
Lecture 2: Program Semantics
17-355/17-665/17-819: Program Analysis

Rohan Padhye
Jan 20, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

1(c) J. Aldrich, C. Le Goues, R. Padhye
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


Administrivia
• HW1 is out today – CodeQL. Due next Thursday (Jan 27).

o Lots of references online
o Recitation will have some practice problems
o Submit via Canvas. Share link to your query + paste the code.

• Office hours are up on website
o Via Zoom

• Lecture notes/slides on website
o Read after class; useful for HW and exams (won’t always have slides)
o Text PDF updates frequently (usually before class); get latest copy
o For now, ignore 2.2, 2.4, 3.1.3 (WHILE3ADDR) – We’ll cover it next week

2(c) J. Aldrich, C. Le Goues, R. Padhye



Learning Goals
• Define the meaning of programs using operational semantics
• Read and write inference rules and derivation trees
• Use big- and small-step semantics to show how WHILE programs 

evaluate
• Use structural induction to prove things about program 

semantics

3(c) J. Aldrich, C. Le Goues, R. Padhye



Review: WHILE abstract syntax

4(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

We’ll use these meta-variables 
frequently for ease of notation



Questions to answer
• What is the “meaning” of a given WHILE expression/statement ?
• How would we go about evaluating WHILE expressions and statements?
• How are the evaluator and the meaning related?

5(c) J. Aldrich, C. Le Goues, R. Padhye



Three canonical approaches
• Operational semantics

o How would I execute this? 
o Interpreter

• Axiomatic semantics
o What is true after I execute this?
o Symbolic Execution

• Denotational semantics
o What function is this trying to compute? 
o Mathematical modeling

6(c) J. Aldrich, C. Le Goues, R. Padhye



Operational Semantics
• Specifies how expressions and statements should be evaluated depending 

on the form of the expression.
o 0, 1, 2, . . . don’t evaluate any further.

§ They are normal forms or values.
o 4 + 2 is evaluated by adding integers 4 and 2 to get 6.

§ Rule can be generalized for an expression containing only literals: n1 + n2

o a1 + a2 is evaluated by:
§ First evaluating expression a1 to value n1

§ Then evaluating expression a2 to integer n2

§ The result of the evaluation is the literal representing n1 + n2

§ Here, evaluation order is being defined as left-to-right (post-order AST traversal)

• Operational semantics abstracts the execution of a concrete interpreter. 

7(c) J. Aldrich, C. Le Goues, R. Padhye



Big-Step Semantics
• Uses down-arrow notation to denote evaluation to normal form.
• 𝑎 ⇓ 𝑛 is a judgment that expression 𝑎 is evaluated to value 𝑛
• For example: 4 + 2 + 9 ⇓ 15
• You can think of this as a logical proposition. 

o The semantics of a language determines what judgments are provable.

8(c) J. Aldrich, C. Le Goues, R. Padhye



Inference Rules

9(c) J. Aldrich, C. Le Goues, R. Padhye

• A notation for defining semantics. 
• If ALL of the premises above the line can be proved true, then 

the conclusion holds as well.



Let’s Formalize the tiny ADD language
• Specifies how expressions and statements should be evaluated depending 

on the form of the expression.
o 0, 1, 2, . . . don’t evaluate any further.

§ They are normal forms or values.
o 4 + 2 is evaluated by adding integers 4 and 2 to get 6.

§ Rule can be generalized for an expression containing only literals: n1 + n2

o a1 + a2 is evaluated by:
§ First evaluating expression a1 to value n1

§ Then evaluating expression a2 to integer n2

§ The result of the evaluation is the literal representing n1 + n2

§ Here, evaluation order is being defined as left-to-right (post-order AST traversal)

• Operational semantics abstracts the execution of a concrete interpreter. 

10(c) J. Aldrich, C. Le Goues, R. Padhye



Big-step semantics for ADD

11(c) J. Aldrich, C. Le Goues, R. Padhye



Derivation trees
• Let’s derive (4 + 2) + 9 ⇓ 15 from the rules

12(c) J. Aldrich, C. Le Goues, R. Padhye

• The derivation provides a proof of (4 + 2) + 9 ⇓ 15 using only 
axioms and inference rules.



Operational Semantics of WHILE
• The meaning of WHILE expressions depend on the values of variables 

o What does 𝑥+5 mean? It depends on 𝑥.
o If 𝑥 = 8 at some point, we expect 𝑥+5 to mean 13

• The value of integer variables at a given moment is abstracted as a function: 
𝐸 ∶ 𝑉𝑎𝑟 → 𝑍

• We will augment our notation of big-step evaluation to include state:

𝐸, 𝑎 ⇓ 𝑛
• So, if 𝑥 ↦ 8 ∈ 𝐸, then 𝐸, 𝑥 + 5 ⇓ 13

13(c) J. Aldrich, C. Le Goues, R. Padhye



Big-Step Semantics for WHILE expressions

• Similarly for other arithmetic and boolean expressions

14(c) J. Aldrich, C. Le Goues, R. Padhye



States propagate in derivations

15(c) J. Aldrich, C. Le Goues, R. Padhye

• Let 𝐸! = {𝑥 ↦ 4}. What will 𝑥 ∗ 2 − 6 evaluate to in this state?

⊢ ⟨E!, 𝑥 ∗ 2 − 6⟩ ⇓ 2 (this evaluation is provable via a well-formed derivation)



Big-Step Semantics for WHILE statements
• Statements do not evaluate to values.
• However, statements can have side-effects.

• Notation for statement evaluations: 𝐸, 𝑆 ⇓ 𝐸′

16(c) J. Aldrich, C. Le Goues, R. Padhye



Big-Step Semantics for WHILE statements

17(c) J. Aldrich, C. Le Goues, R. Padhye



Big-Step Semantics for WHILE statements
• Exercise: Write the rule “big-while” for 

18(c) J. Aldrich, C. Le Goues, R. Padhye



Big-Step Semantics for WHILE statements

19(c) J. Aldrich, C. Le Goues, R. Padhye



Big-Step Semantics for WHILE statements

20(c) J. Aldrich, C. Le Goues, R. Padhye

Alternate formulation (equivalent to previous slide):



Big-Step Semantics: Discussion
• Rules suggest an AST interpreter

o Recursively evaluate operands, then current node (post-order traversal)

• Disadvantages:
o Cannot reason about non-terminating loops, e.g. while	true do	skip
o Does not model intermediate states

§ Needed for semantics of concurrent execution models (e.g. Java threads) 

21(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Operational Semantics
• Each step is an atomic rewrite of the program
• Execution is a sequence of (possibly infinite) steps

o ⟨E!, (𝑥 ∗ 2) − 6⟩ → ⟨𝐸!, 4 ∗ 2 − 6⟩ → ⟨𝐸!, 8 − 6⟩ → 2

• Small arrow notation for single step:
𝐸, 𝑎 →" 𝑎#
𝐸, 𝑏 →$ 𝑏′

𝐸, 𝑆 → ⟨𝐸′, 𝑆′⟩

(the subscripts on the arrows can be omitted when context is clear)

22(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Operational Semantics
• First define a multi-step notation: 𝐸, 𝑆 →∗ ⟨𝐸′, 𝑆′⟩

23(c) J. Aldrich, C. Le Goues, R. Padhye

• A terminating evaluation of a program P from initial state Ein is:
𝐸"#, 𝑃 →∗ ⟨𝐸%&', 𝑠𝑘𝑖𝑝⟩



Small-Step Semantics for WHILE expressions
• Axioms are similar: 

24(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Semantics for WHILE expressions
• Compound expressions

25(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Semantics for WHILE statements

26(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Semantics for WHILE statements

27(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Semantics for WHILE statements
• Exercise: Write the rule “small-while” for 

28(c) J. Aldrich, C. Le Goues, R. Padhye



Small-Step Semantics for WHILE statements

29(c) J. Aldrich, C. Le Goues, R. Padhye



Provability
• Given some operational semantics, 𝐸, 𝑎 ⇓ 𝑛 is provable

if there exists a well-formed derivation with 𝐸, 𝑎 ⇓ 𝑛 as its 
conclusion
“well-formed” = “every step in the derivation is a valid instance of 
one of the rules of inference for this opsem system”

⊢ 𝐸, 𝑎 ⇓ 𝑛 “it is provable that 𝐸, 𝑎 ⇓ 𝑛 ”

30(c) J. Aldrich, C. Le Goues, R. Padhye



Proofs over semantics
• Once we have defined semantics clearly, we can now reason 

about programs rigorously via proofs by structural induction.
• But first, recall mathematical induction:

o To prove ∀𝑛 ∶ 𝑃(𝑛) by induction on natural numbers
§ Base case: show that 𝑃(0) holds
§ Inductive case: show that ∀𝑚 ∶ 𝑃 𝑚 ⇒ 𝑃(𝑚 + 1)

31(c) J. Aldrich, C. Le Goues, R. Padhye



Proofs by Structural Induction

• To prove ∀𝑎 ∈ 𝐴𝑒𝑥𝑝: 𝑃(𝑎) by induction on structure of syntax
o Base cases: show that 𝑃(𝑥) and 𝑃(𝑛) holds
o Inductive cases: show that 

§ 𝑃 𝑎! ∧ 𝑃(𝑎") ⇒ 𝑃(𝑎! + 𝑎")
§ 𝑃 𝑎! ∧ 𝑃(𝑎") ⇒ 𝑃(𝑎! ∗ 𝑎")

§ 𝑃 𝑎! ∧ 𝑃(𝑎") ⇒ 𝑃(𝑎!/𝑎")

32(c) J. Aldrich, C. Le Goues, R. Padhye



Proofs by Structural Induction

33(c) J. Aldrich, C. Le Goues, R. Padhye



Proofs by Structural Induction

34(c) J. Aldrich, C. Le Goues, R. Padhye

• Prove that small-step and big-step semantics of expressions produce 
equivalent results.

• Can be proved via structural induction over syntax. (Exercise)



Proofs by Structural Induction
• Prove that WHILE is deterministic. That is, if the program 

terminates, it evaluates to a unique value.

35(c) J. Aldrich, C. Le Goues, R. Padhye

Rule for while is recursive; 
doesn’t depend only on 

subexpressions

• Can prove for expressions via induction over syntax, but not for 
statements. 

• But there’s still a way.



Structural Induction over Derivations

36

To prove:

(c) J. Aldrich, C. Le Goues, R. Padhye



Next time
• WHILE3ADDR: A 3-address-code representation of WHILE
• Control-flow graphs
• Introduction to data-flow analysis

37(c) J. Aldrich, C. Le Goues, R. Padhye


