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Introductions
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My Background
• Involved with program analysis for ~10 years.

• PhD from UC Berkeley, Masters from IIT Bombay (India)
• Worked at IBM Research, Microsoft Research, and Samsung Research America

• Advising PhD students at CMU’s Institute for Software Research
• Developed tools for improving developer productivity, finding input-validation software 

bugs, identifying security vulnerabilities in mobile systems, discovering concurrency issues 
in distributed systems, etc. 

• Contributed to research on fuzz testing, static interprocedural analysis, dynamic 
performance analysis, etc.
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Learning objectives
• Provide a high level definition of program analysis and give 

examples of why it is useful.
• Sketch the explanation for why all analyses must approximate.
• Understand the course mechanics, and be motivated to read the 

syllabus.
• Describe the function of an AST and outline the principles 

behind AST walkers for simple bug-finding analyses. 
• Recognize the basic WHILE demonstration language and 

translate between WHILE and While3Addr. 
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What is this course about?
• Program analysis is the systematic examination of a program to 

determine its properties.
• From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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Why might you care?
Program analysis, and the skills that underlie it, have implications for:
• Automatic bug finding
• Language design and implementation (compilers, VMs)
• Program transformation (refactoring, optimization, repair)
• Program synthesis
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You’ve seen it before
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You’ve seen it before
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Lots of tools available
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https://github.com/marketplace?category=code-quality

Lint

ErrorProne

https://github.com/marketplace?category=code-quality


Advanced examples from industry
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Sapienz and SapFix @ Facebook

CodeGuru @ Amazon

SAGE @ Microsoft

GitHub CoPilot



Common types of issues found using 
automated program analysis
• Defects that result from inconsistently following simple design rules.

o Security:  Buffer overruns, improperly validated input.
o Memory safety:  Null dereference, uninitialized data.
o Resource leaks:  Memory, OS resources.
o API Protocols:  Device drivers; real time libraries; GUI frameworks.
o Exceptions: Arithmetic/library/user-defined
o Encapsulation: Accessing internal data, calling private functions.
o Data races: Two threads access the same data without synchronization
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Key: check compliance to simple, mechanical design rules



IS THERE A BUG IN THIS CODE?
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Part of the spec: 
Interrupts should not be 

disabled upon function return
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

ERROR: function returns with 
interrupts disabled!
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is_enabled

is_disabled

disable enable

enable è err(double enable)

end path è err(exiting with inter disabled)

disable è err(double disable)

Abstract Model
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Initial state: is_enabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Transition to: is_disabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Final state: is_disabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Transition to: is_enabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Final state: is_enabled
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Behavior of interest…
• Is on uncommon execution paths.

o Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible
• Instead: (abstractly) check the entire possible state space of 

the program.
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• Principal techniques:
o Dynamic:

§ Testing: Direct execution of code on test data in a controlled environment.
§ Analysis: Tools extracting data from test runs.

o Static:
§ Inspection: Human evaluation of code, design documents (specs and models), 

modifications.
§ Analysis: Tools reasoning about the program without executing it.

o …and their combination.
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The Bad News: Rice's Theorem

"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“

Henry Gordon Rice, 1953
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Proof by contradiction (sketch)
Assume that you have a function that can determine if a program p has 
some nontrivial property (like divides_by_zero):

1. int silly(program p, input i) { 
2. p(i);
3. return 5/0; 
4. }
5. bool halts(program p, input i) {
6. return divides_by_zero(`silly(p,i)`);
7. }
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Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Over-approximate analysis: 
reports all potential defects
-> no false negatives
-> subject to false positives

Under-approximate analysis:
every reported defect is an actual defect 
-> no false positives
-> subject to false negatives
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Soundness and Completeness
• An analysis is “sound” if every claim it makes is true
• An analysis is “complete” if it makes every true claim

• Soundness/Completeness correspond to under/over-
approximation depending on context.
o E.g. compilers and verification tools treat “soundness” as over-

approximation since they make claims over all possible inputs
o E.g. code quality tools often treat “sound” analyses as under-

approximation because they make claims about existence of bugs
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Complete Analysis

True Properties
(e.g. defects, 
optimization 
opportunities)

Sound 
Analysis

Unsound 
and 

Incomplete 
Analysis
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Soundness and Completeness Tradeoffs
• Sound + Complete is impossible in general (Rice’s theorem)

• Most practical tools attempt to be either sound or complete 
for some specific application, using approximation

• Multiple classes of sound/complete techniques may exist, 
with trade-offs for accuracy and performance.

• Program analysis is a rich field because of the constant and 
never-ending battle to balance these trade-offs with ever-
increasing software complexity
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True Properties
(e.g. defects)

Sound 
Analysis

1

Sound 
Analysis

2

Sound 
Analysis
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Course topics
• Program representation
• Abstract interpretation: Use abstraction 

to reason about possible program 
behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Pointer analysis
o Control flow analysis

• Hoare-style verification: Make logical 
arguments about program behavior.
o Axiomatic semantics

• Model checking (briefly) : reason about all 
possible program states.
o Take 15-414 if you want the full treatment!

• SAT/SMT solvers
• Symbolic execution: test all possible 

executions paths simultaneously.
o Concolic execution
o Test generation

• Grey-box analysis for fuzz testing
• Dynamic analysis for race detection
• Program synthesis
• Program repair
• We will basically not cover types.

31(c) 2022 J. Aldrich, C. Le Goues, R. Padhye



Fundamental concepts
• Abstraction

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the 

underlying language.

• Program proofs as inductive invariants.
• Implementation

o You do not understand analysis until you have written several.
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Course mechanics
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What to expect
• Beautiful and elegant theory (15-251 is a soft pre-req)

o Mostly discrete mathematics, symbolic reasoning, inductive proofs 
o This is traditionally a “white-board” course [using slides while we’re on Zoom]

• Build awesome tools
o Engineering of program analyses, compilers, and bug finding tools make great use of 

many fundamental ideas from computer science and software engineering
• New way to think about programs  (15-150 or 15-214 soft pre-reqs)

o Representations, control/data-flow, input state space
• Appreciate the limits and achievements in the space

o What tools are impossible to build?
o What tools are impressive that they exist at all?
o When is it appropriate to use a particular analysis tool versus another?
o How to interpret the results of a program analysis tool?
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When/what
• Lectures 2x week (T,Th – in GHC 4101 from Feb 1; now on Zoom).

o Active learning exercise(s) in every class
o Lecture notes for review --- get latest PDF from website

• Recitation 1x week (Fr – in MI 348 from Feb 1; now on Zoom).
o Lab-like, very helpful for homework. 
o Be ready to work

• Homework, midterm exam, project.
• There is an optional physical textbook.  (“PPA”)
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Communication
• Course website: https://cmu-program-analysis.github.io
• We also use Canvas, Piazza, Gradescope (see website for links)

o Canvas: In-class exercises, some assignments, Zoom links, grades tally
o Gradescope: For written assignments
o Piazza: Please use public posts for any course related questions as 

much as possible, unless the matter is sensitive. Feel free to respond to 
other posts and engage in discussion.

• We have office hours! Or, by appointment.
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“How do I get an A?”
• 10% in-class participation and exercises
• 50% homework assignments

o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) to be released by Friday!

• 20% midterm exam
• 20% final project

o There will be some options here.
• No final exam; exam slot used for project presentations.
• We have late days and a late day policy; read the syllabus.

o tl;dr: 3 late days per HW, with 5 total late days before penalties kick in
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Slight variations in expectations
• If you’re taking the undergraduate version of the course (17-355)

o Recitation attendance is expected and part of participation grade. 

• If you’re taking the graduate version of the course (17-665/819)
o Recitation attendance is encouraged.
o Higher bar for final course project. 

§ Master’s students: Expected to engage with large codebases (either frameworks or targets)
§ PhD students: Expected to engage with research questions

• You are welcome to move up your expectations to be assessed differently 
(email me)
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CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.
• We aim to provide a rigorous but tractable course.

o More frequent assignments rather than big monoliths
o Midterm exam to cover core material from first half of course

• Please let us know how much time the class is actually taking.
o We have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty. 

• If it’s 2 am and you’re panicking…put the homework down, send us an 
email, and go to bed.
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Let’s get started
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What is this course about?

• Program analysis is the systematic examination of a program to 
determine its properties.

• From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a 

programming language.
o How to prove theorems about the behavior of particular programs.
o How to use, build, and extend tools that do the above, automatically.
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Our first representation: Abstract Syntax
• A tree representation of source code based on the language grammar.
• Concrete syntax: The rules by which programs can be expressed as strings 

of characters
o E.g. “if (x * (a + b)) { foo(a); }”
o Use finite automata and context-free grammars, automatic lexer/parser generators

• Abstract syntax: a subset of the parse tree of the program.
o Only care about statements, expressions and their relationship with constituent 

operands.
o Don’t care about parenthesis, semicolons, keywords, etc.

• (The intuition is fine for this course; take compilers if you want to learn how 
to parse for real.)
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The WHILE language – Example program
y := x;
z := 1;
if y > 0 then

while y > 1 do 
z := z * y; 
y := y – 1

else
skip

• Sample program computes z = x!
using y as a temp variable.

• WHILE uses assignment statements, 
if-then-else, while loops.

• All vars are integers. 
• Expressions only arithmetic (for 

vars) or relational (for conditions).
• No I/O statements. Inputs and 

outputs are implicit.
o Later on, we may use extensions with 

explicit `read x` and `print x`.
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WHILE abstract syntax
• Categories:

o S  ∈ Stmt statements
o a  ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n  ∈ Num number literals
o P  ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::=  and | or | …
o opr ::= < | ≤ | = | > | ≥ | ... 

Concrete syntax is 
similar, but adds things 
like (parentheses) for 
disambiguation during 
parsing
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Exercise: Building an AST
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y := x;
z := 1;
if y > 0 then
while y > 1 do 
z := z * y; 
y := y – 1

else
skip



Ex 1: Building an AST for C code
void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)
dest[i] = source[i];

}
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Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular 

patterns. 
o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question. 
o Basically, a glorified “grep” that knows about the syntax but not 

semantics of a language.

47(c) 2022 J. Aldrich, C. Le Goues, R. Padhye



Example: shifting by more than 31 bits.

Assume we want to find code patterns of the following form:
x << -3

z >> 35

For 32-bit integer vars, these operations may signal unintended typos, since it 
doesn’t makes sense to shift by a number outside the range (0, 32).
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Example: shifting by more than 31 bits.

For each instruction I in the program

if I is a shift instruction

if (type of I’s left operand is int
&& I’s right operand is a constant
&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)
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Our first static analysis: AST walking
• One way to find “bugs” is to walk the AST, looking for particular patterns. 

o Traverse the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question. 

• Various frameworks, some more language-specific than others.
o Tradeoffs between language agnosticism and semantic information available.
o Consider “grep”: very language agnostic, not very smart. 
o Python’s ”astor” package designed for Python ASTs. Clean API; highly specific.

• One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node 
o To do something interesting for AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative logic 
programming, or query languages.
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CodeQL
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https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

• A language for 
querying code. 
Developed by GitHub.

• Supports many 
common languages.

• Library of common 
programming patterns 
and optimizations.

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test


Example: Java string compare with “”
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CodeQL query for empty string comparison
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Ex 2: String concatenation in a loop
• Write pseudocode for a simple syntactic analysis that warns 

when string concatenation occurs in a loop
o Why? In Java and .NET it may be more efficient to use a StringBuffer
o Assume any appropriate AST elements
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For next time
• Get on Piazza and Canvas
• Read lecture notes and the course syllabus
• Homework 1 will be released later this week, and is due next 

Thursday.
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