } b \texttt{ do } S \rangle} \rightarrow \big< \texttt{if } b \texttt{ then } S \texttt{; \texttt{while } } b \texttt{ do } S \texttt{ else } \texttt{skip} \big> small-while b \texttt{ do } S \texttt{ of } b \texttt{ then } S \texttt{; \texttt{while } } b \texttt{ do } S \texttt{ else } \texttt{skip} > small-while b \texttt{ do } S \texttt{ else } \texttt{ skip} > small-while b \texttt{ do } S \texttt{ else } S \texttt{ skip} > small-while b \texttt{ do } S \texttt{ else } S \texttt{ else$

Provability

• Given some operational semantics, $\langle E, a \rangle \Downarrow n$ is **provable** *if there exists* a well-formed derivation with $\langle E, a \rangle \Downarrow n$ as its conclusion

"well-formed" = "every step in the derivation is a valid instance of one of the rules of inference for this opsem system"

 $\vdash \langle E, a \rangle \Downarrow n$ "it is provable that $\langle E, a \rangle \Downarrow n$ "

Proofs over semantics

- Once we have defined semantics clearly, we can now reason about programs rigorously via proofs by *structural induction*.
- But first, recall *mathematical induction*:
 - To prove $\forall n : P(n)$ by induction on natural numbers
 - Base case: show that P(0) holds
 - Inductive case: show that $\forall m : P(m) \Rightarrow P(m+1)$

- To prove $\forall a \in Aexp: P(a)$ by induction on structure of syntax
 - Base cases: show that P(x) and P(n) holds
 - Inductive cases: show that
 - $P(a_1) \wedge P(a_2) \Rightarrow P(a_1 + a_2)$
 - $P(a_1) \land P(a_2) \Rightarrow P(a_1 * a_2)$
 - $P(a_1) \wedge P(a_2) \Rightarrow P(a_1/a_2)$

Example. Let L(a) be the number of literals and variable occurrences in some expression a and O(a) be the number of operators in a. Prove by induction on the structure of a that $\forall a \in Aexp \ L(a) = O(a) + 1$:

Base cases:

- Case a = n. L(a) = 1 and O(a) = 0
- Case a = x. L(a) = 1 and O(a) = 0

Inductive case 1: Case $a = a_1 + a_2$

- By definition, $L(a) = L(a_1) + L(a_2)$ and $O(a) = O(a_1) + O(a_2) + 1$.
- By the induction hypothesis, $L(a_1) = O(a_1) + 1$ and $L(a_2) = O(a_2) + 1$.
- Thus, $L(a) = O(a_1) + O(a_2) + 2 = O(a) + 1$.

The other arithmetic operators follow the same logic.

• Prove that small-step and big-step semantics of expressions produce equivalent results.

$$\forall a \in \mathtt{AExp} \ . \ \langle E, a \rangle \to_a^* n \Leftrightarrow \langle E, a \rangle \Downarrow n$$

• Can be proved via structural induction over syntax. (Exercise)

• Prove that WHILE is *deterministic*. That is, if the program terminates, it evaluates to a unique value.

> $\forall a \in Aexp. \quad \forall E . \forall n, n' \in \mathbb{N}. \quad \langle E, a \rangle \Downarrow n \land \langle E, a \rangle \Downarrow n' \Rightarrow n = n'$ $\forall P \in \mathsf{Bexp} \ . \ \forall E \ . \ \forall b, b' \in \mathcal{B} \ . \ \langle E, P \rangle \Downarrow b \land \langle E, P \rangle \Downarrow b' \Rightarrow b = b'$

 $\forall S . \qquad \forall E, E', E'' . \qquad \langle E, S \rangle \Downarrow E' \land \langle E, S \rangle \Downarrow E'' \Rightarrow E' = E''$

Rule for while is recursive; doesn't depend only on subexpressions

- Can prove for expressions via induction over syntax, but not for statements.
- But there's still a way.

To prove: $\forall S$. $\forall E, E', E''$. $\langle E, S \rangle \Downarrow E' \land \langle E, S \rangle \Downarrow E'' \Rightarrow E' = E''$ Structural Induction over Derivations

Base case: the one rule with no premises, skip: let $D :: \langle E, S \rangle \Downarrow E'$, and let $D' :: \langle E, S \rangle \Downarrow E''$

 $D::=\overline{\langle E, \texttt{skip}\rangle \Downarrow E}$

By inversion, the last rule used in D' (which, again, produced E'') must also have been the rule for skip. By the structure of the skip rule, we know E'' = E.

Inductive cases: We need to show that the property holds when the last rule used in *D* was each of the possible non-skip WHILE commands. I will show you one representative case; the rest are left as an exercise. If the last rule used was the while-true statement:

$$D ::= \frac{D_1 :: \langle E, b \rangle \Downarrow \texttt{true} \quad D_2 :: \langle E, S \rangle \Downarrow E_1 \quad D_3 :: \langle E_1, \texttt{while} \ b \ \texttt{do} \ S \rangle \Downarrow E}{\langle E, \texttt{while} \ b \ \texttt{do} \ S \rangle \Downarrow E'}$$

Pick arbitrary E'' such that $D' :: \langle E, \texttt{while } b \texttt{ do } S \rangle \Downarrow E''$

By inversion, D' must use either the while-true or the while-false rule. However, having proved that boolean expressions are deterministic (via induction on syntax), and given that D contains the judgment $\langle E, b \rangle \Downarrow$ true, we know that D' cannot be the while-false rule, as otherwise it would have to contain a contradicting judgment $\langle E, b \rangle \Downarrow$ false.

So, we know that D' is also using while-true rule. In its derivation, D' must also have subderivations $D'_2 :: \langle E, S \rangle \Downarrow E'_1$ and $D'_3 :: \langle E'_1, while b \operatorname{do} S \rangle \Downarrow E''$. By the induction hypothesis on D_2 with D'_2 , we know $E_1 = E'_1$. Using this result and the induction hypothesis on D_3 with D'_3 , we have E'' = E'.

Next time

- WHILE3ADDR: A 3-address-code representation of WHILE
- Control-flow graphs
- Introduction to data-flow analysis