Lecture 2: Program Semantics

17-355/17-665/17-819: Program Analysis
Rohan Padhye
Jan 20, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

https://creativecommons.org/licenses/by/4.0/

Administrivia

« HW1 is out today - CodeQL. Due next Thursday (Jan 27).

o Lots of references online
o Recitation will have some practice problems
o Submitvia Canvas. Share link to your query + paste the code.

« Office hours are up on website
o ViaZoom

Date Topic Reading/Material

Jan 18 Introduction, Program Representation, and Syntactic Analysis Text ch. 1 & 2, slides

Jan 20 Program Semantics Text ch. 3

 Lecture notes/slides on website

o Read after class; useful for HW and exams (won't always have slides)
o Text PDF updates frequently (usually before class); get latest copy
o For now, ignore 2.2, 2.4, 3.1.3 (WHILE3SADDR) - We'll cover it next week

(c) J. Aldrich, C. Le Goues, R. Padhye

Learning Goals

« Define the meaning of programs using operational semantics
« Read and write inference rules and derivation trees

e Use big- and small-step semantics to show how WHILE programs
evaluate

 Use structural induction to prove things about program
semantics

(c) J. Aldrich, C. Le Goues, R. Padhye

S

Review: WHILE abstract syntax

statements

arithmetic expressions (AExp)

program variables (Vars)
number literals
boolean expressions (BExp)

P = O o=
skip

S1; So

if b then S else S5
while bdo S

We’ll use these meta-variables
frequently for ease of notation

true a = X OPp
false | n opy
not b | a1 0Py a2

b1 opy b2 0P

aq Opr G2

(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

and | or
< | < |
> | >
+] =[]/

Questions to answer

« What is the “meaning” of a given WHILE expression/statement ?
- How would we go about evaluating WHILE expressions and statements?
 How are the evaluator and the meaning related?

(c) J. Aldrich, C. Le Goues, R. Padhye

Three canonical approaches

« Operational semantics
o How would | execute this?
o Interpreter

« Axiomatic semantics
o What is true after | execute this?
o Symbolic Execution

« Denotational semantics

o What function is this trying to compute?
o Mathematical modeling

(c) J. Aldrich, C. Le Goues, R. Padhye

Operational Semantics

« Specifies how expressions and statements should be evaluated depending
on the form of the expression.
o 0,1,2,...dont evaluate any further.
= They are normal forms or values.
o 4+ 2is evaluated by adding integers 4 and 2 to get 6.
= Rule can be generalized for an expression containing only literals: n; + n,
o a; + a,is evaluated by:
= First evaluating expression a; to value n,
= Then evaluating expression a, to integer n,
= The result of the evaluation is the literal representing n, + n,
= Here, evaluation order is being defined as left-to-right (post-order AST traversal)

« Operational semantics abstracts the execution of a concrete interpreter.

(c) J. Aldrich, C. Le Goues, R. Padhye

Big-Step Semantics

Uses down-arrow notation to denote evaluation to normal form.

a U nis a judgment that expression a is evaluated to value n
For example: (4 +2)+9 U 15

You can think of this as a logical proposition.
o The semantics of a language determines what judgments are provable.

(c) J. Aldrich, C. Le Goues, R. Padhye

Inference Rules

premaise; premaises ... pPremise,
conclusion

« A notation for defining semantics.

 |f ALL of the premises above the line can be proved true, then
the conclusion holds as well.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Let's Formalize the tiny ADD language

o 0,1,2,...dont evaluate any further.
= They are normal forms or values.

o a; + a,is evaluated by:
= First evaluating expression a; to value n,
= Then evaluating expression a, to integer n,
= The result of the evaluation is the literal representing n, + n,
= Here, evaluation order is being defined as left-to-right (post-order AST traversal)

(c) J. Aldrich, C. Le Goues, R. Padhye

Big-step semantics for ADD

nin big-int

adm a2 ymne o
a1 + az | N1+ no

o
institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Derivation trees higing b o lma
n | n a1 + as || n1 + n9
« Let's derive (4+2)+9 U 15 from the rules

404 2|2
44206 99
(4+2)+9| 15

« The derivation provides a proof of (4 + 2) +9 U 15 using only
axioms and inference rules.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Operational Semantics of WHILE

The meaning of WHILE expressions depend on the values of variables
o What does x+5 mean? It depends on x.
o If x = 8 at some point, we expect x+5 to mean 13

The value of integer variables at a given moment is abstracted as a function:

E:Var - Z

We will augment our notation of big-step evaluation to include state:

(E,a) Un

So, if{x » 8} € E, then(E,x+5) 1 13

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Big-Step Semantics for WHILE expressions

big-int big-var

CE,n) I n E,z) | E(z)

<Eaa1> U ni <E7 a'2> U' 12
<E,CL1 + a2> U n1 + no

big-add

 Similarly for other arithmetic and boolean expressions

States propagate in derivations

. Let E; = {x » 4}. Whatwill X * 2 — 6 evaluate to in this state?

(E1,z) | 4 (E1,2) | 2
(Er,zx2)| 8 (Er,6) | 6
<E1,($*2)—6>U2

F(E;,x *2 —6) U 2 (this evaluation is provable via a well-formed derivation)

(c) J. Aldrich, C. Le Goues, R. Padhye

15

Big-Step Semantics for WHILE statements

« Statements do not evaluate to values.
« However, statements can have side-effects.

- Notation for statement evaluations: {E,S) U E’

(E.skip | B big-skip

(E,a) | n
(E,x:=ay| Elx — n]

(c) J. Aldrich, C. Le Goues, R. Padhye

big-assign

16

Big-Step Semantics for WHILE statements

CE,51) | E' (E',S2) | E”
<E7 Sla S2> U E”

big-seq

(E,by | true (FE,S1) | E’
(if b then S else S5, E) | F’

big-iftrue

(E,by | false (FE,Sy) || E’
(if b then S else S5, E) | E’

big-iffalse

Big-Step Semantics for WHILE statements
« Exercise: Write the rule “big-while” for Whﬂe b d() S

(c) J. Aldrich, C. Le Goues, R. Padhye

18

Big-Step Semantics for WHILE statements

(E,by | false
(E,whilebdo S) | E

big-whilefalse

(E,b) | true (F,S;whilebdoS) | E’
(FE,while bthen S) | £’

big-whiletrue

Big-Step Semantics for WHILE statements

(E,by | false
(E,whilebdo S) | E

big-whilefalse

Alternate formulation (equivalent to previous slide):
(E,by | true (F,S | E’Y) (E',whilebdo S) | E”
(E,while b then S) | E”

big-whiletrue

20

Big-Step Semantics: Discussion

« Rules suggest an AST interpreter
o Recursively evaluate operands, then current node (post-order traversal)

 Disadvantages:

o Cannot reason about non-terminating loops, e.g. while true do skip
o Does not model intermediate states
= Needed for semantics of concurrent execution models (e.g. Java threads)

(c) J. Aldrich, C. Le Goues, R. Padhye

21

Small-Step Operational Semantics

« Each step is an atomic rewrite of the program
« Execution is a sequence of (possibly infinite) steps
o (E,(x*2) —6) > (E,(4%2)—6) > (E;,8—6) > 2

« Small arrow notation for single step:

(E, Cl) ~a a,
(E,b) — b’
(E,S) — (E,’S’>

(the subscripts on the arrows can be omitted when context is clear)

(c) J. Aldrich, C. Le Goues, R. Padhye

22

Small-Step Operational Semantics

» First define a multi-step notation: (E,S) —»* (E',S’)

(E.S =" (E.S multi-reflexive

<E, S> — <E/’ Sl> <E/, S/> __)* <E”, S//>
<E, S> _)* <El/’ SI/>

multi-inductive

« A terminating evaluation of a program P from initial state E, is:
(Ein, P) =7 (Eoue, Skip)

(c) J. Aldrich, C. Le Goues, R. Padhye

23

Small-Step Semantics for WHILE expressions

« Axioms are similar:

(E.7) —q E(z) small-var

(B> —an small-int

(c) J. Aldrich, C. Le Goues, R. Padhye

24

Small-Step Semantics for WHILE expressions

« Compound expressions
<E7a1> —a a’ll
<E,a1 -+ a2> —>, a’1 + a9

small-add-left

<E1 a2> =24 a',2
(E,nq + ag) —4 Ny + ag

small-add-right

TB Dt) ia i small-add

(c) J. Aldrich, C. Le Goues, R. Padhye

25

Small-Step Semantics for WHILE statements

(E,S1) —(E',S57)
(E,S81;82) = (E',51; S2)

small-seq-congruence

Il
(E,skip; Soy — (B, 8qy 1

Small-Step Semantics for WHILE statements

(E,by =y V'
(E,if bthen S; else Sy) — (FE, if b’ then S; else S5)

small-if-congruence

11-i
(E,if true then S; else Sy) — (F,S71) small-iftrue

27

Small-Step Semantics for WHILE statements
« Exercise: Write the rule “small-while” for Whﬂe b d() S

(c) J. Aldrich, C. Le Goues, R. Padhye

28

Small-Step Semantics for WHILE statements

(E,while bdo S) — (if b then S;while b do S else skip) small-while

(c) J. Aldrich, C. Le Goues, R. Padhye

29

Provability

e Given some operational semantics, (E,a) U n is provable
if there exists a well-formed derivation with (E,a) U n as its
conclusion

“well-formed” = “every step in the derivation is a valid instance of
one of the rules of inference for this opsem system”

-(E,a)Un “itis provable that(E,a) Un"”

(c) J. Aldrich, C. Le Goues, R. Padhye

30

Proofs over semantics

« Once we have defined semantics clearly, we can now reason
about programs rigorously via proofs by structural induction.

« But first, recall mathematical induction:

o To prove vn : P(n) by induction on natural numbers
= Base case: show that P(0) holds
= |nductive case: show thatvm : P(m) = P(m + 1)

(c) J. Aldrich, C. Le Goues, R. Padhye

31

Proofs by Structural Induction

F opa n= +|=|x]/
| a1 OPq G2
« To prove VYa € Aexp: P(a) by induction on structure of syntax

o Base cases: show that P(x) and P(n) holds

o Inductive cases: show that
= P(ay) AP(ay) = P(a; + a,)
" P(ay) AP(ay) = P(a; * ay)

= P(ay) AP(ay) = P(ay/ay)

(c) J. Aldrich, C. Le Goues, R. Padhye

32

Proofs by Structural Induction

Example. Let L(a) be the number of literals and variable occurrences in some expression a
and O(a) be the number of operators in a. Prove by induction on the structure of a that Va €

Aexp . L(a) = O(a) + 1:

Base cases:
e Casea=mn.L(a)=1and O(a) =0
e Casea=1z.L(a) =1and O(a) =0
Inductive case 1: Case a = a1 + a9
e By definition, L(a) = L(a1) + L(a2) and O(a) = O(a1) + O(az2) + 1.
e By the induction hypothesis, L(a1) = O(a1) + 1 and L(a2) = O(a2) + 1.
e Thus, L(a) = O(a1) + O(a2) +2 = O(a) + 1.

The other arithmetic operators follow the same logic.

33

Proofs by Structural Induction

« Prove that small-step and big-step semantics of expressions produce
equivalent results.

Va € AExp . (FE,a) —», n<{(E,a) | n

« Can be proved via structural induction over syntax. (Exercise)

(c) J. Aldrich, C. Le Goues, R. Padhye

34

Proofs by Structural Induction

* Prove that WHILE is deterministic. That is, if the program
terminates, it evaluates to a unique value.

VaeAexp. VE . Vn,n'eN. (E,a) | nA{E,a)|n =n=n
VP eBexp. VE Vb,V € B. (E,PYybAa(E,PYLY =b=1
VS . VE,E E" . (E,S | E' A(E,8) || E" = E' = E"

Rule for while is recursive;

doesn’t depend only on
subexpressions

Can prove for expressions via induction over syntax, but not for
statements.

« But there's still a way.

(c) J. Aldrich, C. Le Goues, R. Padhye 35

To prove: | /S . VE,E',E". (E,S)|| E' A\(E,S) | E" = E' =E"

Structural Induction over Derivations

Base case: the one rule with no premises, skip: let D :: (E,S) | E',and let D' :: (E, S) | E"

D ::=(E, skip) | E

By inversion, the last rule used in D’ (which, again, produced E”) must also have been the
rule for skip. By the structure of the skip rule, we know E” = E.

Inductive cases: We need to show that the property holds when the last rule used in D was
each of the possible non-skip WHILE commands. I will show you one representative case; the
rest are left as an exercise. If the last rule used was the while-true statement:

Dy :: (E,b) | true Dy ::(E,Sy| E1 Ds3::{Ej,wvhilebdo S) || E’
D (E,whilebdo S) | E’

Pick arbitrary E” such that D’ :: (E,while bdo S) || E”

By inversion, D’ must use either the while-true or the while-false rule. However,
having proved that boolean expressions are deterministic (via induction on syntax), and given
that D contains the judgment (E,b) || true, we know that D’ cannot be the while-false
rule, as otherwise it would have to contain a contradicting judgment (E, b) | false.

So, we know that D’ is also using while-true rule. In its derivation, D’ must also have
subderivations Dj, :: (E,S) | E} and Dj :: (E{,while bdo S) || E”. By the induction hypoth-
esis on Dy with Dj, we know E1 E}. Using this result and the induction hypothesis on Ds
with Dj, we have E” = J.

Next time

« WHILE3ADDR: A 3-address-code representation of WHILE
« Control-flow graphs
* Introduction to data-flow analysis

(c) J. Aldrich, C. Le Goues, R. Padhye

37

