
Lecture 1: Introduction
to Program Analysis

17-355/17-665/17-819: Program Analysis
Rohan Padhye

Jan 18, 2022

* Course materials developed with Jonathan Aldrich and Claire Le Goues

1(c) 2022 J. Aldrich, C. Le Goues, R. Padhye
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Introductions

2(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Prof. Rohan Padhye TA Bella Laybourn

My Background
• Involved with program analysis for ~10 years.

• PhD from UC Berkeley, Masters from IIT Bombay (India)
• Worked at IBM Research, Microsoft Research, and Samsung Research America

• Advising PhD students at CMU’s Institute for Software Research
• Developed tools for improving developer productivity, finding input-validation software

bugs, identifying security vulnerabilities in mobile systems, discovering concurrency issues
in distributed systems, etc.

• Contributed to research on fuzz testing, static interprocedural analysis, dynamic
performance analysis, etc.

3

Learning objectives
• Provide a high level definition of program analysis and give

examples of why it is useful.
• Sketch the explanation for why all analyses must approximate.
• Understand the course mechanics, and be motivated to read the

syllabus.
• Describe the function of an AST and outline the principles

behind AST walkers for simple bug-finding analyses.
• Recognize the basic WHILE demonstration language and

translate between WHILE and While3Addr.

4(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?
• Program analysis is the systematic examination of a program to

determine its properties.
• From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

5(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Why might you care?
Program analysis, and the skills that underlie it, have implications for:
• Automatic bug finding
• Language design and implementation (compilers, VMs)
• Program transformation (refactoring, optimization, repair)
• Program synthesis

6(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

You’ve seen it before

7(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

You’ve seen it before

8(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Lots of tools available

9(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

https://github.com/marketplace?category=code-quality

Lint

ErrorProne

https://github.com/marketplace?category=code-quality

Advanced examples from industry

10

Sapienz and SapFix @ Facebook

CodeGuru @ Amazon

SAGE @ Microsoft

GitHub CoPilot

Common types of issues found using
automated program analysis
• Defects that result from inconsistently following simple design rules.

o Security: Buffer overruns, improperly validated input.
o Memory safety: Null dereference, uninitialized data.
o Resource leaks: Memory, OS resources.
o API Protocols: Device drivers; real time libraries; GUI frameworks.
o Exceptions: Arithmetic/library/user-defined
o Encapsulation: Accessing internal data, calling private functions.
o Data races: Two threads access the same data without synchronization

11(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Key: check compliance to simple, mechanical design rules

IS THERE A BUG IN THIS CODE?

12(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Part of the spec:
Interrupts should not be

disabled upon function return

13(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

ERROR: function returns with
interrupts disabled!

14(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

is_enabled

is_disabled

disable enable

enable è err(double enable)

end path è err(exiting with inter disabled)

disable è err(double disable)

Abstract Model

15(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Initial state: is_enabled

17(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_disabled

18(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_disabled

19(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_enabled

20(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_enabled

21(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Behavior of interest…
• Is on uncommon execution paths.

o Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible
• Instead: (abstractly) check the entire possible state space of

the program.

22(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

23(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• Principal techniques:
o Dynamic:

§ Testing: Direct execution of code on test data in a controlled environment.
§ Analysis: Tools extracting data from test runs.

o Static:
§ Inspection: Human evaluation of code, design documents (specs and models),

modifications.
§ Analysis: Tools reasoning about the program without executing it.

o …and their combination.

24(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

25(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Proof by contradiction (sketch)
Assume that you have a function that can determine if a program p has
some nontrivial property (like divides_by_zero):

1. int silly(program p, input i) {
2. p(i);
3. return 5/0;
4. }
5. bool halts(program p, input i) {
6. return divides_by_zero(`silly(p,i)`);
7. }

26(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Over-approximate analysis:
reports all potential defects
-> no false negatives
-> subject to false positives

Under-approximate analysis:
every reported defect is an actual defect
-> no false positives
-> subject to false negatives

27(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Soundness and Completeness
• An analysis is “sound” if every claim it makes is true
• An analysis is “complete” if it makes every true claim

• Soundness/Completeness correspond to under/over-
approximation depending on context.
o E.g. compilers and verification tools treat “soundness” as over-

approximation since they make claims over all possible inputs
o E.g. code quality tools often treat “sound” analyses as under-

approximation because they make claims about existence of bugs

28(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Complete Analysis

True Properties
(e.g. defects,
optimization
opportunities)

Sound
Analysis

Unsound
and

Incomplete
Analysis

29(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Soundness and Completeness Tradeoffs
• Sound + Complete is impossible in general (Rice’s theorem)

• Most practical tools attempt to be either sound or complete
for some specific application, using approximation

• Multiple classes of sound/complete techniques may exist,
with trade-offs for accuracy and performance.

• Program analysis is a rich field because of the constant and
never-ending battle to balance these trade-offs with ever-
increasing software complexity

30(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

True Properties
(e.g. defects)

Sound
Analysis

1

Sound
Analysis

2

Sound
Analysis

3

Course topics
• Program representation
• Abstract interpretation: Use abstraction

to reason about possible program
behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Pointer analysis
o Control flow analysis

• Hoare-style verification: Make logical
arguments about program behavior.
o Axiomatic semantics

• Model checking (briefly) : reason about all
possible program states.
o Take 15-414 if you want the full treatment!

• SAT/SMT solvers
• Symbolic execution: test all possible

executions paths simultaneously.
o Concolic execution
o Test generation

• Grey-box analysis for fuzz testing
• Dynamic analysis for race detection
• Program synthesis
• Program repair
• We will basically not cover types.

31(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Fundamental concepts
• Abstraction

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the

underlying language.

• Program proofs as inductive invariants.
• Implementation

o You do not understand analysis until you have written several.

32(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Course mechanics

(c) 2022 J. Aldrich, C. Le Goues, R. Padhye 33

What to expect
• Beautiful and elegant theory (15-251 is a soft pre-req)

o Mostly discrete mathematics, symbolic reasoning, inductive proofs
o This is traditionally a “white-board” course [using slides while we’re on Zoom]

• Build awesome tools
o Engineering of program analyses, compilers, and bug finding tools make great use of

many fundamental ideas from computer science and software engineering
• New way to think about programs (15-150 or 15-214 soft pre-reqs)

o Representations, control/data-flow, input state space
• Appreciate the limits and achievements in the space

o What tools are impossible to build?
o What tools are impressive that they exist at all?
o When is it appropriate to use a particular analysis tool versus another?
o How to interpret the results of a program analysis tool?

34(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

When/what
• Lectures 2x week (T,Th – in GHC 4101 from Feb 1; now on Zoom).

o Active learning exercise(s) in every class
o Lecture notes for review --- get latest PDF from website

• Recitation 1x week (Fr – in MI 348 from Feb 1; now on Zoom).
o Lab-like, very helpful for homework.
o Be ready to work

• Homework, midterm exam, project.
• There is an optional physical textbook. (“PPA”)

35(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Communication
• Course website: https://cmu-program-analysis.github.io
• We also use Canvas, Piazza, Gradescope (see website for links)

o Canvas: In-class exercises, some assignments, Zoom links, grades tally
o Gradescope: For written assignments
o Piazza: Please use public posts for any course related questions as

much as possible, unless the matter is sensitive. Feel free to respond to
other posts and engage in discussion.

• We have office hours! Or, by appointment.

36(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

https://cmu-program-analysis.github.io/

“How do I get an A?”
• 10% in-class participation and exercises
• 50% homework assignments

o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) to be released by Friday!

• 20% midterm exam
• 20% final project

o There will be some options here.
• No final exam; exam slot used for project presentations.
• We have late days and a late day policy; read the syllabus.

o tl;dr: 3 late days per HW, with 5 total late days before penalties kick in

37(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Slight variations in expectations
• If you’re taking the undergraduate version of the course (17-355)

o Recitation attendance is expected and part of participation grade.

• If you’re taking the graduate version of the course (17-665/819)
o Recitation attendance is encouraged.
o Higher bar for final course project.

§ Master’s students: Expected to engage with large codebases (either frameworks or targets)
§ PhD students: Expected to engage with research questions

• You are welcome to move up your expectations to be assessed differently
(email me)

38(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.
• We aim to provide a rigorous but tractable course.

o More frequent assignments rather than big monoliths
o Midterm exam to cover core material from first half of course

• Please let us know how much time the class is actually taking.
o We have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty.

• If it’s 2 am and you’re panicking…put the homework down, send us an
email, and go to bed.

39(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Let’s get started

(c) 2022 J. Aldrich, C. Le Goues, R. Padhye 40

What is this course about?

• Program analysis is the systematic examination of a program to
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.

41(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Our first representation: Abstract Syntax
• A tree representation of source code based on the language grammar.
• Concrete syntax: The rules by which programs can be expressed as strings

of characters
o E.g. “if (x * (a + b)) { foo(a); }”
o Use finite automata and context-free grammars, automatic lexer/parser generators

• Abstract syntax: a subset of the parse tree of the program.
o Only care about statements, expressions and their relationship with constituent

operands.
o Don’t care about parenthesis, semicolons, keywords, etc.

• (The intuition is fine for this course; take compilers if you want to learn how
to parse for real.)

42(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

The WHILE language – Example program
y := x;
z := 1;
if y > 0 then

while y > 1 do
z := z * y;
y := y – 1

else
skip

• Sample program computes z = x!
using y as a temp variable.

• WHILE uses assignment statements,
if-then-else, while loops.

• All vars are integers.
• Expressions only arithmetic (for

vars) or relational (for conditions).
• No I/O statements. Inputs and

outputs are implicit.
o Later on, we may use extensions with

explicit `read x` and `print x`.

43(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

WHILE abstract syntax
• Categories:

o S ∈ Stmt statements
o a ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n ∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::= and | or | …
o opr ::= < | ≤ | = | > | ≥ | ...

Concrete syntax is
similar, but adds things
like (parentheses) for
disambiguation during
parsing

44(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Exercise: Building an AST

45(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

y := x;
z := 1;
if y > 0 then
while y > 1 do
z := z * y;
y := y – 1

else
skip

Ex 1: Building an AST for C code
void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)
dest[i] = source[i];

}

46(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular

patterns.
o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.
o Basically, a glorified “grep” that knows about the syntax but not

semantics of a language.

47(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Example: shifting by more than 31 bits.

Assume we want to find code patterns of the following form:
x << -3

z >> 35

For 32-bit integer vars, these operations may signal unintended typos, since it
doesn’t makes sense to shift by a number outside the range (0, 32).

48(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Example: shifting by more than 31 bits.

For each instruction I in the program

if I is a shift instruction

if (type of I’s left operand is int
&& I’s right operand is a constant
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)

49(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular patterns.

o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.

• Various frameworks, some more language-specific than others.
o Tradeoffs between language agnosticism and semantic information available.
o Consider “grep”: very language agnostic, not very smart.
o Python’s ”astor” package designed for Python ASTs. Clean API; highly specific.

• One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node
o To do something interesting for AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative logic
programming, or query languages.

50(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

CodeQL

51(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

• A language for
querying code.
Developed by GitHub.

• Supports many
common languages.

• Library of common
programming patterns
and optimizations.

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

Example: Java string compare with “”

52(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

CodeQL query for empty string comparison

53(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

Ex 2: String concatenation in a loop
• Write pseudocode for a simple syntactic analysis that warns

when string concatenation occurs in a loop
o Why? In Java and .NET it may be more efficient to use a StringBuffer
o Assume any appropriate AST elements

54(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

For next time
• Get on Piazza and Canvas
• Read lecture notes and the course syllabus
• Homework 1 will be released later this week, and is due next

Thursday.

55(c) 2022 J. Aldrich, C. Le Goues, R. Padhye

