
Program Analysis

Jonathan Aldrich, Claire Le Goues, and Rohan Padhye

(a work in progress; last updated on April 13, 2021)

Spring 2021

Contents

1 Introduction 4

2 The WHILE Language and Program Representation 5
2.1 The WHILE Language . 5
2.2 WHILE3ADDR: A Representation for Analysis . 6
2.3 Extensions . 7
2.4 Control flow graphs . 7

3 Program Semantics 8
3.1 Operational Semantics . 8

3.1.1 WHILE: Big-step operational semantics . 8
3.1.2 WHILE: Small-step operational semantics 10
3.1.3 WHILE3ADDR: Small-step semantics . 11
3.1.4 Derivations and provability . 12

3.2 Proof techniques using operational semantics . 12

4 A Dataflow Analysis Framework for WHILE3ADDR 15
4.1 Defining a dataflow analysis . 15
4.2 Running a dataflow analysis . 17

4.2.1 Straightline code . 17
4.2.2 Alternative Paths: Illustration . 17

4.3 Join . 19
4.3.1 Dataflow analysis of loops . 20
4.3.2 A convenience: the K abstract value and complete lattices 22

4.4 Analysis execution strategy . 22

5 Dataflow Analysis Examples 26
5.1 Integer Sign Analysis . 26
5.2 Constant Propagation . 26
5.3 Reaching Definitions . 28
5.4 Live Variables . 29

6 Dataflow Analysis Termination and Correctness 31
6.1 Termination . 31
6.2 Montonicity of Zero Analysis . 33
6.3 Correctness . 33

7 Widening Operators and Collecting Semantics for Dataflow Analysis 37
7.1 Widening operators: Dealing with Infinite-Height Lattices 37

7.1.1 Example: Interval Analysis . 37
7.1.2 The Widening Operator . 38

7.2 Collecting Semantics (Reaching Definitions) . 41

1

8 Interprocedural Analysis 43
8.1 Two Simple Approaches . 43
8.2 Interprocedural Control Flow Graphs . 44
8.3 Context Sensitive Analysis . 45
8.4 Precision and Termination . 47
8.5 Approaches to Limiting Context-Sensitivity . 48

9 Control Flow Analysis for Functional Languages 50
9.1 A simple, labeled, functional language . 50
9.2 Simple Control Flow Analysis . 51

9.2.1 0-CFA . 51
9.2.2 0-CFA with dataflow information . 53

9.3 m-Calling Context Sensitive Control Flow Analysis (m-CFA) 53

10 Advanced Interprocedural Analysis: Pointer Analysis and Object-Oriented Call
Graph Construction 58
10.1 Pointer Analysis . 58

10.1.1 Andersen’s Points-To Analysis . 59
10.1.2 Field Sensitivity . 61
10.1.3 Steensgaard’s Points-To Analysis . 62

10.2 Dynamic dispatch . 64
10.2.1 Simple approaches . 64
10.2.2 0-CFA Style Object-Oriented Call Graph Construction 65

11 Axiomatic Semantics and
Hoare-style Verification 66
11.1 Axiomatic Semantics . 66

11.1.1 Assertion judgements using operational semantics 67
11.1.2 Derivation rules for Hoare triples . 67

11.2 Proofs of a Program . 68
11.2.1 Strongest postconditions and weakest pre-conditions 68
11.2.2 Loops . 69
11.2.3 Proving programs . 70

12 Satisfiability Modulo Theories 73
12.1 Motivation and Overview . 73
12.2 DPLL for Boolean Satisfiability . 73

12.2.1 Boolean satisfiability (SAT) . 74
12.2.2 The DPLL Algorithm . 74

12.3 Solving SMT Problems . 76
12.3.1 Definitions . 76
12.3.2 Basic SMT idea, illustrated . 76
12.3.3 DPLL(T) . 78
12.3.4 Bonus: Arithmetic solvers . 79

13 Symbolic Execution 80
13.1 Overview . 80

13.1.1 Forward Verification Condition Intuition 80
13.1.2 Formalizing Forward VCGen . 81

13.2 Symbolic Execution as a Generalization of Testing 83
13.2.1 Illustration . 84
13.2.2 Symbolic Execution History and Industrial Use 85

2

13.3 Optional: Heap Manipulating Programs . 85

14 Concolic Testing 87
14.1 Introduction . 87

14.1.1 Motivation . 87
14.1.2 Statically modeling functions . 87
14.1.3 Goals . 88

14.2 Concolic execution overview . 88
14.3 Implementation . 90
14.4 Concolic Path Condition Soundness . 90
14.5 Acknowledgments . 91

15 Program Synthesis 92
15.1 Program Synthesis Overview . 92
15.2 Deductive Synthesis . 93
15.3 Inductive Synthesis . 94

15.3.1 SKETCH, CEGIS, and SyGuS . 94
15.3.2 Oracle-guided synthesis . 95

15.4 Oracle-guided Component-based Program Synthesis 95

16 Fuzz Testing 98
16.1 Random Fuzzing . 98
16.2 Coverage-Guided Fuzzing (CGF) . 100

16.2.1 Contemporary CGF Tools: AFL and libFuzzer 101
16.3 Domain-Specific Fuzzing with Waypoints . 101

3

Chapter 1

Introduction

Software is transforming the way that we live and work. We communicate with friends via
social media on smartphones, and use websites to buy what we need and to learn about any-
thing in the world. At work, software helps us organize our businesses, reach customers, and
distinguish ourselves from competitors.

Unfortunately, it is still challenging to produce high-quality software, and much of the
software we do use has bugs and security vulnerabilities. Recent examples of problems caused
by buggy software include uncontrollable acceleration in Toyota cars and a glitch in Nest smart
thermostats left many homes without heat. Just looking at one category of defect, software race
conditions, we observe problems ranging from power outages affecting millions of people in
the US Northeast in 2003 to deadly radiation overdoses from the Therac-25 radiation therapy
machine.

Program analysis is all about analyzing software code to learn about its properties. Pro-
gram analyses can find bugs or security vulnerabilities like the ones mentioned above. It can
also be used to synthesize test cases for software, and even to automatically patch software.
For example, Facebook uses the Getafix tool to automatically produce patches for bugs found
by other analysis tools.1 Finally, program analysis is used in compiler optimizations in order
to make programs run faster.

This book covers both foundations and practical aspects of the automated analysis of pro-
grams, which is becoming increasingly critical to find software errors, assure program correct-
ness, and discover properties of code. We start by looking at how we can use mathematical
formalisms to reason about how programs execute, then examine how programs are repre-
sented within compilers and analysis tools. We study dataflow analysis and the correspond-
ing theory of abstract interpretation, which captures the essence of a broad range of program
analyses and supports reasoning about their correctness. Building on this foundation, later
chapters will describe various kinds of dataflow analysis, pointer analysis, interprocedural
analysis, and symbolic execution.

In course assignments that go with this book, students will design and implement analy-
sis tools that find bugs and verify properties of software. Students will apply knowledge and
skills learned in the course to a capstone research project that involves designing, implement-
ing, and evaluating a novel program analysis.

Overall program analysis is an area with deep mathematical foundations that is also very
practically useful. I hope you will also find it to be fun!

1See https://code.fb.com/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/

4

 https://code.fb.com/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/

Chapter 2

The WHILE Language and Program
Representation

2.1 The WHILE Language

We will begin our study of the theory of analyses using a simple programming language called
WHILE, with various extensions. The WHILE language is at least as old as Hoare’s 1969 paper
on a logic for proving program properties. It is a simple imperative language, with (to start!)
assignment to local variables, if statements, while loops, and simple integer and boolean ex-
pressions.

We use the following metavariables to describe different categories of syntax. The letter on
the left will be used as a variable representing a piece of a program. On the right, we describe
the kind of program piece that variable represents:

S statements
a arithmetic expressions (AExp)
x, y program variables (Vars)
n number literals
b boolean expressions (BExp)

The syntax of WHILE is shown below. Statements S can be an assignment x :� a; a skip
statement, which does nothing;1 and if and while statements, with boolean expressions b
as conditions. Arithmetic expressions a include variables x, numbers n, and one of several
arithmetic operators (opa). Boolean expressions include true, false, the negation of another
Boolean expression, Boolean operators opb applied to other Boolean expressions, and relational
operators opr applied to arithmetic expressions.

S ::� x :� a b ::� true a ::� x opb ::� and | or
| skip | false | n opr ::� | ¤ | �
| S1; S2 | not b | a1 opa a2 | ¡ | ¥
| if b then S1 else S2 | b1 opb b2 opa ::� � | � | � | {
| while b do S | a1 opr a2

1Similar to a lone semicolon or open/close bracket in C or Java

5

2.2 WHILE3ADDR: A Representation for Analysis

For analysis, the source-like definition of WHILE can sometimes prove inconvenient. For ex-
ample, WHILE has three separate syntactic forms—statements, arithmetic expressions, and
boolean predicates—and we would have to define the semantics and analysis of each sepa-
rately to reason about it. A simpler and more regular representation of programs will help
simplify certain of our formalisms.

As a starting point, we will eliminate recursive arithmetic and boolean expressions and
replace them with simple atomic statement forms, which are called instructions, after the as-
sembly language instructions that they resemble. For example, an assignment statement of the
form w � x � y � z will be rewritten as a multiply instruction followed by an add instruction.
The multiply assigns to a temporary variable t1, which is then used in the subsequent add:

t1 � x � y
w � t1 � z

As the translation from expressions to instructions suggests, program analysis is typically
studied using a representation of programs that is not only simpler, but also lower-level than
the source (WHILE, in this instance) language. Many Java analyses are actually conducted on
byte code, for example. Typically, high-level languages come with features that are numerous
and complex, but can be reduced into a smaller set of simpler primitives. Working at the lower
level of abstraction thus also supports simplicity in the compiler.

Control flow constructs such as if and while are similarly translated into simpler jump
and conditional branch constructs that jump to a particular (numbered) instruction. For exam-
ple, a statement of the form if b then S1 else S2 would be translated into:

1 : if b then goto 4
2 : S2
3 : goto 5
4 : S1

Exercise 1. How would you translate a WHILE statement of the form while b do S?

This form of code is often called 3-address code, because every instruction has at most
two source operands and one result operand. We now define the syntax for 3-address code
produced from the WHILE language, which we will call WHILE3ADDR. This language consists
of a set of simple instructions that load a constant into a variable, copy from one variable to
another, compute the value of a variable from two others, or jump (possibly conditionally) to
a new address n. A program P is just a map from addresses to instructions:2

I ::� x :� n op ::� � | � | � | {
| x :� y opr ::� | �
| x :� y op z P P NÑ I
| goto n
| if x opr 0 goto n

Formally defining a translation from a source language such as WHILE to a lower-level
intermediate language such as WHILE3ADDR is possible, but more appropriate for the scope
of a compilers course. For our purposes, the above should suffice as intuition. We will formally
define the semantics of WHILE3ADDR in subsequent lectures.

2The idea of the mapping between numbers and instructions is akin to mapping line numbers to code. Other
textbooks, such as Nielsen et al.’s Principles of Program Analysis, similarly use abstract labels to denote a program
point.

6

2.3 Extensions

The languages described above are sufficient to introduce the fundamental concepts of pro-
gram analysis in this course. However, we will eventually examine various extensions to
WHILE and WHILE3ADDR, so that we can understand how more complicated constructs in
real languages can be analyzed. Some of these extensions to WHILE3ADDR will include:

I ::� . . .
| x :� fpyq function call
| return x return
| x :� y.mpzq method call
| x :� &p address-of operator
| x :� �p pointer dereference
| �p :� x pointer assignment
| x :� y.f field read
| x.f :� y field assignment

We will not give semantics to these extensions now, but it is useful to be aware of them as
you will see intermediate code like this in practical analysis frameworks.

2.4 Control flow graphs

Many program analysis tools and techniques work on a representation of code known as a
control-flow graph (CFG), which is a graph-based representation of the flow of control through
the program. It connects simple instructions in a way that statically captures all possible execu-
tion paths through the program and defines the execution order of instructions in the program.
When control could flow in more than one direction, depending on program values, the graph
branches. An example is the representation of an if or while statement. At the end of the
instructions in each branch of an if statement, the branches merge together to point to the sin-
gle instruction that comes afterward. Historically, this arises from the use of program analysis
to optimize programs.

More precisely, a control flow graph consists of a set of nodes and edges. The nodes N
correspond to basic blocks: Sequences of program instructions with no jumps in or out (no
gotos, no labeled targets). The edges E represent the flow of control between basic blocks.
We use Pred(n) to denote the set of all predecessors of the node n, and Succ(n) the set of all
successors. A CFG has a start node, and a set of final nodes, corresponding to return or other
termination of a function. Finally, for the purposes of dataflow analysis, we say that a program
point exists before and after each node. Note that there exists considerable flexibility in these
definitions, and the precision of the representation can vary based on the desired precision of
the resulting analysis as well as the peculiarities of the language. In this course, we will in fact
often ignore the concept of a basic block and just treat instructions as the nodes in a graph;
this view is semantically equivalent and simpler, but less efficient in practice. Further defining
and learning how to construct CFGs is a subject best left to a compilers course; this discussion
should suffice for our purposes.

7

Chapter 3

Program Semantics

3.1 Operational Semantics

To reason about analysis correctness, we need a clear definition of what a program means. One
way to do this is using natural language (e.g., the Java Language Specification). However,
although natural language specifications are accessible, they are also often imprecise. This can
lead to many problems, including incorrect compiler implementations or program analyses.

A better alternative is a formal definition of program semantics. We begin with operational
semantics, which mimics, at a high level, the operation of a computer executing the program.
Such a semantics also reflects the way that techniques such as dataflow analysis or Hoare Logic
reason about the program, so it is convenient for our purposes.

There are two broad classes of operational semantics: big-step operational semantics, which
specifies the entire operation of a given expression or statement; and small-step operational se-
mantics, which specifies the operation of the program one step at a time.

3.1.1 WHILE: Big-step operational semantics

We’ll start by restricting our attention to arithmetic expressions, for simplicity. What is the
meaning of a WHILE expression? Some expressions, like a natural number, have a very clear
meaning: The “meaning” of 5 is just, well, 5. But what about x � 5? The meaning of this ex-
pression clearly depends on the value of the variable x. We must abstract the value of variables
as a function from variable names to integer values:

E P Var Ñ Z

Here E denotes a particular program state. The meaning of an expression with a variable like
x � 5 involves “looking up” the x’s value in the associated E, and substituting it in. Given a
state, we can write a judgment as follows:

xE, ay ó n

This means that given program state E, the arithmetic expression a evaluates to n. This for-
mulation is called big-step operational semantics; the ó judgment relates an expression and
its “meaning.”1 We then build up the meaning of more complex expressions using rules of
inference (also called derivation or evaluation rules). An inference rule is made up of a set of
judgments above the line, known as premises, and a judgment below the line, known as the
conclusion. The meaning of an inference rule is that the conclusion holds if all of the premises
hold:

1Note that I have chosen ó because it is a common notational convention; it’s not otherwise special. This is true
for many notational choices in formal specification.

8

premise1 premise2 . . . premisen
conclusion

An inference rule with no premises is an axiom, which is always true. For example, integers
always evaluate to themselves, and the meaning of a variable is its stored value in the state:

xE,ny ó n
big-int

xE, xy ó Epxq
big-var

Addition expressions illustrate a rule with premises:

xE, a1y ó n1 xE, a2y ó n2

xE, a1 � a2y ó n1 � n2
big-add

But, how does the value of x come to be “stored” in E? For that, we must consider WHILE

statements. Unlike expressions, statements have no direct result. However, they can have side
effects. That is to say: the “result” or meaning of a Statement is a new state. The judgment ó as
applied to statements and states therefore looks like:

xE,Sy ó E1

This allows us to write inference rules for statements, bearing in mind that their meaning is
not an integer, but a new state. The meaning of skip, for example, is an unchanged state:

xE, skipy ó E
big-skip

Statement sequencing, on the other hand, does involve premises:

xE,S1y ó E
1 xE1, S2y ó E

2

xE,S1;S2y ó E
2 big-seq

The if statement involves two rules, one for if the boolean predicate evaluates to true
(rules for boolean expressions not shown), and one for if it evaluates to false. I’ll show you
just the first one for demonstration:

xE, by ó true xE,S1y ó E
1

xif b then S1 else S2, Ey ó E
1 big-iftrue

What should the second rule for if look like?

This brings us to assignments, which produce a new state in which the variable being assigned
to is mapped to the value from the right-hand side. We write this with the notation Erx ÞÑ ns,
which can be read “a new state that is the same as E except that x is mapped to n.”

xE, ay ó n

xE, x :� ay ó Erx ÞÑ ns
big-assign

Note that the update to the state is modeled functionally; the variable E still refers to the
old state, while Erx ÞÑ ns is the new state represented as a mathematical map.

Fully specifying the semantics of a language requires a judgment rule like this for every
language construct. For brevity, these notes only include a subset of the rules for the complete
WHILE language.

Exercise 1. What are the rule(s) for the while construct?

9

3.1.2 WHILE: Small-step operational semantics

Big-step operational semantics has its uses. Among other nice features, it directly suggests a
simple interpreter implementation for a given language. However, it is difficult to talk about
a statement or program whose evaluation does not terminate. Nor does it give us any way to
talk about intermediate states (so modeling multiple threads of control is out).

Sometimes it is instead useful to define a small-step operational semantics, which specifies
program execution one step at a time. We refer to the pair of a statement and a state (xE,Sy) as
a configuration. Whereas big step semantics specifies program meaning as a function between a
configuration and a new state, small step models it as a step from one configuration to another.

You can think of small-step semantics as a set of rules that we repeatedly apply to configu-
rations until we reach a final configuration for the language (xE, skipy, in this case) if ever.2 We
write this new judgment using a slightly different arrow: Ñ. xE,Sy Ñ xE1, S1y indicates one
step of execution; xE,Sy Ñ� xE1, S1y indicates zero or more steps of execution. We formally
define multiple execution steps as follows:

xE,Sy Ñ� xE,Sy
multi-reflexive

xE,Sy Ñ xE1, S1y xE1, S1y Ñ� xE2, S2y

xE,Sy Ñ� xE2, S2y
multi-inductive

To be complete, we should also define auxiliary small-step operators Ña andÑb for arith-
metic and boolean expressions, respectively; only the operator for statements results in an
updated state (as in big step). The types of these judgments are thus:

Ñ : pE � Stmtq Ñ pE � Stmtq
Ña : pE � Aexpq Ñ Aexp

Ñb : pE � Bexpq Ñ Bexp

We can now again write the semantics of a WHILE program as new rules of inference. Some
rules look very similar to the big-step rules, just with a different arrow. For example, consider
variables:

xE, xy Ña Epxq
small-var

Things get more interesting when we return to statements. Remember, small-step semantics
express a single execution step. So, consider an if statement:

xE, by Ñb b
1

xE, if b then S1 else S2y Ñ xE, if b1 then S1 else S2y
small-if-congruence

xE, if true then S1 else S2y Ñ xE,S1y
small-iftrue

Exercise 2. We have again omitted the small-iffalse case, as well as rule(s) for while, as
exercises to the reader.

Note also the change for statement sequencing:

xE,S1y Ñ xE1, S11y

xE,S1;S2y Ñ xE1, S11;S2y
small-seq-congruence

xE, skip;S2y Ñ xE,S2y
small-seq

2Not all statements reach a final configuration, like while true do skip.

10

3.1.3 WHILE3ADDR: Small-step semantics

The ideas behind big- and small-step operational semantics are consistent across languages,
but the way they are written can vary based on what is notationally convenient for a particular
language or analysis. WHILE3ADDR is slightly different from WHILE, so beyond requiring
different rules for its different constructs, it makes sense to modify our small-step notation a
bit for defining the meaning of a WHILE3ADDR program.

First, let’s revisit the configuration to account for the slightly different meaning of a
WHILE3ADDR program. As before, the configuration must include the state, which we still
call E, mapping variables to values. However, a well-formed, terminating WHILE program
was effectively a single statement that can be iteratively reduced to skip; a WHILE3ADDR

program, on the other hand, is a mapping from natural numbers to program instructions. So,
instead of a statement that is being reduced in steps, the WHILE3ADDR c must include a pro-
gram counter n, representing the next instruction to be executed.

Thus, a configuration c of the abstract machine for WHILE3ADDR must include the stored
program P (which we will generally treat implicitly), the state environment E, and the current
program counter n representing the next instruction to be executed (c P E � N). The abstract
machine executes one step at a time, executing the instruction that the program counter points
to, and updating the program counter and environment according to the semantics of that
instruction.

This adds a tiny bit of complexity to the inference rules, because they must explicitly con-
sider the mapping between line number/labels and program instructions. We represent exe-
cution of the abstract machine via a judgment of the form P $ xE,ny; xE1, n1y The judgment
reads: “When executing the program P , executing instruction n in the state E steps to a new
state E1 and program counter n1.”3 To see this in action, consider a simple inference rule defin-
ing the semantics of the constant assignment instruction:

P pnq � x :� m

P $ xE,ny; xErx ÞÑ ms, n� 1y
step-const

This states that in the case where the nth instruction of the program P (looked up using
P pnq) is a constant assignment x :� m, the abstract machine takes a step to a state in which the
state E is updated to map x to the constant m, written as Erx ÞÑ ms, and the program counter
now points to the instruction at the following address n�1. We similarly define the remaining
rules:

P rns � x :� y

P $ xE,ny; xErx ÞÑ Epyqs, n� 1y
step-copy

P pnq � x :� y op z Epyq op Epzq � m

P $ xE,ny; xErx ÞÑ ms, n� 1y
step-arith

P pnq � goto m
P $ xE,ny; xE,my

step-goto

P pnq � if x opr 0 goto m Epxq opr 0 � true

P $ xE,ny; xE,my
step-iftrue

P pnq � if x opr 0 goto m Epxq opr 0 � false

P $ xE,ny; xE,n� 1y
step-iffalse

3I could have used the same Ñ I did above instead of ;, but I don’t want you to mix them up.

11

3.1.4 Derivations and provability

Among other things, we can use operational semantics to prove that concrete program expres-
sions will evaluate to particular values. We do this by chaining together rules of inference
(which simply list the hypotheses necessary to arrive at a conclusion) into derivations, which
interlock instances of rules of inference to reach particular conclusions. For example:

xE1, 4y ó 4 xE1, 2y ó 2

xE1, 4 � 2y ó 8 xE1, 6y ó 6

xE1, p4 � 2q � 6y ó 2

We say that xE, ay ó n is provable (expressed mathematically as $ xE, ay ó n) if there exists
a well-formed derivation with xE, ay ó n as its conclusion. “Well formed” simply means that
every step in the derivation is a valid instance of one of the rules of inference for this system.

A proof system like our operational semantics is complete if every true statement is prov-
able. It is sound (or consistent) if every provable judgment is true.

3.2 Proof techniques using operational semantics

A precise language specification lets us precisely prove properties of our language or programs
written in it (and analyses of those programs!). Note that this exposition primarily uses big-
step semantics to illustrate, but the concepts generalize.

Well-founded induction. A key family of proof techniques in programming languages is
based on induction. You may already be familiar with mathematical induction. As a reminder: if
P pnq is a property of the natural numbers that we want to show holds for all n, mathematical
induction says that it suffices to show that P p0q is true (the base case), and then that if P pmq is
true, then so is P pm � 1q for any natural number m (the inductive step). This works because
there are no infinite descending chains of natural numbers. So, for any n, P pnq can be obtained
by simply starting from the base case and applying n instances of the inductive step.

Mathematical induction is a special case of well-founded induction, a general, powerful proof
principle that works as follows: a relation � A � A is well-founded if there are no infinite
descending chains in A. If so, to prove @x P A.P pxq it is enough to prove @x P A.r@y x ñ
P pyqs ñ P pxq; the base case arises when there is no y x, and so the part of the formula
within the brackets rs is vacuously true.4

Structural induction. Structural induction is another special case of well-founded induction
where the relation is defined on the structure of a program or a derivation. For example,
consider the syntax of arithmetic expressions in WHILE, Aexp. Induction on a recursive def-
inition like this proves a property about a mathematical structure by demonstrating that the
property holds for all possible forms of that structure. We define the relation a b to hold if a
is a substructure of b. For Aexp expressions, the relation � Aexp� Aexp is:

a1 a1 � a2

a1 a1 � a2

a2 a1 � a2

a2 a1 � a2

. . . etc., for all arithmetic operators opa

To prove that a property P holds for all arithmetic expressions in WHILE (or, @a P
Aexp.P paq), we must show P holds for both the base cases and the inductive cases. a is a

4Mathematical induction as a special case arises when is simply the predecessor relation (px, x� 1q|x P N).

12

base case if there is no a1 such that a1 a; a is an inductive case if Da1 . a1 a. There is thus one
proof case per form of the expression. For Aexp, the base cases are:

$ @n P Z . P pnq

$ @x P Vars . P pxq

And the inductive cases:

$ @a1, a2 P Aexp . P pa1q ^ P pa2q ñ P pa1 � a2q

$ @a1, a2 P Aexp . P pa1q ^ P pa2q ñ P pa1 � a2q

. . . and so on for the other arithmetic operators. . .

Example. Let Lpaq be the number of literals and variable occurrences in some expression a
and Opaq be the number of operators in a. Prove by induction on the structure of a that @a P
Aexp . Lpaq � Opaq � 1:

Base cases:
• Case a � n. Lpaq � 1 and Opaq � 0
• Case a � x. Lpaq � 1 and Opaq � 0

Inductive case 1: Case a � a1 � a2
• By definition, Lpaq � Lpa1q � Lpa2q and Opaq � Opa1q �Opa2q � 1.
• By the induction hypothesis, Lpa1q � Opa1q � 1 and Lpa2q � Opa2q � 1.
• Thus, Lpaq � Opa1q �Opa2q � 2 � Opaq � 1.

The other arithmetic operators follow the same logic.

Other proofs for the expression sublanguages of WHILE can be similarly conducted. For
example, we could prove that the small-step and big-step semantics will obtain equivalent
results on expressions:

@a P AExp . xE, ay Ñ�
a nô xE, ay ó n

The actual proof is left as an exercise, but note that this works because the semantics rules
for expressions are strictly syntax-directed: the meaning of an expression is determined en-
tirely by the meaning of its subexpressions, the structure of which guides the induction.

Induction on the structure of derivations. Unfortunately, that last statement is not true for
statements in the WHILE language. For example, imagine we’d like to prove that WHILE is
deterministic (that is, if a statement terminates, it always evaluates to the same value). More
formally, we want to prove that:

@a P Aexp . @E . @n, n1 P N . xE, ay ó n^ xE, ay ó n1 ñ n � n1 (3.1)
@b P Bexp . @E . @b, b1 P B . xE, by ó b^ xE, by ó b1 ñ b � b1 (3.2)
@S . @E,E1, E2 . xE,Sy ó E1 ^ xE,Sy ó E2 ñ E1 � E2 (3.3)

We can’t prove the third statement with structural induction on the language syntax be-
cause the evaluation of statements (like while) does not depend only on the evaluation of its
subexpressions.

Fortunately, there is another way. Recall that the operational semantics assign meaning
to programs by providing rules of inference that allow us to prove judgments by making
derivations. Derivation trees (like the expression trees we discussed above) are also defined
inductively, and are built of sub-derivations. Because they have structure, we can again use
structural induction, but here, on the structure of derivations.

13

Instead of assuming (and reasoning about) some statement S, we instead assume a deriva-
tion D :: xE,Sy ó E1 and induct on the structure of that derivation (we define D :: judgment
to mean “D is the derivation that proves judgment.” e.g., D :: xE, x� 1y ó 2). That is, to prove
that property P holds for a statement, we will prove that P holds for all possible derivations
of that statement. Such a proof consists of the following steps:
Base cases: show that P holds for each atomic derivation rule with no premises (of the form
J).
Inductive cases: For each derivation rule of the form

H1...Hn

J

By the induction hypothesis, P holds for Hi, where i � 1 . . . n. We then have to prove that the
property is preserved by the derivation using the given rule of inference.

A key technique for induction on derivations is inversion. Because the number of forms
of rules of inference is finite, we can tell which inference rules might have been used last in
the derivation. For example, given D :: xEi, x :� 55y ó E, we know (by inversion) that
the assignment rule of inference must be the last rule used in D (because no other rules of
inference involve an assignment statement in their concluding judgment). Similarly, if D ::
xEi,while b do Sy ó E, then (by inversion) the last rule used in D was either the while-true
rule or the while-false rule.

Given those preliminaries, to prove that the evaluation of statements is deterministic (equa-
tion (3) above), pick arbitrary S,E,E1, and D :: xE,Sy ó E1

Proof: by induction of the structure of the derivation D, which we define D :: xE,Sy ó E1.

Base case: the one rule with no premises, skip:

D :: xE, skipy ó E

By inversion, the last rule used in D1 (which, again, produced E2) must also have been the
rule for skip. By the structure of the skip rule, we know E2 � E.

Inductive cases: We need to show that the property holds when the last rule used in D was
each of the possible non-skip WHILE commands. I will show you one representative case; the
rest are left as an exercise. If the last rule used was the while-true statement:

D ::

D1 :: xE, by ó true D2 :: xE,Sy ó E1 D3 :: xE1, while b do Sy ó E
1

xE, while b do Sy ó E1

Pick arbitrary E2 such that D2 :: xE, while b do Sy ó E2

By inversion, and determinism of boolean expressions, D2 must also use the same
while-true rule. So D2 must also have subderivations D2

2 :: xE,Sy ó E2
1 and D2

3 ::
xE2

1 , while b do Sy ó E2. By the induction hypothesis on D2 with D2
2 , we know E1 � E2

1 .
Using this result and the induction hypothesis on D3 with D2

3 , we have E2 � E1.

14

Chapter 4

A Dataflow Analysis Framework for
WHILE3ADDR

4.1 Defining a dataflow analysis

A dataflow analysis computes some dataflow information at each program point in the control
flow graph.1 We thus start by examining how this information is defined. We will use σ to
denote this information. Typically σ tells us something about each variable in the program.
For example, σ may map variables to abstract values taken from some set L:

σ P Var Ñ L

L represents the set of abstract values we are interested in tracking in the analysis. This
varies from one analysis to another. For example, consider a zero analysis, which tracks whether
each variable is zero or not at each program point (Thought Question: Why would this be
useful?). For this analysis, we define L to be the set tZ,N,Ju. The abstract value Z represents
the value 0, N represents all nonzero values. J is pronounced “top”, and we define it more
concretely later it in these notes; we use it as a question mark, for the situations when we do
not know whether a variable is zero or not, due to imprecision in the analysis.

Conceptually, each abstract value represents a set of one or more concrete values that may
occur when a program executes. We define an abstraction function α that maps each possible
concrete value of interest to an abstract value:

α : ZÑ L

For zero analysis, we define α so that 0 maps to Z and all other integers map to N :

αZp0q � Z

αZpnq � Nwhere n � 0

The core of any program analysis is how individual instructions in the program are ana-
lyzed and affect the analysis state σ at each program point. We define this using flow functions
that map the dataflow information at the program point immediately before an instruction to
the dataflow information after that instruction. A flow function should represent the semantics
of the instruction, but abstractly, in terms of the abstract values tracked by the analysis. We
will link semantics to the flow function precisely when we talk about correctness of dataflow
analysis. For now, to approach the idea by example, we define the flow functions fZ for zero
analysis on WHILE3ADDR as follows:

1Refer to the first set of course notes for an overview of CFGs.

15

fZvx :� 0wpσq � σrx ÞÑ Zs (4.1)
fZvx :� nwpσq � σrx ÞÑ N s where n � 0 (4.2)

fZvx :� ywpσq � σrx ÞÑ σpyqs (4.3)

fZvx :� y op zwpσq � σrx ÞÑ Js (4.4)

fZvgoto nwpσq � σ (4.5)

fZvif x � 0 goto nwpσq � σ (4.6)

In the notation, the form of the instruction is an implicit argument to the function, which
is followed by the explicit dataflow information argument, in the form fZvIwpσq. (1) and (2)
are for assignment to a constant. If we assign 0 to a variable x, then we should update the
input dataflow information σ so that x maps to the abstract value Z. The notation rx ÞÑ Zsσ
denotes dataflow information that is identical to σ except that the value in the mapping for x
is updated to refer to Z. Flow function (3) is for copies from a variable y to another variable x:
we look up y in σ, written σpyq, and update σ so that x maps to the same abstract value as y.

We start with a generic flow function for arithmetic instructions (4). Arithmetic can produce
either a zero or a nonzero value, so we use the abstract value J to represent our uncertainty.
More precise flow functions are available based on certain instructions or operands. For exam-
ple, if the instruction is subtraction and the operands are the same, the result will definitely be
zero. Or, if the instruction is addition, and the analysis information tells us that one operand
is zero, then the addition is really a copy and we can use a flow function similar to the copy
instruction above. These examples could be written as follows (we would still need the generic
case above for instructions that do not fit such special cases):

fZvx :� y � ywpσq � σrx ÞÑ Zs

fZvx :� y � zwpσq � σrx ÞÑ σpyqs where σpzq � Z

Exercise 1. Define another flow function for some arithmetic instruction and certain conditions
where you can also provide a more precise result than J.

The flow function for branches ((5) and (6)) is trivial: branches do not change the state of the
machine other than to change the program counter, and thus the analysis result is unaffected.

However, we can provide a better flow function for conditional branches if we distinguish
the analysis information produced when the branch is taken or not taken. To do this, we
extend our notation once more in defining flow functions for branches, using a subscript to the
instruction to indicate whether we are specifying the dataflow information for the case where
the condition is true (T) or when it is false (F). For example, to define the flow function for
the true condition when testing a variable for equality with zero, we use the notation fZvif x �
0 goto nwT pσq. In this case we know that x is zero so we can update σ with the Z lattice value.
Conversely, in the false condition we know that x is nonzero:

fZvif x � 0 goto nwT pσq � σrx ÞÑ Zs
fZvif x � 0 goto nwF pσq � σrx ÞÑ N s

Exercise 2. Define a flow function for a conditional branch testing whether a variable x 0.

16

4.2 Running a dataflow analysis

The point of developing a dataflow analysis is to compute information about possible program
states at each point in a program. For example, for of zero analysis, whenever we divide some
expression by a variable x, we might like to know whether x must be zero (the abstract value
Z) or may be zero (represented by J) so that we can warn the developer.

4.2.1 Straightline code

One way to think of a simple dataflow analysis is that are statically simulating program exe-
cution, tracking only the information we care about. For each node in the CFG (each of which
contains an instruction), we use the flow function to compute the dataflow analysis informa-
tion at the program point immediately after that node from the information we had at the
program point before that node. To demonstrate, consider the following simple program (left),
with its control flow graph (middle):

1 : x :� 0
2 : y :� 1
3 : z :� y
4 : y :� z � x
5 : x :� y � z

x y z
P1 ? ? ?
P2 Z ? ?
P3 Z N ?
P4 Z N N
P5 Z N N
P6 J N N

For such simple code, we can track analysis information using a table with a column for
each program variable and a row for each program point (right, above).

The first thing to notice is that, because flow functions operate on the abstract state for
the program point immediately before a node, we need some kind of initial assumption (this
confusion is illustrated by the ? in the cells of the table). We will return to this point in a
moment, since those values don’t influence the analysis for such simple, straight-line code.

Notice also that the analysis is imprecise at the end with respect to the value of x. We
were able to keep track of which values are zero and nonzero quite well through instruction
4, using (in the last case) the flow function that knows that adding a variable known to be
zero is equivalent to a copy. However, at instruction 5, the analysis does not know that y
and z are equal, and so it cannot determine whether x will be zero. Because the analysis
is not tracking the exact values of variables, but rather approximations, it will inevitably be
imprecise in certain situations. However, in practice, well-designed approximations can often
allow dataflow analysis to compute quite useful information.

4.2.2 Alternative Paths: Illustration

Things get more interesting in WHILE3ADDR code that contains if statements. An if state-
ment introduces two possible paths through the program. Consider the following simple ex-
ample (left), and its CFG (middle).2 We will begin by analyzing the first node as though the

2A point on diagrams: in the interest of clarity, we sometimes elide program points between nodes when we
can. That is, in this example,, the state going into instruction 3 is exactly the state coming out of instruction 2, so
we label a single program point P3. However, when we need to consider multiple paths to determine the incoming
state at a node, we often need differentiate the two program points in our CFG diagrams.

17

branch is not taken:

1 : if x � 0 goto 4
2 : y :� 0
3 : goto 6
4 : y :� 1
5 : x :� 1
6 : z :� y

x y z

P1 ? ? ?
P2 NF ? ?
P3 N Z ?
P4 N Z ?
P5
P6
P7 N? Z? ??
P8 N?? Z?? Z??

In the table above, the entry for x at P2 indicates the abstract value produced for the false
condition on the branch, which is then used as input to analyze instruction 2 (and produce the
state at P3). We can go right from P3 to P4 without any complexity. But, if we just continue
“simulating” execution, we get to P7. It has two possible incoming edges, so two possible
incoming states to use for the flow function for instruction 6. What to do? We have not yet
analyzed a path through lines 4 and 5. The table shows the (questionable) values if we just use
the state coming from P4 as “incoming” at instruction 6, and ignore what might have happened
along that other path.

Perhaps turning to that alternative path, will give answers. Let’s analyze instructions 4 and
5 as if we had taken the true branch at instruction 1:

x y z
P1 ? ? ?
P2 ZT , NF ? ?
P3 N Z ?
P4 N Z ?
P5 Z ? ?
P6 Z N ?
P7 N N? ? note: different!
P8 N?? N?? N?? ??????

18

We have a dilemma. The first time we analyzed instruction 6, the incoming state had come
from instruction 3, where xwas nonzero and y was zero. Now have, the incoming state coming
from instruction 5 is different: x is still nonzero, but so is y!

We resolve this dilemma by combining the abstract values computed along the two paths
for y. The incoming abstract values at P7 for y are N and Z. We represent this uncertainty
with a new abstract value J (pronounced “top”). This value indicates that we do know know
if y is zero or not, because we don’t know how we reached this program location. We can
apply similar logic to x, but because x is nonzero on both incoming paths, we can maintain
our knowledge that x is nonzero. Thus, we should analyze instruction 6 with this combined
incoming state: tx ÞÑ N, y ÞÑ Ju.

The corrected analysis, showing the combined state at P6, looks like:

x y z
P1 ? ? ?
P2 ZT , NF ? ?
P3 N Z ?
P4 N Z ?
P5 Z ? ?
P6 Z N ?
P7 N J ? combined with P4
P8 N J J corrected

4.3 Join

The mechanism for combining analysis results along multiple paths is called a join operation,
\. When taking two abstract values l1, l2 P L, the result of l1 \ l2 is an abstract value lj that

19

generalizes both l1 and l2.
To precisely define what “generalizes” means, we define a partial order � over abstract

values, and say that l1 and l2 are at least as precise as lj , written l1 � lj . Recall that a partial
order is any relation that is:
• reflexive: @l : l � l
• transitive: @l1, l2, l3 : l1 � l2 ^ l2 � l3 ñ l1 � l3
• anti-symmetric: @l1, l2 : l1 � l2 ^ l2 � l1 ñ l1 � l2

A set of values L that is equipped with a partial order �, and for which the least up-
per bound of any two values in that ordering l1 \ l2 is unique and is also in L, is called a
join-semilattice. We require that the abstract values used in dataflow analyses form a join-
semilattice. We will use the term lattice for short; as we will see below, this is the correct
terminology for most dataflow analyses anyway.

For zero analysis, we define the partial order with Z � J and N � J, where Z \ N � J.
We usually use the symbol J (pronounced “top”) to refer the maximal element of a lattice; that
is, for all l, we have l � J. Intuitively, J is the most general dataflow value.

We have now considered all the elements necessary to define a dataflow analysis:
• a lattice pL,�q
• an abstraction function α
• a flow function f
• initial dataflow analysis assumptions, σ0
Note that the theory of lattices answers that side question that came up in the very first

example: what should we assume about the value of input variables (the question marks in
our example tables)? If we do not know anything about the value x can be, one good choice
is to assume it can be anything. That is, in the initial environment σ0, variables’ initial state is
mapped to J.

4.3.1 Dataflow analysis of loops

We now consider WHILE3ADDR programs with loops. Our intuition above, which simply
analyzed the two paths induced by the if statement separately, no longer works so well. A
loop produces a potentially unbounded number of program paths, and we want our analysis
to take only bounded time. Consider the following simple looping example:3

3I provide the CFG for reference but omit the annotations in the interest of a cleaner diagram. Notice that I
differentiate P2 and P3 because of the join, as well as P7 and P8, since they don’t both come from instruction 6.

20

1 : x :� 10
2 : y :� 0
3 : if x � 0 goto 7
4 : y :� 1
5 : x :� x� 1
6 : goto 3
7 : x :� y

x y
P0 J J
P1 N J
P2 N Z
P3 N Z first time through...
P4 NF Z
P5 N N
P6 J N
P7 J N
P8 Zt N first time through...
P9 N N first time through...

The right-hand side above shows the straightforward straight-line analysis of the path that
runs the loop exactly once. Thinking back to our handling of if above, we might now recon-
sider instruction 3, joining the states at P2 and P7 to create a new P3. For x, N \ J � J. For y,
Z \ N � J. This changes the incoming values at instruction 3. We can now choose between
two paths once again. We will choose (arbitrarily, for now) to stay within the loop, and recon-
sider instruction 4. We have new incoming information (at P4, where both x and y are now J).
But, since instruction 4 assigns 1 to y, we still know that y is nonzero at P5. The updated input
data does not change the analysis results at P5.

A quick check shows that going through the remaining instructions in the loop, even back
to instruction 3, the analysis information will no longer change. That is because the flow func-
tions are deterministic: given the same input analysis information and the same instruction,
they will produce the same output analysis information.

We say that the dataflow analysis has reached a fixed point (or fixpoint). In mathematics, a
fixed point of a function is a data value v that is mapped to itself by the function, i.e., fpvq � v.
In analysis, the mathematical function is the flow function, and the fixed point is a tuple of the
dataflow analysis values at each program point. If we invoke the flow function on the fixed
point, the analysis results do not change (we get the same fixed point back).

Once we have reached a fixed point for the loop, further analysis of the loop will not be
useful. Therefore, we will proceed to analyze statement 7. The final analysis results are as
follows:

x y
P0 J J
P1 N J
P2 N Z
P3 J J join
P4 NF J updated
P5 N N already at fixed point
P6 J N already at fixed point
P7 J N already at fixed point
P8 ZT J updated
P9 J J updated

21

Quickly simulating a run of the program program shows that these results correctly ap-
proximate actual execution. The uncertainty in the value of x at P6 and P7 is real: x is nonzero
after these instructions, except the last time through the loop, when it is zero. The uncertainty
in the value of y at the end shows analysis imprecision: this loop always executes at least once,
so y will be nonzero at these points. However, the analysis (as currently formulated) cannot
tell this for certain, so it reports that it cannot tell if y is zero or not. This is safe—it is always
correct to say the analysis is uncertain—but not as precise as would be ideal.

The benefit of analysis, however, is that we can gain correct information about all possible
executions of the program with only a finite amount of work. In our example, we only had
to analyze the loop statements at most twice each before reaching a fixed point. This is a
significant improvement over the actual program execution, which runs the loop 10 times. We
sacrificed precision in exchange for coverage of all possible executions, a classic tradeoff.

How can we be confident that the results of the analysis are correct, besides simulating
every possible run of a (possibly very complex) program? The intuition behind correctness
is the invariant that at each program point, the analysis results approximate all the possible
program values that could exist at that point. If the analysis information at the beginning of
the program correctly approximates the program arguments, then the invariant is true at the
beginning of program execution. One can then make an inductive argument that the invariant
is preserved. In particular, when the program executes an instruction, the instruction modifies
the program’s state. As long as the flow functions account for every possible way that instruc-
tion can modify state, then at the analysis fixed point they will have correctly approximated
actual program execution. We will make this argument more precise in a future lecture.

4.3.2 A convenience: the K abstract value and complete lattices

To define an algorithm for dataflow anlaysis more precisely, we need to be more concrete about
how to compute incoming states for CFG nodes with multiple incoming edges (like instruction
3, above). We’ve been ignoring these in our “one path at a time” approach so far, but this is a
handwave for didactic purposes.

Instead, it is more precise and consistent to say that analyzing an instruction always uses the
incoming dataflow analysis information from all instructions that could precede it. However,
for instruction 3, this requires a dataflow value from instruction 6, even if instruction 6 has not
yet been analyzed. We could do this if we had a dataflow value that is always ignored when it
is joined with any other dataflow value. In other words, we need a abstract dataflow value K
(pronounced “bottom”) such that K\ l � l.
K plays a dual role to the value J: it sits at the bottom of the dataflow value lattice. For

all l, we have the identity l � J and correspondingly K � l. There is an greatest lower bound
operator meet, [, which is dual to \. The meet of all dataflow values is K.

A set of values L that is equipped with a partial order �, and for which both a least element
K and a greatest element J exist in L is called a complete lattice.

This provides an elegant solution to the problem mentioned above. We initialize σ at every
program point in the program, except at entry, to K, indicating that the instruction there has
not yet been analyzed. We can then always merge all input values to a node, whether or not
the sources of those inputs have been analysed, because we know that any K values from
unanalyzed sources will simply be ignored by the join operator \, and that if the dataflow
value for that variable will change, we will get to it before the analysis is completed.

4.4 Analysis execution strategy

Our informal strategy above, which considers all paths until the dataflow analysis information
reaches a fixed point, can be simplified. The argument for correctness outlined above implies

22

that for correct flow functions, it doesn’t matter how we get to the analysis fixed point (it
would be surprising if analysis correctness depended on which branch of an if statement we
explored first!). It is in fact possible to run the analysis on program instructions in any order
we choose. As long as we continue doing so until a reaching a fixed point, the final result
will be correct. The simplest correct algorithm for executing dataflow analysis can therefore be
stated as follows:

for Node n in cfg
results[n] = K

results[0] = initialDataflowInformation

while not at fixed point
pick a node n in program
input = join { results[j] | j in predecessors(n) }
output = flow(n, input)
results[n] = output

Or, equivalently:

for Node n in cfg
input[n] = K

input[1] = initialDataflowInformation

while not at fixed point
pick a node n in program
output = flow(n, input[n])
for Node j in sucessors(n)

input[j] = input[j] \ output

In the code above, the termination condition is expressed abstractly (“not at fixed point”).
It can easily be checked by keeping track, when we process each node, whether the new results
have changed compared to what we previously had stored for that node. If the results do not
change for any node, the analysis has reached a fix point.

How do we know the algorithm will terminate? The intuition is as follows. We rely on the
choice of a node to be fair, so that each node is eventually considered. As long as the analysis
is not at a fixed point, some node can be analyzed to produce new results. If our flow functions
are well-behaved (technically, if they are monotone, as we will discuss in a future lecture) then
each time the flow function runs on a given node, either the results do not change, or they get
become more approximate (i.e., they are higher in the lattice). Later runs of the flow function
consider more possible paths through the program and therefore produce a more approximate
result which considers all these possibilities. If the lattice is of finite height—meaning there
are at most a finite number of steps from any place in the lattice going up towards the J
value—then this process must terminate eventually. More concretely: once an abstract value is
computed to be J, it will stay J no matter how many times the analysis is run. The abstraction
only flows in one direction.

Although the simple algorithm above always terminates and results in the correct answer,
it is still not always the most efficient. Typically, for example, it is beneficial to analyze the
program instructions in order, so that results from earlier instructions can be used to update the
results of later instructions. It is also useful to keep track of a list of instructions for which there
has been a change since the instruction was last analyzed in the result dataflow information
of some predecessor. Only those instructions need be analyzed; reanalyzing other instructions
is useless since their input has not changed. Kildall captured this intuition with his worklist
algorithm, described in pseudocode below. For this algorithm, we associate with each CFG
node (or equivalently, each program instruction), two sets of dataflow values representing the

23

program state just before as well as just after executing the corresponding instruction; these
are named input and output respectively.

worklist = H
for Node n in cfg

input[n] = output[n] = K
add n to worklist

input[0] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
output[n] = flow(n, input[n])
for Node j in succs(n)

newInput = input[j] \ output[n]
if newInput � input[j]

input[j] = newInput
add j to worklist

The algorithm above is very close to the generic algorithm declared previously, except the
worklist that chooses the next instruction to analyze and determines when a fixed point is
reached. The worklist is initialized with all nodes, so that we visit each of them at least once4.
The algorithm terminates when there are no more nodes left to process in the worklist.

We can reason about the performance of this algorithm as follows. We only add a node to
the worklist when the input data to it changes. The input for a given node can only change h
times, where h is the height of the lattice. Thus we add at most n � h nodes to the worklist,
where n is the number of nodes/instructions in the program. After running the flow function
for a node, however, we must test all its successors to find out if their input has changed. This
test is done once for each edge, for each time that the source node of the edge is added to the
worklist: thus at most e � h times, where e is the number of control flow edges in the successor
graph between instructions. If each operation (such as a flow function, a \ operation, or a
comparison of dataflow values) has cost Opcq, then the overall cost is Opc � pn � eq � hq, or
Opc � e � hq because n is bounded by e. Note that c and h are both related to the size of the
dataflow lattice; for most analyses, these values increase with the size of the program.

The algorithm above is still abstract: We have not defined the operations to add and remove
instructions from the worklist. We would like adding to the work list to be a set addition
operation, so that no instruction appears in it multiple times. If we have just analysed the
program with respect to an instruction, analyzing it again will not produce different results.

That leaves a choice of which instruction to remove from the worklist. We could choose
among several policies, including last-in-first-out (LIFO) order or first-in-first-out (FIFO) order.
In practice, the most efficient approach is to identify the strongly-connected components (i.e.
loops) in the control flow graph of components and process them in topological order, so that
loops that are nested, or appear in program order first, are solved before later loops. This
works well because we do not want to do a lot of work bringing a loop late in the program
to a fixed point, then have to redo that work when dataflow information from an earlier loop
changes.

Within each loop, the instructions should be processed in reverse postorder, the reverse
of the order in which each node is last visited when traversing a tree. Consider the example
from Section 4.2.2 above, in which instruction 1 is an if test, instructions 2–3 are the then
branch, instructions 4–5 are the else branch, and instruction 6 comes after the if statement.
A tree traversal might go as follows: 1, 2, 3, 6, 3 (again), 2 (again), 1 (again), 4, 5, 4 (again),
1 (again). Some instructions in the tree are visited multiple times: once going down, once

4If the output of flow functions cannot be J, then we can also initialize the worklist to only the start node.

24

between visiting the children, and once coming up. The postorder, or order of the last visits to
each node, is 6, 3, 2, 5, 4, 1. The reverse postorder is the reverse of this: 1, 4, 5, 2, 3, 6. Now we
can see why reverse postorder works well: we explore both branches of the if statement (4–5
and 2–3) before we explore node 6. This ensures that we do not have to reanalyze node 6 after
one of its inputs changes.

Although analyzing code using the strongly-connected component and reverse postorder
heuristics improves performance substantially in practice, it does not change the worst-case
performance results described above.

25

Chapter 5

Dataflow Analysis Examples

Zero analysis is useful for simply tracking whether a given variable is zero or not; even this
simple didactic example can be used to find possible bugs in programs. We will now examine
several more complex analyses, including certain well-known analyses that are, particularly
(but not exclusively) useful within a compiler.

5.1 Integer Sign Analysis

Integer sign analysis tracks whether each integer in the program is positive, negative, or zero.
The results of this analysis can be used to optimize a program or to circumvent errors like
using a negative index into an array (or memory underflow gnerally). This analysis is broadly
similar to the zero analysis discussed previously (ignoring the possibility of integer overflow,
i.e., consider mathematical integers).

This problem admits natural alternatives in designing our analysis, starting with the ab-
stract domain L. For example, we can prefer simplicity in favor of imprecision, defining L to
track only whether a value is less than zero, greater than zero, equal to zero, or unknown.

Exercise 1. Specify this on paper, indicating (A) the set of lattice elements, (B) the relation
between them, (c) the top element and (d) the bottom element.

One way to increase precision in this analysis is to define a more precise abstract domain.
For example, we might decide to track whether a value is less than zero, greater than zero,
equal to zero, greater than or equal to zero, less than or equal to zero, non-zero, or unknown.
In addition to (trivially) increasing the size of L, this also makes the ordering relation more
interesting.

Exercise 2. Specify this on paper, indicating (A) the set of lattice elements, (B) the relation
between them, (c) the top element and (d) the bottom element.

Of course, this requires constituent changes in the flow function; we will outline a couple
of examples on the board (but won’t fully specify it; it gets a bit tedious!).

5.2 Constant Propagation

Constant propagation analysis attempts to track the constant values of variables in the program,
where possible. Constant propagation has long been used in compiler optimization passes in
order to turn variable reads and computations into constants. However, it is generally useful
for analysis for program correctness as well: any client analysis that benefits from knowing
program values (e.g. an array bounds analysis) can leverage it.

26

For constant propagation, we want to track what is the constant value, if any, of each pro-
gram variable. Therefore we will use a lattice where the set LCP is ZYtJ,Ku. The partial order
is @l P LCP : K � l ^ l � J. In other words, K is below every lattice element and J is above
every element, but otherwise lattice elements are incomparable.

In the above lattice, as well as our earlier discussion of zero analysis, we used a lattice to
describe individual variable values. We can lift the notion of a lattice to cover all the dataflow
information available at a program point. This is called a tuple lattice, where there is an element
of the tuple for each of the variables in the program. For constant propagation, the elements of
the set σ are maps from Var to LCP , and the other operators and J{K are lifted as follows:

σ P Var Ñ LCP
σ1 �lift σ2 iff @x P Var : σ1pxq � σ2pxq
σ1 \lift σ2 � tx ÞÑ σ1pxq \ σ2pxq | x P Varu
Jlift � tx ÞÑ J | x P Varu
Klift � tx ÞÑ K | x P Varu

We can likewise define an abstraction function for constant propagation, as well as a lifted
version that accepts an environment E mapping variables to concrete values. We also define
the initial analysis information to conservatively assume that initial variable values are un-
known. Note that in a language that initializes all variables to zero, we could make more
precise initial dataflow assumptions, such as tx ÞÑ 0 | x P Varu:

αCP pnq � n
αliftpEq � tx ÞÑ αCP pEpxqq | x P Varu
σ0 � Jlift

We can now define flow functions for constant propagation:

fCP vx :� nwpσq � σrx ÞÑ αCP pnqs

fCP vx :� ywpσq � σrx ÞÑ σpyqs

fCP vx :� y op zwpσq � σrx ÞÑ σpyq oplift σpzqs
where n oplift m � n op m

and n oplift K � K (and symmetric)

and n oplift J � J (and symmetric)
fCP vgoto nwpσq � σ

fCP vif x � 0 goto nwT pσq � σrx ÞÑ 0s
fCP vif x � 0 goto nwF pσq � σ

fCP vif x 0 goto nwpσq � σ

We can now look at an example of constant propagation. Below, the code is on the left, and
the results of the analysis is on the right. In this table we show the worklist as it is updated to
show how the algorithm operates:

1 : x :� 3
2 : y :� x� 7
3 : if z � 0 goto 6
4 : z :� x� 2
5 : goto 7
6 : z :� y � 5
7 : w :� z � 2

stmt worklist x y z w
0 1,2,3,4,5,6,7 J J J J
1 2,3,4,5,6,7 3 J J J
2 3,4,5,6,7 3 10 J J
3 4,5,6,7 3 10 0T ,JF J
4 5,6,7 3 10 5 J
5 6,7 3 10 5 J
6 7 3 10 5 J
7 H 3 10 5 3

27

5.3 Reaching Definitions

Reaching definitions analysis determines, for each use of a variable, which assignments to that
variable might have set the value seen at that use. Consider the following program:

1 : y :� x
2 : z :� 1
3 : if y � 0 goto 7
4 : z :� z � y
5 : y :� y � 1
6 : goto 3
7 : y :� 0

In this example, definitions 1 and 5 reach the use of y at 4.

Exercise 3. Which definitions reach the use of z at statement 4?
Reaching definitions can be used as a simpler but less precise version of constant propaga-

tion, zero analysis, etc. where instead of tracking actual constant values we just look up the
reaching definition and see if it is a constant. We can also use reaching definitions to identify
uses of undefined variables, e.g. if no definition from the program reaches a use.

For reaching definitions, we define a new kind of lattice: a set lattice. Here, a dataflow lattice
element is the set of definitions that reach the current program point. Assume that DEFS is the
set of all definitions in the program. The set of elements in the lattice is the set of all subsets of
DEFS—that is, the powerset of DEFS, written PDEFS.

What should� be for reaching definitions? The intuition is that our analysis is more precise
the smaller the set of definitions it computes at a given program point. This is because we want
to know, as precisely as possible, where the values at a program point came from. So � should
be the subset relation �: a subset is more precise than its superset. This naturally implies that
\ should be union, and that J and K should be the universal set DEFS and the empty set H,
respectively.

In summary, we can formally define our lattice and initial dataflow information as follows:

σ P PDEFS

σ1 � σ2 iff σ1 � σ2
σ1 \ σ2 � σ1 Y σ2
J � DEFS
K � H
σ0 � H

Instead of using the empty set for σ0, we could use an artificial reaching definition for each
program variable (e.g. x0 as an artificial reaching definition for x) to denote that the variable is
either uninitialized, or was passed in as a parameter. This is convenient if it is useful to track
whether a variable might be uninitialized at a use, or if we want to consider a parameter to be
a definition. We could write this formally as σ0 � tx0 | x P Varsu

We will now define flow functions for reaching definitions. Notationally, we will write xn
to denote a definition of the variable x at the program instruction numbered n. Since our lattice
is a set, we can reason about changes to it in terms of elements that are added (called GEN)
and elements that are removed (called KILL) for each statement. This GEN/KILL pattern is
common to many dataflow analyses. The flow functions can be formally defined as follows:

28

fRDvIwpσq � σ �KILLRDvIw YGENRDvIw

KILLRDvn: x :� ...w � txm | xm P DEFSpxqu

KILLRDvIw � H if I is not an assignment

GENRDvn: x :� ...w � txnu

GENRDvIw � H if I is not an assignment

We would compute dataflow analysis information for the program shown above as follows
(nodes that are added to the worklist again because of a change of dataflow values are depicted
in bold):

stmt worklist defs
0 1,2,3,4,5,6,7 H
1 2,3,4,5,6,7 ty1u
2 3,4,5,6,7 ty1, z1u
3 4,5,6,7 ty1, z1u
4 5,6,7 ty1, z4u
5 6,7 ty5, z4u
6 3,7 ty5, z4u
3 4,7 ty1, y5, z1, z4u
4 5,7 ty1, y5, z4u
5 7 ty5, z4u
7 H ty7, z1, z4u

5.4 Live Variables

Live variable analysis determines, for each program point, which variables might be used
again before they are redefined. Consider again the following program:

1 : y :� x
2 : z :� 1
3 : if y � 0 goto 7
4 : z :� z � y
5 : y :� y � 1
6 : goto 3
7 : y :� 0

In this example, after instruction 1, y is live, but x and z are not. Live variables analysis
typically requires knowing what variable holds the main result(s) computed by the program.
In the program above, suppose z is the result of the program. Then at the end of the program,
only z is live.

Live variable analysis was originally developed for optimization purposes: if a variable is
not live after it is defined, we can remove the definition instruction. For example, instruction 7
in the code above could be optimized away, under our assumption that z is the only program
result of interest.

We must be careful of the side effects of a statement, of course. Assigning a variable that is
no longer live to null could have the beneficial side effect of allowing the garbage collector to
collect memory that is no longer reachable—unless the GC itself takes into consideration which
variables are live. Sometimes warning the user that an assignment has no effect can be useful
for software engineering purposes, even if the assignment cannot safely be optimized away.

29

For example, eBay found that FindBugs’s analysis detecting assignments to dead variables was
useful for identifying unnecessary database calls.1

For live variable analysis, we will use a set lattice to track the set of live variables at each
program point. The lattice is similar to that for reaching definitions:

σ P PVar

σ1 � σ2 iff σ1 � σ2
σ1 \ σ2 � σ1 Y σ2
J � Var
K � H

What is the initial dataflow information? This is a tricky question. To determine the vari-
ables that are live at the start of the program, we must reason about how the program will
execute...i.e. we must run the live variables analysis itself! There’s no obvious assumption we
can make about this. On the other hand, it is quite clear which variables are live at the end of
the program: just the variable(s) holding the program result.

Consider how we might use this information to compute other live variables. Suppose the
last statement in the program assigns the program result z, computing it based on some other
variable x. Intuitively, that statement should make x live immediately above that statement, as
it is needed to compute the program result z—but z should now no longer be live. We can use
similar logic for the second-to-last statement, and so on. In fact, we can see that live variable
analysis is a backwards analysis: we start with dataflow information at the end of the program
and use flow functions to compute dataflow information at earlier statements.

Thus, for our “initial” dataflow information—and note that “initial” means the beginning
of the program analysis, but the end of the program—we have:

σend � tx | x holds part of the program resultu

We can now define flow functions for live variable analysis. We can do this simply using
GEN and KILL sets:

KILLLV vIw � tx | I defines xu

GENLV vIw � tx | I uses xu

We would compute dataflow analysis information for the program shown above as follows.
Note that we iterate over the program backwords, i.e. reversing control flow edges between
instructions. We also determine reverse postorder by considering the last statement–in this
case line 7—as the “root”. For each instruction, the corresponding row in our table will hold
the information after we have applied the flow function—that is, the variables that are live
immediately before the statement executes:

stmt worklist live
end 7,3,6,5,4,2,1 tzu

7 3,6,5,4,2,1 tzu
3 6,5,4,2,1 tz, yu
6 5,4,2,1 tz, yu
5 4,2,1 tz, yu
4 3,2,1 tz, yu
3 2 tz, yu
2 1 tyu
1 H txu

1see Ciera Jaspan, I-Chin Chen, and Anoop Sharma, Understanding the value of program analysis tools, OOPSLA
practitioner report, 2007

30

Chapter 6

Dataflow Analysis Termination and
Correctness

6.1 Termination

As we think about the correctness of program analysis, let us first think more carefully about
the situations under which program analysis will terminate. In a previous lecture, we analyzed
the performance of Kildall’s worklist algorithm. A critical part of that performance analysis
was the the observation that running a flow function on the same statement for the second
time always either leaves the output dataflow analysis information unchanged, or makes it
more approximate—that is, it moves the current dataflow analysis results up in the lattice,
relative to the output when the flow function was run the first time. The dataflow values at
each program point describe an ascending chain:

Ascending Chain A sequence σk is an ascending chain iff n ¤ m implies σn �

σm
We can define the height of an ascending chain, and of a lattice, in order to bound the number
of new analysis values we can compute at each program point:

Height of an Ascend-
ing Chain

An ascending chain σk has finite height h if it contains h� 1
distinct elements.

Height of a Lattice A lattice pL,�q has finite height h if there is an ascending
chain in the lattice of height h, and no ascending chain in
the lattice has height greater than h

We can now show that for a lattice of finite height, the worklist algorithm is guaranteed to
terminate. We do so by showing that the dataflow analysis information at each program point
follows an ascending chain. Consider again the worklist algorithm, this time in a slight varia-
tion that computes the new input to a node by joining the outputs of all its predecessors. This
variation is in fact equivalent to the algorithm we saw before, but it will make our termination
and correctness arguments more obvious. We assume a distinguished programStart node
which comes before the first instruction:

31

worklist = H
for Node n in cfg

input[n] = output[n] = K
add n to worklist

output[programStart] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
input[n] = \kPpredspnq output[k]

newOutput = flow(n, input[n])
if newOutput � output[n]

output[n] = newOutput
for Node j in succs(n)

add j to worklist

We can make an intuitive inductive argument for termination: At the beginning of the
analysis, the analysis information before and after every program point (other than after the
program start node) is K (by definition). Thus the first time we run each flow function for each
instruction, the result will be at least as high in the lattice as what was there before (because
nothing is lower in a lattice than K). We will run the flow function for a given instruction again
at a program point only if the output from a predecessor instruction changes. Assume that the
previous time we ran the flow function, we had input information σi and output information
σo. Now we are running it again because the input dataflow analysis information has changed
to some new σ1i—and by the induction hypothesis, we can assume it is higher in the lattice
than before, i.e. σi � σ1i.

What we need to show is that the output information σ1o is at least as high in the lattice as
the old output information σo—that is, we must show that σo � σ1o. This will be true if our
flow functions are monotonic:

Monotonicity A function f is monotonic iff σ1 � σ2 implies fpσ1q � fpσ2)

Now we can state the termination theorem:

Theorem 1 (Dataflow Analysis Termination). If a dataflow lattice pL,�q has finite height, and the
corresponding flow functions are monotonic, the worklist algorithm will terminate.

Proof. The idea should be intuitively clear from the argument above. However, to make it
rigorous, we provide the following termination metric:

M � |worklist| � EpN � LCpσq

where |worklist| is the length of the worklist, EpN is the maximum number of outgoing
Edges per Node, and LCpσq is the longest aescending chain from σ to J. When computing
LCpσqwe consider σ to be one big lattice, i.e. a tuple constructed from the sub-lattices for each
program point, so that moving up in the sub-lattice for any program point moves the overall
σ lattice up as well.

M is finite because |worklist| is bounded by the number of nodes in the program, EpN is
finite, and the lattice σ is of finite height (which we know because it is a tuple lattice with a
finite number of sub-lattices, all of which have finite height by the assumption in the theorem).

M decreases on each iteration of the loop, as follows. |worklist| generally decreases by
one in each iteration because one node is removed from it. However, we must account for
additions to the worklist when the newOutput � output[i] condition holds. But note
that when this condition holds, newOutput must be higher in the lattice than output[i] by
monotonicity. Thus, running the flow function reduced LCpσq by at least one. We then add

32

at most EpN nodes to the worklist. The increase to the worklist is at least balanced by the
decrease in EpN � LCpσq. Thus, the metric M decreases even when the condition that results
in adding nodes to the worklist holds.

Exercise 1. Convince yourself that, for monotonic flow functions, the algorithm above does
the same thing as the algorithm given in a previous lecture.

6.2 Montonicity of Zero Analysis

We can formally show that zero analysis is monotone; this is relevant both to the proof of
termination, above, and to correctness, next. We will only give a couple of the more interesting
cases, and leave the rest as an exercise to the reader:

Case fZvx :� 0wpσq � σrx ÞÑ Zs:
Assume we have σ1 � σ2
Since � is defined pointwise, we know that σ1rx ÞÑ Zs � σ2rx ÞÑ Zs

Case fZvx :� ywpσq � σrx ÞÑ σpyqs:
Assume we have σ1 � σ2
Since � is defined pointwise, we know that σ1pyq �simple σ2pyq

Therefore, using the pointwise definition of � again, we also obtain σ1rx ÞÑ σ1pyqs �
σ2rx ÞÑ σ2pyqs

(αsimple and �simple are simply the unlifted versions of α and �, i.e. they operate on individual
values rather than maps.)

Exercise 2. Write an alternative (incorrect) flow function for zero analysis that is non-
monotone, and write a program on which dataflow analysis using your alternative flow func-
tion will not terminate.

6.3 Correctness

What does it mean for an analysis of a WHILE3ADDR program to be correct? Intuitively, we
would like the program analysis results to correctly describe every actual execution of the pro-
gram. To establish correctness, we will make use of the precise definitions of WHILE3ADDR we
gave in the form of operational semantics in the first couple of lectures. We start by formalizing
a program execution as a trace:

Program Trace A trace T of a program P is a potentially infinite sequence
tc0, c1, ...u of program configurations, where c0 � E0, 1 is
called the initial configuration, and for every i ¥ 0 we have
P $ ci ; ci�1

.

Given this definition, we can formally define soundness:

Dataflow Analysis
Soundness

The result tσn | n P P u of a program analysis running on
program P is sound iff, for all traces T of P , for all i such
that 0 ¤ i lengthpT q, αpciq � σni

In this definition, just as ci is the program configuration immediately before executing in-
struction ni as the ith program step, σni is the dataflow analysis information immediately
before instruction ni.

Exercise 3. Consider the following (incorrect) flow function for zero analysis:

33

fZvx :� y � zwpσq � σrx ÞÑ Zs

Give an example of a program and a concrete trace that illustrates that this flow function is
unsound.

The key to designing a sound analysis is to make sure that the flow functions map abstract
information before each instruction to abstract information after that instruction in a way that
matches the instruction’s concrete semantics. Another way of saying this is that the manipu-
lation of the abstract state done by the analysis should reflect the manipulation of the concrete
machine state done by the executing instruction. We can formalize this as a local soundness
property:

Local Soundness A flow function f is locally sound iff P $ ci ; ci�1 and
αpciq � σni and fvP rniswpσniq � σni�1 implies αpci�1q �
σni�1

In English: if we take any concrete execution of a program instruction, map the input ma-
chine state to the abstract domain using the abstraction function, find that the abstracted input
state is described by the analysis input information, and apply the flow function, we should
get a result that correctly accounts for what happens if we map the actual concrete output
machine state to the abstract domain.

Exercise 4. Consider again the incorrect zero analysis flow function described above. Specify
an input state ci and use that input state to show that the flow function is not locally sound.

We can now show that the flow functions for zero analysis are locally sound. Although
technically the overall abstraction function α accepts a complete program configuration pE,nq,
for zero analysis we can ignore the n component and so in the proof below we will simply
focus on the environment E. We show the cases for a couple of interesting syntax forms; the
rest are either trivial or analogous:

Case fZvx :� 0wpσniq = σnirx ÞÑ Zs:
Assume ci � E,n and αpEq � σni

Thus σni�1 � fZvx :� 0wpσniq � σnirx ÞÑ Zs
ci�1 � Erx ÞÑ 0s, n� 1 by rule step-const
Now αpci�1q � αpErx ÞÑ 0sq � αpEqrx ÞÑ Zs by the definition of α.
αpEq � σni implies αpci�1q � αpEqrx ÞÑ Zs � σnirx ÞÑ Zs � σni�1 ,
so therefore αpci�1q � σni�1 , which finishes the case.

Case fZvx :� mwpσniq � σnirx ÞÑ N s where m � 0:
Assume ci � E,n and αpEq � σni

Thus σni�1 � fZvx :� mwpσniq � σnirx ÞÑ N s
ci�1 � Erx ÞÑ ms, n� 1 by rule step-const
Now αpci�1q � αpErx ÞÑ msq � αpEqrx ÞÑ N s by the definition of α and the assump-
tion that m � 0.
αpEq � σni implies αpci�1q � αpEqrx ÞÑ N s � σnirx ÞÑ N s � σni�1 .
so therefore αpci�1q � σni�1 which finishes the case.

34

Case fZvx :� y op zwpσniq � σnirx ÞÑ Js:
Assume ci � E,n and αpEq � σni

Thus σni�1 � fZvx :� y op zwpσniq � σnirx ÞÑ Js
ci�1 � Erx ÞÑ ks, n� 1 for some k by rule step-arith
Now αpci�1q � αpErx ÞÑ ksq � αpEqrx ÞÑ Js because the map is equal for all keys
except x, and for x we have αsimplepkq �simple J for all k, where αsimple and �simple are
the unlifted versions of α and �, i.e. they operate on individual values rather than
maps.
αpEq � σni implies αpci�1q � αpErx ÞÑ ksq � αpEqrx ÞÑ Js � σnirx ÞÑ Js � σni�1 ,
so therefore, by transitivity of �, αpci�1q � σni�1 which finishes the case.

Exercise 5. Prove the case for fZvx :� ywpσq � σrx ÞÑ σpyqs.

Now we can show that local soundness can be used to prove the global soundness of a
dataflow analysis. To do so, let us formally define the state of the dataflow analysis at a fixed
point:

Fixed Point A dataflow analysis result tσi | i P P u is a fixed point iff
σ0 � σ1 where σ0 is the initial analysis information and σ1
is the information before the first instruction, and for each
instruction i we have

�
jPpredspiq fvP rjswpσjq � σi.

The worklist algorithm show above computes a fixed point when it terminates. We can prove
this by showing that the following loop invariant is maintained:

@i . pDj P predspiq such that fvP rjswpσjq �� σiq ñ i P worklist

The invariant is trivially true initially because all instructions are initially in the worklist.
The invariant is maintained because whenever the output fvP rjswpσjq of instruction j changes,
possibly breaking the invariant, then the successors of j are added to the worklist, thus restor-
ing it. When an instruction i is removed from the worklist and processed, the invariant as it
applies to i is established. Finally, when the worklist is empty, the definition above is equiva-
lent to the definition of a fixed point.

And now the main result we will use to prove program analyses correct:

Theorem 2 (A fixed point of a locally sound analysis is globally sound). If a dataflow analysis’s
flow function f is monotonic and locally sound, and for all traces T we have αpc0q � σ0 where σ0 is the
initial analysis information, then any fixed point tσn | n P P u of the analysis is sound.

Proof. To show that the analysis is sound, we must prove that for all program traces, every
program configuration in that trace is correctly approximated by the analysis results. We
consider an arbitrary program trace T and do the proof by induction on the program configu-
rations tciu in the trace.

35

Case c0:
αpc0q � σ0 by assumption.
σ0 � σn0 by the definition of a fixed point.
αpc0q � σn0 by the transitivity of �.

Case ci�1:
αpciq � σni by the induction hypothesis.
P $ ci ; ci�1 by the definition of a trace.
αpci�1q � fvP rniswpσniq by local soundness.
fvP rniswpσniq \ ... � σni�1 by the definition of fixed point.
fvP rniswpσniq � σni�1 by the properties of \.
αpci�1q � σni�1 by the transitivity of �.

Since we previously proved that Zero Analysis is locally sound and that its flow functions
are monotonic, we can use this theorem to conclude that the analysis is sound. This means, for
example, that Zero Analysis will never neglect to warn us if we are dividing by a variable that
could be zero.

36

Chapter 7

Widening Operators and Collecting
Semantics for Dataflow Analysis

The approaches for proving termination and correctness outlined in the previous chapter rely
on certain assumptions that do not hold for all static analyses. In this chapter, we show exam-
ples of how to relax those assumptions via widening operators and collecting semantics, and
then overview how they are tied together via the Abstract Interpretation framework.

7.1 Widening operators: Dealing with Infinite-Height Lattices

Both our informal intuition and the formal proof of termination we have discussed so far rely
on an abstract domain L that contains no infinite ascending chains. However, there are cer-
tainly applications where such abstractions would be useful! How can we develop useful,
terminating analyses in such cases?

7.1.1 Example: Interval Analysis

Let us consider a program analysis that might be suitable for array bounds checking, namely
interval analysis. As the name suggests, interval analysis tracks the interval of values that each
variable might hold. We can define a lattice, initial dataflow information, and abstraction
function as follows:

L � Z8 � Z8 where Z8 � ZY t�8,8u
rl1, h1s � rl2, h2s iff l2 ¤8 l1 ^ h1 ¤8 h2
rl1, h1s \ rl2, h2s � rmin8pl1, l2q,max8ph1, h2qs

J � r�8,8s
K � r8,�8s

σ0 � J

αpxq � rx, xs

We have extended the¤ operator and the min and max functions to handle sentinels represent-
ing positive and negative infinity in the obvious way. For example �8 ¤8 n for all n P Z. For
convenience we write the empty interval K as r8,�8s.

Note also that this lattice is defined to capture the range of a single variable. As usual, we
can lift it to a map from variables to interval lattice elements. Thus we (again) have dataflow
information σ P VarÑ L

We can also define a set of flow functions. Here we provide one for addition; the rest should
be easy for the reader to develop:

37

fIvx :� y � zwpσq � σrx ÞÑ rl, hss where l � σpyq.low �8 σpzq.low
and h � σpyq.high�8 σpzq.high

fIvx :� y � zwpσq � σ where σpyq � K _ σpzq � K

In the above we have extended mathematical� to operate over the sentinels for8,�8, for
example such that @x � �8 : 8 � x � 8. We define the second case of the flow function to
handle the case where one argument is K, possibly resulting in the undefined case �8�8.

If we run this analysis on a program, whenever we come to an array dereference, we can
check whether the interval produced by the analysis for the array index variable is within the
bounds of the array. If not, we can issue a warning about a potential array bounds violation.

Just one practical problem remains. Consider: what is the height of the above-defined lattice,
and what consequences does this have for our analysis in practice?

7.1.2 The Widening Operator

As in the example of interval analysis, there are times in which it is useful to define a lattice of
infinite height. We would like to nevertheless find a mechanism for ensuring that the analysis
will terminate. One way to do this is to find situations where the lattice may be ascending
an infinite chain at a given program point, and effectively shorten the chain to a finite height.
We can do so with a widening operator. To motivate the widening operator, consider applying
interval analysis to the program below:

1 : x :� 0
2 : if x � y goto 5
3 : x :� x� 1
4 : goto 2
5 : y :� 0

Using the worklist algorithm (strongly connected components first), gives us:

stmt worklist x y
0 1,2,3,4,5 J J
1 2,3,4,5 [0,0] J
2 3,4,5 [0,0] J
3 4,5 [1,1] J
4 2,5 [1,1] J
2 3,5 [0,1] J
3 4,5 [1,2] J
4 2,5 [1,2] J
2 3,5 [0,2] J
3 4,5 [1,3] J
4 2,5 [1,3] J
2 3,5 [0,3] J

...

Consider the sequence of interval lattice elements for x immediately after statement 2.
Counting the original lattice value as K (not shown explicitly in the trace above), we can see
it is the ascending chain K, r0, 0s, r0, 1s, r0, 2s, r0, 3s, Recall that ascending chain means that
each element of the sequence is higher in the lattice than the previous element. In the case of
interval analysis, [0,2] (for example) is higher than [0,1] in the lattice because the latter inter-
val is contained within the former. Given mathematical integers, this chain is clearly infinite;
therefore our analysis is not guaranteed to terminate (and indeed it will not in practice).

38

A widening operator’s purpose is to compress such infinite chains to finite length. The
widening operator considers the most recent two elements in a chain. If the second is higher
than the first, the widening operator can choose to jump up in the lattice, potentially skipping
elements in the chain. For example, one way to cut the ascending chain above down to a finite
height is to observe that the upper limit for x is increasing, and therefore assume the maximum
possible value 8 for x. Thus we will have the new chain K, r0, 0s, r0,8s, r0,8s, ... which has
already converged after the third element in the sequence.

The widening operator gets its name because it is an upper bound operator, and in many
lattices, higher elements represent a wider range of program values.

We can define the example widening operator given above more formally as follows:

W pK, lcurrentq � lcurrent

W prl1, h1s, rl2, h2sq � rminW pl1, l2q,maxW ph1, h2qs

where minW pl1, l2q � l1 if l1 ¤ l2
and minW pl1, l2q � �8 otherwise

where maxW ph1, h2q � h1 if h1 ¥ h2
and maxW ph1, h2q � 8 otherwise

Applying this widening operator each time just before analyzing instruction 2 produces:

stmt worklist x y
0 1,2,3,4,5 J J
1 2,3,4,5 [0,0] J
2 3,4,5 [0,0] J
3 4,5 [1,1] J
4 2,5 [1,1] J
2 3,5 [0,8] J
3 4,5 [1,8] J
4 2,5 [1,8] J
2 5 [0,8] J
5 H [0,8] [0,0]

Before we analyze instruction 2 the first time, we compute W pK, r0, 0sq � r0, 0s using the
first case of the definition of W . Before we analyze instruction 2 the second time, we compute
W pr0, 0s, r0, 1sq � r0,8s. In particular, the lower bound 0 has not changed, but since the upper
bound has increased from h1 � 0 to h2 � 1, the maxW helper function sets the maximum to8.
After we go through the loop a second time we observe that iteration has converged at a fixed
point. We therefore analyze statement 5 and we are done.

Let us consider the properties of widening operators more generally. A widening operator
W plprevious:L, lcurrent:Lq : L accepts two lattice elements, the previous lattice value lprevious at a
program location and the current lattice value lcurrent at the same program location. It returns
a new lattice value that will be used in place of the current lattice value.

We require two properties of widening operators. The first is that the widening operator
must return an upper bound of its operands. Intuitively, this is required for monotonicity: if
the operator is applied to an ascending chain, the result should also be an ascending chain.
Formally, we have @lprevious, lcurrent : lprevious �W plprevious, lcurrentq ^ lcurrent �W plprevious, lcurrentq.

The second property is that when the widening operator is applied to an ascending chain
li, the resulting ascending chain lWi must be of finite height. Formally we define lW0 � l0 and
@i ¡ 0 : lWi � W plWi�1, liq. This property ensures that when we apply the widening operator, it
will ensure that the analysis terminates.

39

Where can we apply the widening operator? Clearly it is safe to apply anywhere, since
it must be an upper bound and therefore can only raise the analysis result in the lattice, thus
making the analysis result more conservative. However, widening inherently causes a loss of
precision. Therefore it is better to apply it only when necessary. One solution is to apply the
widening operator only at the heads of loops, as in the example above. Loop heads (or their
equivalent, in unstructured control flow) can be inferred even from low-level three address
code—see a compiler text such as Appel and Palsberg’s Modern Compiler Implementation in
Java.

We can use a somewhat smarter version of this widening operator with the insight that the
bounds of a lattice are often related to constants in the program. Thus if we have an ascending
chain K, r0, 0s, r0, 1s, r0, 2s, r0, 3s, ... and the constant 10 is in the program, we might change
the chain to K, r0, 0s, r0, 10s, If we are lucky, the chain will stop ascending that that point:
K, r0, 0s, r0, 10s, r0, 10s, If we are not so fortunate, the chain will continue and eventually
stabilize at r0,8s as before: K, r0, 0s, r0, 10s, r0,8s.

If the program has the set of constants K, we can define a widening operator as follows:

W pK, lcurrentq � lcurrent

W prl1, h1s, rl2, h2sq � rminKpl1, l2q,maxKph1, h2qs

where minKpl1, l2q � l1 if l1 ¤ l2
and minKpl1, l2q � maxptk P K|k ¤ l2uq otherwise

where maxKph1, h2q � h1 if h1 ¥ h2
and maxKph1, h2q � minptk P K|k ¥ h2u otherwise

We can now analyze a program with a couple of constants and see how this approach
works:

1 : x :� 0
2 : y :� 1
3 : if x � 10 goto 7
4 : x :� x� 1
5 : y :� y � 1
6 : goto 3
7 : goto 7

Here the constants in the program are 0, 1 and 10. The analysis results are as follows:

40

stmt worklist x y
0 1,2,3,4,5,6,7 J J
1 2,3,4,5,6,7 [0,0] J
2 3,4,5,6,7 [0,0] r1, 1s
3 4,5,6,7 r0, 0sF ,KT r1, 1s
4 5,6,7 [1,1] r1, 1s
5 6,7 [1,1] r0, 0s
6 3,7 [1,1] r0, 0s
3 4,7 r0, 1sF ,KT r0, 1s
4 5,7 [1,2] r0, 1s
5 6,7 [1,2] r�1, 0s
6 3,7 [1,2] r�1, 0s
3 4,7 r0, 9sF , r10, 10sT r�8, 1s
4 5,7 [1,10] r�8, 1s
5 6,7 [1,10] r�8, 0s
6 3,7 [1,10] r�8, 0s
3 7 r0, 9sF , r10, 10sT r�8, 1s
7 H [10,10] r�8, 1s

Applying the widening operation the first time we get to statement 3 has no effect, as the
previous analysis value was K. The second time we get to statement 3, the range of both x and
y has been extended, but both are still bounded by constants in the program. The third time
we get to statement 3, we apply the widening operator to x, whose abstract value has gone
from [0,1] to [0,2]. The widened abstract value is [0,10], since 10 is the smallest constant in the
program that is at least as large as 2. For y we must widen to r�8, 1s. The analysis stabilizes
after one more iteration.

In this example I have assumed a flow function for the if instruction that propagates
different interval information depending on whether the branch is taken or not. In the
table, we list the branch taken information for x as K until x reaches the range in which it is
feasible to take the branch. K can be seen as a natural representation for dataflow values that
propagate along a path that is infeasible.

7.2 Collecting Semantics (Reaching Definitions)

The approach to dataflow analysis correctness outlined in the previous lectures generalizes
naturally when we have a lattice that can be directly abstracted from program configurations
c from our execution semantics. Sometimes, however, it would be useful to track other kinds
of information, that we cannot get directly from a particular state in program execution.

Consider reaching definitions, which we discussed as an example analysis in previous
chapters. Although we can track which definitions reach a line using the previously-outlined
approach, we cannot see where the variables used in an instruction I were last defined. The
direct mapping that α provides between concrete and abstract states we used in our proof of
correctness of zero analysis does not hold here.

To solve this problem, we can augment our semantics with additional information that
captures the required information. For example, for reaching definitions, we want to know,
at any point in a particular execution, which definition reaches the current location for each
program variable in scope.

We call a version of the program semantics that has been augmented with additional infor-
mation necessary for some particular analysis a collecting semantics. For reaching definitions,
we can define a collecting semantics with a version of the environment E, which we will call

41

ERD, that has been extended with a index n indicating the location where each variable was
last defined.

ERD P Var Ñ Z� N

We can now extend the semantics to track this information. We show only the rules that
differ from those described in the earlier lectures:

P pnq � x :� m

P $ xE,ny; xErx ÞÑ m,ns, n� 1y
step-const

P pnq � x :� y

P $ xE,ny; xErx ÞÑ Epyq, ns, n� 1y
step-copy

P pnq � x :� y op z Epyq op Epzq � m

P $ xE,ny; xErx ÞÑ m,ns, n� 1y
step-arith

Essentially, each rule that defines a variable records the current location as the latest
definition of that variable. Now we can define an abstraction function for reaching definitions
from this collecting semantics:

αRDpERD, nq � txm | Dx P domainpERDq such that ERDpxq � i,mu

From this point, reasoning about the correctness of reaching definitions proceeds analo-
gously to the reasoning for zero analysis outlined in the previous lectures.

Formulating a collecting semantics can be tricky for some analyses, but it can be done with
a little thought. For example, consider live variable analysis. The collecting semantics requires
us to know, for each execution of the program, which variables currently in scope will be used
before they are defined in the remainder of the program. We can compute this semantics by
assuming a (possibly infinite) trace for a program run, then specifying the set of live variables
at every point in that trace based on the trace going forward from that point. This semantics,
specified in terms of traces rather than a set of inference rules, can then be used in the definition
of an abstraction function and used to reason about the correctness of live variables analysis.

42

Chapter 8

Interprocedural Analysis

Consider an extension of WHILE3ADDR that includes functions. We thus add a new syntactic
category F (for functions), and two new instruction forms (function call and return), as follows:

F ::� fun fpxq t n : I u
I ::� . . . | return x | y :� fpxq

In the notation above, n : I , the line is shorthand for a list, so that the body of a function is
a list of instructions I with line numbers n. We assume in our formalism that all functions take
a single integer argument and return an integer result, but this is easy to generalize if we need
to. We can also add global variables to this language by tracking a separate set of variables,
Globals. We assume simple syntactic scoping.

Note that this is not a truly precise syntactic specification. Specifying even just “possibly
empty list of arithmetic expressions” properly takes several intermediate syntactic steps;
correctly handling scope requires rather significant refinement to the operational semantics.
However, providing such precision is more trouble than it’s worth for this discussion.
Function names are strings. Functions may return either void or a single integer. We leave the
problem of type-checking to another class.

We’ve made our programming language much easier to use, but dataflow analysis has be-
come rather more difficult. Interprocedural analysis concerns analyzing a program with mul-
tiple procedures, ideally taking into account the way that information flows among those pro-
cedures. We use zero analysis as our running example throughout, unless otherwise indicated.

8.1 Two Simple Approaches

Default assumptions. Our first approach assumes a default lattice value for all arguments to
a function La and a default value for procedure results Lr. In some respects, La is equivalent
to the initial dataflow information we set at the entry to the program when we were only
looking intraprocedurally; now we assume it on entry to every procedure. We check the
assumptions hold when analyzing a call or return instruction (trivial if La � Lr � J). We then
use the assumption when analyzing the result of a call instruction or starting the analysis of a
method. For example, we have σ0 � tx ÞÑ La | x P Varu.

Here is a sample flow function for call and return instructions:

fvx :� gpyqwpσq � σrx ÞÑ Lrs perror if σpyq �� Laq

fvreturn xwpσq � σ perror if σpxq �� Lrq

We can apply zero analysis to the following function, using La � Lr �
J:

43

1 : fun divByXpxq : int
2 : y :� 10{x
3 : return y

4 : fun mainpq : void
5 : z :� 5
6 : w :� divByXpzq

The results are sound, but imprecise. We can avoid the false positive by using a more
optimistic assumption La � Lr � NZ. But then we get a problem with the following program:

1 : fun doublepxq : int
2 : y :� 2 � x
3 : return y

4 : fun mainpq : void
5 : z :� 0
6 : w :� doublepzq

Now what?

Annotations. An alternative approach uses annotations. This allows us to choose different
argument and result assumptions for different procedures. Flow functions might look like:

fvx :� gpyqwpσq � σrx ÞÑ annotvgw.rs perror if σpyq �� annotvgw.aq

fvreturn xwpσq � σ perror if σpxq �� annotvgw.rq

Now we can verify that both of the above programs are safe, given the proper annotations. We
will see other example analysis approaches that use annotations later in the semester, though
historically, programmer buy-in remains a challenge in practice.

Local vs. global variables. If we add global variables, we must make conservative assump-
tions about them too. Assume globals should always be described by some lattice value Lg at
procedure boundaries. We can extend the flow functions as follows:

fvx :� gpyqwpσq � σrx ÞÑ Lrsrz ÞÑ Lg | z P Globalss
perror if σpyq �� La _ @z P Globals : σpzq �� Lgq

fvreturn xwpσq � σ
perror if σpxq �� Lr _ @z P Globals : σpzq �� Lgq

The annotation approach can also be extended in a natural way to handle global variables.

8.2 Interprocedural Control Flow Graphs

An approach that avoids the burden of annotations, and can capture what a procedure
actually does as used in a particular program, is to build a control flow graph for the entire
program, rather than just a single procedure. To make this work, we handle call and return
instructions specially as follows:

• We add additional edges to the control flow graph. For every call to function g, we add
an edge from the call site to the first instruction of g, and from every return statement of
g to the instruction following that call.

44

• When analyzing the first statement of a procedure, we generally gather analysis infor-
mation from each predecessor as usual. However, we take out all dataflow information
related to local variables in the callers. Furthermore, we add dataflow information
for parameters in the callee, initializing their dataflow values according to the actual
arguments passed in at each call site.

• When analyzing an instruction immediately after a call, we get dataflow information
about local variables from the previous statement. Information about global variables
is taken from the return sites of the function that was called. Information about the
variable that the result of the function call was assigned to comes from the dataflow
information about the returned value.

Now the examples described above can be successfully analyzed. However, other
programs still cause problems:

1 : fun doublepxq : int
2 : y :� 2 � x
3 : return y

4 : fun mainpq
5 : z :� 5
6 : w :� doublepzq
7 : z :� 10{w
8 : z :� 0
9 : w :� doublepzq

What’s the issue here?

8.3 Context Sensitive Analysis

Context-sensitive analysis analyzes a function either multiple times, or parametrically, so that
the analysis results returned to different call sites reflect the different analysis results passed in
at those call sites. We could get context sensitivity just by duplicating (or inlining) all callees,
but this only works for non-recursive programs.

A simple solution is to build a summary of each function, mapping dataflow input
information to dataflow output information. We will analyze each function once for each
context, where a context is an abstraction for a set of calls to that function. At a minimum, each
context must track the input dataflow information to the function.

Let’s look at how this approach allows the program given above to be proven safe by zero
analysis...(Example will be given in class)

Things become more challenging in the presence of recursive functions, or more generally
mutual recursion. Let us consider context-sensitive interprocedural constant propagation
analysis of a factorial function called by main. We are not focused on the intraprocedural part
of the analysis, so we will just show the function in the form of Java or C source code:

int fact(int x) {
if (x == 1)

return 1;
else

return x * fact(x-1);
}

void main() {
int y = fact(2);
int z = fact(3);
int w = fact(getInputFromUser());

}

We can analyze the first two calls to fact within main straightforwardly, and in fact we
can even cache the results of analyzing fact(2) for reuse when analyzing the recursive call
inside fact(3).

45

For the third call to fact, the argument is determined at runtime, and so constant
propagation uses J for the calling context. In this case, the recursive call to fact() also has J
as the calling context. But we cannot look up the result in the cache yet as analysis of fact()
with J has not completed. A naive approach would attempt to analyze fact() with J again,
and would therefore not terminate.

We can solve the problem by applying the same idea as in intraprocedural analysis.
The recursive call is a kind of a loop. We make the initial assumption that the result of the
recursive call is K, conceptually equivalent to information coming from the back edge of a
loop. When we discover the result is a higher point in the lattice then K, we reanalyze the
calling context (and recursively, all calling contexts that depend on it). The algorithm to do so
can be expressed as follows:

type Context
val fn : Function � the function being called
val input : σ � input for this set of calls

type Summary � the input/output summary for a context
val input : σ
val output : σ

val worklist : SetrContexts � contexts we must revisit due to updated analysis information
val analyzing : SetrContexts � the contexts we are currently analyzing
val results : MaprContext, Summarys � the analysis results
val callers : MaprContext, SetrContextss � the call graph - used for change propagation

function GETCTX(f, callingCtx, n, σin)
return Contextpf, σinq � constructs a new Context with f and σin

end function

function ANALYZEPROGRAM � starting point for interprocedural analysis
initCtxÐ GETCTXpmain,nil, 0,Jq
worklistÐ tinitCtxu
resultsrinitCtxs Ð SummarypJ,Kq
while NOTEMPTY(worklist) do

ctxÐ REMOVE(worklist)
ANALYZE(ctx, resultsrctxs.input)

end while
end function

function ANALYZE(ctx, σin)
σout Ð resultsrctxs.output
ADD(analyzing, ctx)
σ1out ÐINTRAPROCEDURAL(ctx, σin)
REMOVE(analyzing, ctx)
if σ1out �� σout then

resultsrctxs Ð Summarypσin, σout \ σ
1
outq

for c P callersrctxs do
ADD(worklist, c)

end for
end if
return σ1out

end function

46

function FLOW(vn: x :� fpyqw, ctx, σn) � called by intraprocedural analysis
σin Ð rformalpfq ÞÑ σnpyqs �map f ’s formal parameter to info on actual from σn
calleeCtxÐ GETCTXpf, ctx, n, σinq
σout ÐRESULTSFOR(calleeCtx, σin)
ADD(callersrcalleeCtxs, ctx)
return σnrx ÞÑ σoutrresultss � update dataflow with the function’s result

end function

function RESULTSFOR(ctx, σin)
if ctx P dompresultsq then

if σin � resultsrctxs.input then
return resultsrctxs.output � existing results are good

else
resultsrctxs.inputÐ resultsrctxs.input\ σin � keep track of more general input

end if
else

resultsrctxs � Summarypσin,Kq � initially optimistic assumption
end if
if ctx P analyzing then

return resultsrctxs.output � K if it hasn’t been analyzed yet; otherwise last known
else

return ANALYZE(ctx, resultsrctxs.input)
end if

end function
The following example shows that the algorithm generalizes naturally to the case of

mutually recursive functions:

bar() { if (...) return 2 else return foo() }
foo() { if (...) return 1 else return bar() }

main() { foo(); }

8.4 Precision and Termination

Precision. A notable part of the algorithm above is that if we are currently analyzing a
context and are asked to analyze it again, we return K as the result of the analysis. This has
similar benefits to using K for initial dataflow values on the back edges of loops: starting with
the most optimistic assumptions about code we haven’t finished analyzing allows us to reach
the best possible fixed point. The following example program illustrates a function where the
result of analysis will be better if we assume K for recursive calls to the same context, vs. for
example if we assumed J:

int iterativeIdentity(x, y)
if x <= 0

return y
else

return iterativeIdentity(x-1, y)

void main(z)
w = iterativeIdentity(z, 5)

Termination. When will the algorithm above terminate? Analyze is called only when (1) a
context has not been analyzed yet, or when (2) it has just been taken off the worklist. So it is

47

called once per reachable context, plus once for every time a reachable context is added to the
worklist.

We can bound the total number of worklist additions by (C) the number of reachable
contexts, times (H) the height of the lattice (we don’t add to the worklist unless results for
some context changed, i.e. went up in the lattice relative to an initial assumption of K or
relative to the last analysis result), times (N) the number of callers of that reachable context.
C*N is just the number of edges (E) in the inter-context call graph, so we can see that we will
do intraprocedural analysis O(E*H) times.

Thus the algorithm will terminate as long as the lattice is of finite height and there are a
finite number of reachable contexts. Note, however, that for some lattices, notably including
constant propagation, there are an unbounded number of lattice elements and thus an
unbounded number of contexts. If more than a finite number are not reachable, the algorithm
will not terminate. So for lattices with an unbounded number of elements, we need to adjust
the context-sensitivity approach above to limit the number of contexts that are analyzed.

8.5 Approaches to Limiting Context-Sensitivity

No context-sensitivity. One approach to limiting the number of contexts is to allow only
one for each function. This is equivalent to the interprocedural control flow graph approach
described above. We can recast this approach as a variant of the generic interprocedural
analysis algorithm by replacing the Context type to track only the function being called, and
then having the GETCTX method always return the same context:

type Context
val fn : Function

function GETCTX(f, callingCtx, n, σin)
return Contextpfq

end function
Note that in this approach the same calling context might be used for several different

input dataflow information σin, one for each call to GETCTX. This is handled correctly by
RESULTSFOR, which updates the input information in the Summary for that context so that it
generalizes all the input to the function seen so far.

Limited contexts. Another approach is to create contexts as in the original algorithm, but
once a certain number of contexts have been created for a given function, merge all subsequent
calls into a single context. Of course, this means the algorithm will lose precision beyond this
bounds. But, if most functions have fewer contexts that are actually used, this can be a good
strategy for analyzing most of the program in a context-sensitive way while avoiding perfor-
mance problems for the minority of functions that are called from many different contexts.
Can you implement a GETCTX function that represents this strategy?

Call strings. Another context sensitivity strategy is to differentiate contexts by a call string:
the call site, its call site, and so forth. For example, the initial context for the main function is
xmain, rsy; a call to foo on line 3 will create the context xfoo, r3sy; if this function calls bar
on line 10 we will get the context xbar, r3, 10sy, and so on. If main additionally calls foo on
line 5, we will get contexts xfoo, r5sy and then eventually xbar, r5, 10sy. So, the two calls to
bar are distinguished by the full calling context from main. In the limit, when considering
call strings of arbitrary length, this provides full context sensitivity (but is not guaranteed
to terminate for arbitrary recursive functions). This strategy can be implemented using the
following representation in pseudo-code:

48

type Context
val fn : Function
val string : ListrInts

function GETCTX(f, callingCtx, n, σin)
newStr Ð callingCtx.string ++ n
return Contextpf, newStrq

end function
Dataflow analysis results for contexts based on arbitrarylength call strings are as precise as

the results for contexts based on separate analysis for each different input dataflow informa-
tion. The latter strategy can be more efficient, however, because it reuses analysis results when
a function is called twice with different call strings but the same input dataflow information.

In practice, both strategies (arbitrary-length call strings vs. input dataflow information)
can result in reanalyzing each function an unacceptable number of times. Multiple contexts
must be combined somehow. The call-string approach provides an easy, but naive, way to do
this: call strings can simply be cut off at a certain length. For example, if we have call strings
“a b c” and “d e b c” (where c is the most recent call site) with a cutoff of 2, the input dataflow
information for these two call strings will be merged and the analysis will be run only once, for
the context identified by the common length-two suffix of the strings, “b c”. We can illustrate
this by redoing the analysis of the factorial example. The algorithm is the same as above;
however, we use a different implementation of GETCTX that computes the call string suffix:

type Context
val fn : Function
val string : ListrInts

function GETCTX(f, callingCtx, n, σin)
newStr ÐSUFFIX(callingCtx.string ++ n, CALL STRING CUTOFF)
return Contextpf, newStrq

end function
Although this strategy reduces the overall number of analyses, it does so in a relatively

blind way. If a function is called many times but we only want to analyze it a few times,
we want to group the calls into analysis contexts so that their input information is similar.
Call string context is a heuristic way of doing this that sometimes works well. But it can
be wasteful: if two different call strings of a given length happen to have exactly the same
input analysis information, we will do an unnecessary extra analysis, whereas it would have
been better to spend that extra analysis to differentiate calls with longer call strings that have
different analysis information.

Given a limited analysis budget, it is usually best to use heuristics that are directly based
on input information. Unfortunately these heuristics are harder to design, but they have the
potential to do much better than a call-string based approach. We will look at some examples
from the literature to illustrate this later in the course.

49

Chapter 9

Control Flow
Analysis for Functional Languages

We have made progress by expanding our dataflow analysis to handle programs with mul-
tiple procedures. However, the approach we’ve developed relies on a number of simplifying
assumptions. Notably, in WHILE3ADDR with functions, it is always easy to tell which
function is being called at any particular callsite. This is often not the case in real languages.
Object-oriented languages (or any language with dynamic dispatch) and functional languages
challenge this assumption: in both cases, it can be difficult to tell which function is being
called, statically.

We therefore turn now to the general problem of statically analyzing functional languages.
In doing so, we will see techniques for addressing this general question of determining control
flow (or call graphs), and generalize several of our ideas about dataflow analysis (like the idea
of a program point). Additionally, analyzing functional languages motivates and provides
a good introduction to constraint-based analyses. We will additionally expand on a number of
these ideas in subsequent classes.

9.1 A simple, labeled, functional language

Consider an idealized functional language based on the lambda calculus, similar to the core
of Scheme or ML, with the additional property that we label all expressions:

e P Expressions ...or labelled terms
t P Term ...or unlabelled expressions
l P L labels

e ::� tl

t ::� λx.e
| x
| pe1q pe2q
| let x � e1 in e2
| if e0 then e1 else e2
| n | e1 � e2 | ...

The grammar includes a definition of an anonymous function λx.e, where x is the function
argument and e is the function body.1 The function can include any of the other types of ex-

1The formulation in PPA also includes a syntactic construct for explicitly recursive functions. The ideas extend
naturally, but we’ll follow the simpler syntax for expository purposes.

50

pressions, such as variables x or function calls pea1qpe
b
2q,

2 where e1 is the function to be invoked
and e2 is passed to that function as an argument (labeled a and b respectively). We evaluate a
function call pλx.eqpvq by substituting the argument v for all occurrences of x in e. For example,
ppλx.pxa�1bqcqdp3qeqg evaluates to 3�1, which of course evaluates to 4. A more interesting ex-
ample is pppλf.pfa 3bqcqepλx.pxg � 1hqiqjqk, which first substitutes the argument for f , yielding
pλx.xg � 1hqi 3. Then we invoke the function, getting 3� 1 which again evaluates to 4.

Note that this grammar associates each expression with a label l P L; this is important
to keeping track of analysis information (analogous to program points in our imperative
analysis), as we discuss next.

9.2 Simple Control Flow Analysis

Static analysis can be just as useful in this type of language as in imperative languages, but
immediate complexities arise. For example: what is a program point in a language without
obvious predecessors or successors? Computation is intrinsically nested. Second, because
functions are first-class entities that can be passed around as variables, it’s not obvious which
function is being applied where. We need some way to figure this out, because the value a
function returns (which we may hope to track, such as through constant propagation analysis)
will inevitably depend on which function is called, as well as its arguments.

Control flow analysis (CFA)3 seeks to statically determine which functions could be asso-
ciated with which variables. Because functional languages are not based on statements but
rather expressions, it is appropriate to reason about both the values of variables and the values
expressions evaluate to.

9.2.1 0-CFA

We will start by discussing the simplest form of a CFA, called 0-CFA. This is the simplest form
because it is context-insensitive (the “0-” label indicates no context is taken into account). We
track analysis information for variables and labels, in lieu of the explicit program points in the
control flow graphs we used before. Although this may feel like a big change, this approach
actually connects directly to what we’ve been doing in imperative dataflow analysis so far.
Dataflow analysis is a type of abstract interpretation, an overall framework or theory of sound
approximation of program semantics. At a high level and separate from a particular program
definition, abstract interpretation associates labels with properties by manipulating sets of states
using monotonic functions over ordered sets as defined by lattices. In our formulation for
imperative languages, we implicitly associated labels with the program points between nodes
in a control flow graph.

That said, our analysis information σ maps each variable and label to a lattice value. 0-CFA
analysis is only concerned with tracking which functions are possibly associated with each
location or variable (we will add dataflow information later), and so the abstract domain is as
follows:

σ P VarY LÑ L L � J� Ppλx.eq

The analysis information at any given expression is the set of all functions that could be
the result of evaluating that expression. As suggested above, expressions are identified by
their labels l, and we track similar information for variables. We use J to denote all possible

2In an imperative language this would more typically be written ea1pe2q
b, but we follow the functional conven-

tion here, with parenthesis included when helpful syntactically.
3This nomenclature is confusing because it is also used to refer to analyses of control flow graphs in imperative

languages; We usually abbreviate to CFA when discussing the analysis of functional languages.

51

functions; if we know all the functions in the program, we could enumerate them, but a
symbolic J representation is useful when we don’t have the whole program available.

Question: what is the � relation on this dataflow state?

A 0-CFA is a Constraint Based Analysis: it is defined via inference rules that generate
constraints over the possible dataflow values for each variable or labeled location; those
constraints are then solved. We use the ãÑ to define constraint generation. The judgment
vewl ãÑ C can be read as “The analysis of expression e with label l generates constraints C over
dataflow state σ.” For our first CFA, we can define inference rules for this judgment as follows:

vxwl ãÑ σpxq � σplq
var

In this rule, the variable value flows to the program location l. Although we didn’t list
it above (we generalize it below), a rule for constants produces the empty set, because this
analysis is tracking only function values.

The rules for functions/calls is more complex:

vewl0 ãÑ C

vλx.el0wl ãÑ tλx.eu � σplq Y C
lambda

ve1w
l1 ãÑ C1 ve2w

l2 ãÑ C2

vel11 el22 w
l
ãÑ C1 Y C2 Y fn l1 : l2 ñ l

apply

The first rule just states that if a literal function is declared at a program location l, that
function is part of the lattice value σplq computed by the analysis for that location. Because
we want to analyze the data flow inside the function, we also generate a set of constraints C
from the function body and return those constraints as well.

The rule for application first analyzes the function and the argument to extract two sets
of constraints C1 and C2. We then generate an abstract function flow constraint of the form
fn l1 : l2 ñ l. This function flow constraint is interpreted by the constraint solver to generate
additional concrete constraints using the following rule:

λx.el00 P σpl1q

fn l1 : l2 ñ l ãÑ σpl2q � σpxq ^ σpl0q � σplq
function-flow

This rule states that for every literal function λx.el00 that the analysis (eventually) deter-
mines the expression labeled l1 may evaluate to, we must generate additional constraints that
capture value flow from the actual argument expression l2 to formal function argument x, and
from the function result to the calling expression l.

Consider the first example program given above: ppλx.pxa � 1bqcqdp3qeqg. The first rule to
use is apply (because that’s the top-level program construct). We will work this out together,
but the generated constraints could look like:

pσpxq � σpaqq Y ptλx.x� 1u � σpdqq Y pσpeq � σpxqq ^ pσpcq � σpgqq

There are many possible valid (typically referred to as acceptable) solutions to this con-
straint set. Eliding the formalities, it suffices to say that we would like the least solution to
these constraints, as that will be the most precise result. We will return to constraint solving
properly later in the course; for now, we will simply assert that a σ that maps all variables and
locations except d toH, and d to tλx.x� 1u, satisfies this set of constraints.

Question: what might the rules for the if-then-else or arithmetic operator expressions look like?

52

9.2.2 0-CFA with dataflow information

The analysis in the previous subsection is interesting if all you’re interested in is which
functions can be called where, but doesn’t solve the general problem of dataflow analysis of
functional programs. Fortunately, extending that approach to a more general analysis space
is straightforward: we simply add the abstract information we’re tracking to the abstract
domain defined above. For constant propagation, for example, we can extend the dataflow
state as follows:

σ P VarY Lab Ñ L L � Z�J� Ppλx.eq

Now, the analysis information maps each program point (or variable) to an integer n, or
J, or a set of functions. This requires that we modify our inference rules slightly, but not as
much as you might expect. Indeed, the rules mostly change for arithmetic operators (which
we omitted above) and constants. We simply need to provide an abstraction over concrete
values that captures the dataflow information in question. We get the following rules:

vnwl ãÑ αpnq � σplq
const

ve1w
l1 ãÑ C1 ve2w

l2 ãÑ C2

vel11 � e
l2
2 w

l
ãÑ C1 Y C2 Y pσpl1q �J σpl2qq � σplq

plus

Where α is defined as we discussed in abstract interpretation, and �J is addition lifted to
work over a domain that includes J (and simply ignores/drops any lambda values). There
are similar rules for other arithmetic operations.

Consider the second example, above, properly labeled: pppλf.pfa 3bqcqepλx.pxg � 1hqiqjqk

A constant propagation analysis could produce the following results:

Var Y Lab L by rule
e λf.f 3 lambda
j λx.x� 1 lambda
f λx.x� 1 apply
a λx.x� 1 var
b 3 const
x 3 apply
g 3 var
h 1 const
i 4 add
c 4 apply
k 4 apply

9.3 m-Calling Context Sensitive Control Flow Analysis (m-CFA)

The control flow analysis described above quickly becomes imprecise in more interesting
programs that reuse functions in several calling contexts. This problem should seem familiar
from interprocedural imperative program analysis, but the following code illustrates the
problem in this new language:

let add � λx. λy. x� y
let add5 � padd 5qa5

let add6 � padd 6qa6

let main � padd5 2qm

53

This example illustrates currying, in which a function such as add that takes two arguments
x and y in sequence can be called with only one argument (e.g. 5 in the call labeled a5),
resulting in a function that can later be called with the second argument (in this case, 2 at the
call labeled m). The value 5 for the first argument in this example is stored with the function
in the closure add5. Thus when the second argument is passed to add5, the closure holds the
value of x so that the sum x� y � 5� 2 � 7 can be computed.

In this case, we create two closures, add5 and add6, binding 5 and 6 and the respective
values for x. 0-CFA analysis cannot distinguish them, and because it only computes one value
for x we learn only that x has the value J. This is illustrated in the following analysis (we
shorten the trace to focus only on the variables):

Var Y Lab L notes
add λx. λy. x� y
x 5 when analyzing first call

add5 λy. x� y
x J when analyzing second call

add6 λy. x� y
main J

We can add precision using a context-sensitive analysis. One could, in principle, use either
the functional or call-string approach we discussed previously. In practice the call-string
approach is more commonly used for control-flow analysis in functional programming lan-
guages, perhaps because functional programs will typically produced an intractable number
of contexts per function, and it is easier to place a bound on the analysis in the call-string
approach.

We add context sensitivity by making our analysis information σ track information
separately for different call strings, denoted by ∆. Here a call string is a sequence of labels,
each one denoting a function call site, where the sequence can be of any length between 0 and
some bound m (in practice m will be in the range 0-2 for scalability reasons):

σ P pVarY Labq �∆ Ñ L ∆ � Labn¤m L � Z�J� Pppλx.e, δqq

When a lambda expression is analyzed, we now consider as part of the lattice the call
string context δ in which its free variables were captured. We can then define a set of rules
that generate constraints which, when solved, provide an answer to control-flow analysis, as
well as (in this case) constant propagation:

δ $ vnwl ãÑ αpnq � σpl, δq
const

δ $ vxwl ãÑ σpx, δq � σpl, δq
var

δ $ vλx.el0wl ãÑ tpλx.e, δqu � σpl, δq
lambda

δ $ ve1w
l1 ãÑ C1 δ $ ve2w

l2 ãÑ C2

δ $ vel11 el22 w
l
ãÑ C1 Y C2 Y fnδ l1 : l2 ñ l

apply

These rules contain a call string context δ in which the analysis of each line of code is
done. The rules const and var are unchanged except for indexing σ by the current context δ.
Similarly, the apply rule is the same except we index everything by δ and record δ as part of the
function flow constraint. The lambda rule now captures the context δ along with the lambda
expression, so that when the lambda expression is called the analysis knows in which context
to look up the free variables. But the rule no longer analyzes inside the function; we want to
delay that and do it for a new context δ1 when the function is called.

54

pλx.el00 , δq P σpl1, δq δ1 � suffix pδ��l,mq
C1 � σpl2, δq � σpx, δ1q ^ σpl0, δ

1q � σpl, δq
C2 � tσpy, δq � σpy, δ1q | y P FV pλx.e0qu

δ1 $ ve0w
l0 ãÑ C3

fnδ l1 : l2 ñ l ãÑ C1 Y C2 Y C3
function-flow-δ

The function flow constraint has gotten a bit more complicated. A new context δ1 is formed
by appending the current call site l to the old call string, then taking the suffix of length m
(or less). For each function that may be called, we set up constraints between the actual and
formal parameters and the function result, as before (C1). We analyze the body of the function
in the new context δ1 (C3). Finally, we produce constraints that bind the free variables in
the new context: all free variables in the called function flow from the point δ0 at which the
closure was captured.

We can now reanalyze the earlier example, observing the benefit of context sensitivity. In
the table below, denotes the empty calling context (e.g. when analyzing the main procedure):

Var / Lab, δ L notes
add, pλx. λy. x� y, q
x, a5 5

add5, pλy. x� y, a5q
x, a6 6

add6, pλy. x� y, a6q
main, 7

Note three points about this analysis. First, we can distinguish the values of x in the two
calling contexts: x is 5 in the context a5 but it is 6 in the context a6. Second, the closures re-
turned to the variables add5 and add6 record the scope in which the free variable x was bound
when the closure was captured. This means, third, that when we invoke the closure add5 at pro-
gram pointm, we will know that xwas captured in calling context a5, and so when the analysis
analyzes the addition, it knows that x holds the constant 5 in this context. This enables constant
propagation to compute a precise answer, learning that the variable main holds the value 7.

Optional: Uniform k-Calling Context Sensitive Control Flow Analysis (k-CFA)

m-CFA was proposed recently by Might, Smaragdakis, and Van Horn as a more scalable ver-
sion of the original k-CFA analysis developed by Shivers for Scheme. While m-CFA now seems
to be a better tradeoff between scalability and precision, k-CFA is interesting both for historical
reasons and because it illustrates a more precise approach to tracking the values of variables in
a closure. The following example illustrates a situation in which m-CFA may be too imprecise:

let adde � λx.
let h � λy. λz. x� y � z
let r � h 8
in r

let t � padde 2qt

let f � padde 4qf

let e � pt 1qe

When we analyze it with m-CFA, we get the following results:

55

Var / Lab, δ L notes
adde, pλx..., q

x, t 2
y, r 8
x, r 2 when analyzing first call

t, pλz. x� y � z, rq
x, f 4
x, r J when analyzing second call

f, pλz. x� y � z, rq
t, J

The k-CFA analysis is like m-CFA, except that rather than keeping track of the scope in
which a closure was captured, the analysis keeps track of the scope in which each variable
captured in the closure was defined. We use an environment η to track this. Note that since
η can represent a separate calling context for each variable, it has the potential to be more
accurate, but also much more expensive. We can represent the analysis information as follows:

σ P pVarY Labq �∆ Ñ L ∆ � Labn¤k

L � Z�J� Ppλx.e, ηq η P Var Ñ ∆

Let us briefly analyze the complexity of this analysis. In the worst case, if a closure
captures n different variables, we may have a different call string for each of them. There
are Opnkq different call strings for a program of size n, so if we keep track of one for each
of n variables, we have Opnn�kq different representations of the contexts for the variables
captured in each closure. This exponential blowup is why k-CFA scales so badly. m-CFA is
comparatively cheap—there are “only” Opnkq different contexts for the variables captured in
each closure—still exponential in k, but polynomial in n for a fixed (and generally small) k.

We can now define the rules for k-CFA. They are similar to the rules for m-CFA, except that
we now have two contexts: the calling context δ, and the environment context η tracking the
context in which each variable is bound. When we analyze a variable x, we look it up not in
the current context δ, but the context ηpxq in which it was bound. When a lambda is analyzed,
we track the current environment η with the lambda, as this is the information necessary to
determine where captured variables are bound. The function flow rule is actually somewhat
simpler, because we do not copy bound variables into the context of the called procedure:

δ, η $ vnwl ãÑ αpnq � σpl, δq
const

δ, η $ vxwl ãÑ σpx, ηpxqq � σpl, δq
var

δ, η $ vλx.el0wl ãÑ tpλx.e, ηqu � σpl, δq
lambda

δ, η $ ve1w
l1 ãÑ C1 δ, η $ ve2w

l2 ãÑ C2

δ, η $ vel11 el22 w
l
ãÑ C1 Y C2 Y fnδ l1 : l2 ñ l

apply

pλx.el00 , η0q P σpl1q δ1 � suffix pδ��l,mq
C1 � σpl2, δq � σpx, δ1q ^ σpl0, δ

1q � σpl, δq
δ1, η0 $ ve0w

l0 ãÑ C2

fnδ l1 : l2 ñ l ãÑ C1 Y C2
function-flow-δ

56

Now we can see how k-CFA analysis can more precisely analyze the latest example
program. In the simulation below, we give two tables: one showing the order in which
the functions are analyzed, along with the calling context δ and the environment η for each
analysis, and the other as usual showing the analysis information computed for the variables
in the program:

function δ η

main H
adde t tx ÞÑ tu

h r tx ÞÑ t, y ÞÑ ru
adde f tx ÞÑ fu

h r tx ÞÑ f, y ÞÑ ru
λz.... e tx ÞÑ t, y ÞÑ r, z ÞÑ eu

Var / Lab, δ L notes
adde, pλx..., q

x, t 2
y, r 8
t, pλz. x� y � z, tx ÞÑ t, y ÞÑ ruq
x, f 4
f, pλz. x� y � z, tx ÞÑ f, y ÞÑ ruq
z, e 1
t, 11

Tracking the definition point of each variable separately is enough to restore precision
in this program. However, programs with this structure—in which analysis of the program
depends on different calling contexts for bound variables even when the context is the same
for the function eventually called—appear to be rare in practice. Might et al. observed no
examples among the real programs they tested in which k-CFA was more accurate than
m-CFA—but k-CFA was often far more costly. Thus at this point the m-CFA analysis seems to
be a better tradeoff between efficiency and precision, compared to k-CFA.

57

Chapter 10

Advanced Interprocedural Analysis:
Pointer Analysis and Object-Oriented
Call Graph Construction

We have successfully extended our interprocedural dataflow analysis framework to a small
functional programming language, which required us to reason explicitly about which
functions might be called, where. This provides insight into similar problems in other
programming paradigms, namely dynamic dispatch. Precisely addressing dynamic dispatch
relies on techniques for pointer analysis, which establishes which pointers can point to which
locations. Analyses that address real programming languages (whether they use dynamic
dispatch or not) must address pointers, because ignoring them dramatically impacts analysis
precision. Thus, in the interest of adapting our framework to real languages, we turn our
attention to these issues.

10.1 Pointer Analysis

Pointers are variables whose value refers to another value elsewhere in memory, by storing
the address of that stored value. To illustrate why they matter in analyzing real programs,
consider constant-propagation analysis of the following program:

1 : z :� 1
2 : p :� &z
3 : �p :� 2
4 : print z

To analyze this program correctly we must be aware that at instruction 3, p points to z. If this
information is available we can use it in a flow function as follows:

fCP v�p :� ywpσq � σrz ÞÑ σpyq | z P must-point-toppqs

When we know exactly what a variable x points to, we have must-point-to information,
and we can perform a strong update of the target variable z, because we know with confidence
that assigning to �p assigns to z. A technicality in the rule is quantifying over all z such that
p must point to z. How is this possible? It is not possible in C or Java; however, in a language
with pass-by-reference, for example C++, it is possible that two names for the same location
are in scope.

Of course, it is also possible to be uncertain to which of several distinct locations p points:

58

1 : z :� 1
2 : if pcondq p :� &y else p :� &z
3 : �p :� 2
4 : print z

Now constant propagation analysis must conservatively assume that z could hold either 1
or 2. We can represent this with a flow function that uses may-point-to information:

fCP v�p :� ywpσq � σrz ÞÑ σpzq \ σpyq | z P may-point-toppqs

10.1.1 Andersen’s Points-To Analysis

Two common kinds of pointer analysis are alias analysis and points-to analysis. Alias analysis
computes sets S holding pairs of variables pp, qq, where p and q may (or must) point to the
same location. Points-to analysis computes the set points-toppq, for each pointer variable p,
where the set contains a variable x if p may (or must) point to the location of the variable x.
We will focus primarily on points-to analysis, beginning with a simple but useful approach
originally proposed by Andersen.1

Our initial setting will be C programs. We are interested in analyzing instructions that are
relevant to pointers in the program. Ignoring for the moment memory allocation and arrays,
we can decompose all pointer operations in C into four types:

I ::� ...
| p :� &x taking the address of a variable
| p :� q copying a pointer from one variable to another
| �p :� q assigning through a pointer
| p :� �q dereferencing a pointer

Andersen’s points-to analysis is a context-insensitive interprocedural analysis. It is also
a flow-insensitive analysis, that is an analysis that does not consider program statement order.
Context- and flow-insensitivity improve analysis performance, as precise pointer analysis can
be notoriously expensive.

We will formulate Andersen’s analysis by generating set constraints which can later
be processed by a set constraint solver, much like we did for CFA. Because the analysis is
flow-insensitive, we do not care what order the instructions in the program come in; we
simply generate a set of constraints and solve them. Constraint generation for each statement
works by these rules:

vp :� &xw ãÑ lx P p
address-of

vp :� qw ãÑ p � q
copy

v�p :� qw ãÑ �p � q
assign

vp :� �qw ãÑ p � �q
dereference

The first rule states that a constant location lx, representation the address of x, is in the
set of location pointed to by p. The second rule states that the set of locations pointed to by

1PhD thesis: “Program Analysis and Specialization for the C Programming Language.”

59

p must be a superset of those pointed to by q. The last two rules state the same, but take into
account that one or the other pointer is dereferenced. Note that if Andersen’s algorithm says
that the set p points to only one location lz , we have must-point-to information, whereas if the
set p contains more than one location, we have only may-point-to information.

A number of specialized set constraint solvers exist, and constraints in the form above
can be translated into input for them.2 We will treat constraint-solving abstractly using the
following constraint propagation rules:

p � q lx P q

lx P p
copy

�p � q lr P p lx P q

lx P r
assign

p � �q lr P q lx P r

lx P p
dereference

We can now apply Andersen’s points-to analysis to the programs above. We can also
apply it to programs with dynamic memory allocation, such as:

1 : q :� mallocpq
2 : p :� mallocpq
3 : p :� q
4 : r :� &p
5 : s :� mallocpq
6 : �r :� s
7 : t :� &s
8 : u :� �t

The analysis is run the same way, but we treat the memory cell allocated at each malloc or
new statement as an abstract location labeled by the location n of the allocation point:

vn: p :� mallocpqw ãÑ ln P p
malloc

We must be careful because a malloc statement can be executed more than once, and each
time it executes, a new memory cell is allocated. Unless we have some other means of proving
that the malloc executes only once, we must assume that if some variable p only points to one
abstract malloc’d location ln, that is still may-alias information (i.e. p points to only one of the
many actual cells allocated at the given program location) and not must-alias information.

Efficiency. Analyzing the efficiency of Andersen’s algorithm, we can see that all constraints
can be generated in a linear Opnq pass over the program. The solution size is Opn2q, because
each of the Opnq variables defined in the program could potentially point to Opnq other
variables.

We can derive the execution time as follows:3 There are Opnq flow constraints generated of
the form p � q, �p � q, or p � �q. How many times could a constraint propagation rule fire
for each flow constraint? For a p � q constraint, the rule may fire at most Opnq times, because
there are at most Opnq premises of the proper form lx P p. However, a constraint of the form

2Note that the dereference operation (the � in �p � q) is not standard, but can be encoded,
3David A. McAllester. 1999. On the Complexity Analysis of Static Analyses. In Proceedings of the 6th Interna-

tional Symposium on Static Analysis (SAS ’99): 312–329.

60

p � �q could cause Opn2q rule firings, because there are Opnq premises each of the form lx P p
and lr P q. With Opnq constraints of the form p � �q and Opn2q firings for each, we have Opn3q
constraint firings overall. A similar analysis applies for �p � q constraints. McAllester’s theo-
rem states that the analysis withOpn3q rule firings can be implemented inOpn3q time. Thus we
have derived that Andersen’s algorithm is cubic in the size of the program, in the worst case.

Interestingly, Andersen’s algorithm can be executed in Opn2q time for k-sparse programs.4

The k-sparse assumption requires that at most k statements dereference each variable, and that
the flow graph is sparse. The publication showing this result also showed that typical Java
programs are k-sparse, and that Andersen’s algorithm scales quadratically in practice.

10.1.2 Field Sensitivity

What happens when we have a pointer to a struct in C, or an object in an object-oriented
language? In this case, we would like the pointer analysis to tell us what each field in the
struct or object points to. A simple solution is to be field-insensitive, treating all fields in a struct
as equivalent. Thus if p points to a struct with two fields f and g, and we assign:

1 : p.f :� &x
2 : p.g :� &y

A field-insensitive analysis would tell us (imprecisely) that p.f could point to y. We can
modify the rules above by treating any field dereference or field assignment to p.f as a pointer
dereference �p. Essentially, you can think of this as just considering all fields to be named �.

To be more precise, we can instead track the contents each field of each abstract location
separately. In the discussion below, we assume a Java-like setting, in which all objects are
allocated on the heap and where we cannot take the address of a field. A slightly more
complicated variant of this scheme works in C-like languages.

We will use the malloc and copy rules unchanged from above.5 We drop the assign and
dereference rules, and replace them with:

vp :� q.fw ãÑ p � q.f
field-read

vp.f :� qw ãÑ p.f � q
field-assign

Now assume that objects (e.g. in Java) are represented by abstract locations l. We will have
two forms of basic facts. The first is the same as before: ln P p, where ln is an object allocated
in a new statement at line n. The second basic fact is ln P lm.f , which states that the field f of
the object represented by lm may point to an object represented by ln.

We can now process field constraints with the following rules:

p � q.f lq P q lf P lq.f

lf P p
field-read

p.f � q lp P p lq P q

lq P lp.f
field-assign

If we run this analysis on the code above, we find that it can distinguish that p.f points to
x and p.g points to y.

4Manu Sridharan and Stephen J. Fink. 2009. The Complexity of Andersen’s Analysis in Practice. In Proceedings
of the 16th International Symposium on Static Analysis (SAS ’09): 205–221.

5In Java, the new expression plays the role of malloc

61

10.1.3 Steensgaard’s Points-To Analysis

For very large programs, a quadratic-in-practice algorithm is too inefficient. Steensgaard pro-
posed an pointer analysis algorithm that operates in near-linear time, supporting essentially
unlimited practical scalability.

The first challenge in designing a near-linear time points-to analysis is to represent the
results in linear space. This is nontrivial because over the course of program execution, any
given pointer p could potentially point to the location of any other variable or pointer q.
Representing all of these pointers explicitly will inherently take Opn2q space.

The solution Steensgaard found is based on using constant space for each variable in the
program. His analysis associates each variable p with an abstract location named after the
variable. Then, it tracks a single points-to relation between that abstract location p and another
one q, to which it may point. Now, it is possible that in some real program p may point to
both q and some other variable r. In this situation, Steensgaard’s algorithm unifies the abstract
locations for q and r, creating a single abstract location representing both of them. Now we
can track the fact that p may point to either variable using a single points-to relationship.

For example, consider the program to the left, and the graph that Andersen’s points-to
analysis would produce (right):

1 : p :� &x
2 : r :� &p
3 : q :� &y
4 : s :� &q
5 : r :� s

But in Steensgaard’s setting, when we discover that r could point both to q and to p, we
must merge q and p into a single node:

x

pq

r

y

s

Notice that we have lost precision: by merging the nodes for p and q our graph now
implies that s could point to p, which is not the case in the actual program. But we are not
done. Now pq has two outgoing arrows, so we must merge nodes x and y. The final graph
produced by Steensgaard’s algorithm is therefore:

xy

pq

r s

62

We study Steensgaard’s analysis more precisely by specifying a simplified version that
ignores function pointers:

vp :� qw ãÑ joinp�p, �qq
copy

vp :� &xw ãÑ joinp�p, xq
address-of

vp :� �qw ãÑ joinp�p, ��qq
dereference

v�p :� qw ãÑ joinp��p, �qq
assign

With each abstract location p, we associate the abstract location that p points to, denoted
�p. Abstract locations are implemented as a union-find6 data structure so that we can merge
two abstract locations efficiently. In the rules above, we implicitly invoke find on an abstract
location before calling join on it, or before looking up the location it points to.

The join operation essentially implements a union operation on the abstract locations.
However, since we are tracking what each abstract location points to, we must update this
information also. The algorithm to do so is as follows:

join(`1, `2)
if (find(`1) == find(`2))

return
n1 Ð �`1
n2 Ð �`2
union(`1, `2)
join(n1, n2)

Once again, we implicitly invoke find on an abstract location before comparing it for
equality, looking up the abstract location it points to, or calling join recursively.

As an optimization, Steensgaard does not perform the join if the right hand side is not
a pointer. For example, if we have an assignment vp :� qw and q has not been assigned any
pointer value so far in the analysis, we ignore the assignment. If later we find that q may hold
a pointer, we must revisit the assignment to get a sound result.

Steensgaard illustrated his algorithm using the following program, and the graph the
algorithm produces:

1 : a :� &x
2 : b :� &y
3 : if p then
4 : y :� &z
5 : else
6 : y :� &x
7 : c :� &y

Efficiency. Rayside illustrates how Andersen must sometimes do more work than Steens-
gaard:

6See any algorithms textbook

63

1 : q :� &x
2 : q :� &y
3 : p :� q
4 : q :� &z

After processing the first three statements, Steensgaard’s algorithm will have unified vari-
ables x and y, with p and q both pointing to the unified node. Andersen’s algorithm will have
both p and q pointing to both x and y. When the fourth statement is processed, Steensgaard’s
algorithm does only a constant amount of work, merging z in with the already-merged xy. On
the other hand, Andersen’s algorithm must not just create a points-to relation from q to z, but
must also propagate that relationship to p. It is this additional propagation step that results in
the significant performance difference between these algorithms.7

Analyzing Steensgaard’s pointer analysis for efficiency, we observe that each of n state-
ments in the program is processed once. The processing is linear, except for find operations
on the union-find data structure (which may take amortized time Opαpnqq each) and the join
operations. We note that in the join algorithm, the short-circuit test will fail at most Opnq
times—at most once for each variable in the program. Each time the short-circuit fails, two
abstract locations are unified, at cost Opαpnqq. The unification assures the short-circuit will not
fail again for one of these two variables. Because we have at most Opnq operations and the
amortized cost of each operation is at most Opαpnqq, the overall running time of the algorithm
is near linear: Opn � αpnqq. Space consumption is linear, as no space is used beyond that used
to represent abstract locations for all the variables in the program text.

Based on this asymptotic efficiency, Steensgaard’s algorithm was run on a 1 million line
program (Microsoft Word) in 1996; this was an order of magnitude greater scalability than
other pointer analyses known at the time.

Steensgaard’s pointer analysis is field-insensitive; making it field-sensitive would mean
that it is no longer linear.

10.2 Dynamic dispatch

Dynamic dispatch is the process of selecting which implementation of a method or function
should be called at runtime; it is a defining characteristic object-oriented programming lan-
guages and systems, but is not limited to them (e.g., calling through function pointers in C).
To construct a precise call graph in such languages, an analysis must determine the type of the
receiver object is at each call site. Flow analysis techniques similar to points-to analysis can be
used to compute this information, but using an interprocedural flow analysis off the shelf re-
quires a call graph, which is exactly what we are trying to construct. Therefore, object-oriented
call graph construction algorithms must simultaneously build a call graph and compute
dataflow information describing the types of the objects to which each variable could point.

10.2.1 Simple approaches

Before examining a full-fledged dataflow analysis-based call graph construction algorithm,
we will consider two simpler approaches that do not require flow analysis. These approaches
have the side benefit of being very efficient, and so are used in settings such as JIT compilers
where analysis time is scarce.

The simplest approach, class hierarchy analysis, uses the type of a variable, together with the
class hierarchy, to determine what types of object the variable could point to. Unsurprisingly,

7For fun, try adding a new statement r :� p after statement 3. Then z has to be propagated to the points-to sets
of both p and r. In general, the number of propagations can be linear in the number of copies and the number of
address-of operators, which makes it quadratic overall even for programs in the simple form above.

64

this is very imprecise, but can be computed very efficiently in Opn � tq time, because it visits
n call sites and at each call site traverses a subtree of size t of the class hierarchy.

An improvement to class hierarchy analysis is rapid type analysis, which eliminates from
the hierarchy classes that are never instantiated. The analysis iteratively builds a set of
instantiated types, method names invoked, and concrete methods called. Initially, it assumes
that main is the only concrete method that is called, and that no objects are instantiated. It
then analyzes concrete methods known to be called, one by one. When a method name is
invoked, it is added to the list, and all concrete methods with that name defined within (or
inherited by) types known to be instantiated are added to the called list. When an object is
instantiated, its type is added to the list of instantiated types, and all its concrete methods
that have a method name that is invoked are added to the called list. This proceeds iteratively
until a fixed point is reached, at which point the analysis knows all of the object types that
may actually be created at run time.

Rapid type analysis can be considerably more precise than class hierarchy analysis in
programs that use libraries that define many types, only a few of which are used by the
program. It remains extremely efficient, because it only needs to traverse the program once
(in Opnq time) and then build the call graph by visiting each of n call sites and considering a
subtree of size t of the class hierarchy, for a total of Opn � tq time.

10.2.2 0-CFA Style Object-Oriented Call Graph Construction

Object-oriented call graphs can also be constructed using a pointer analysis such as Ander-
sen’s algorithm, either context-insensitive or context-sensitive. The context-sensitive versions
are called k-CFA by analogy with control-flow analysis for functional programs. The context-
insensitive version is called 0-CFA for the same reason. Essentially, the analysis proceeds as
in Andersen’s algorithm, but the call graph is built up incrementally as the analysis discovers
the types of the objects to which each variable in the program can point.

Even 0-CFA analysis can be considerably more precise than Rapid Type Analysis. For
example, in the program below, RTA would assume that any implementation of foo() could
be invoked at any program location, but 0-CFA can distinguish the two call sites:

class A { A foo(A x) { return x; } }
class B extends A { A foo(A x) { return new D(); } }
class D extends A { A foo(A x) { return new A(); } }
class C extends A { A foo(A x) { return this; } }

// in main()
A x = new A();
while (...)

x = x.foo(new B()); // may call A.foo, B.foo, or D.foo
A y = new C();
y.foo(x); // only calls C.foo

65

Chapter 11

Axiomatic Semantics and
Hoare-style Verification

It has been found a serious problem to define these languages [ALGOL, FOR-
TRAN, COBOL] with sufficient rigor to ensure compatibility among all implemen-
tations...One way to achieve this would be to insist that all implementations of the
language shall satisfy the axioms and rules of inference which underlie proofs of
properties of programs expressed in the language. In effect, this is equivalent to ac-
cepting the axioms and rules of inference as the ultimately definitive specification
of the meaning of the language.

C.A.R Hoare, An Axiomatic Basis for Computer Programming,1969

So far in this course we have largely represented and reasoned about programs (and
analysis of those programs) in terms of operational semantics, which gives meaning to
programs based on what happens when we execute them. Now, we turn our attention to
a different kind of representation, which in turn enables a different kind of static reasoning
about program correctness.

11.1 Axiomatic Semantics

Axiomatic semantics (or Hoare-style logic) defines the meaning of a statement in terms of its
effects on assertions of truth that can be made about the associated program. This provides
a formal system for reasoning about correctness. An axiomatic semantics fundamentally
consists of: (1) a language for stating assertions about programs (where an assertion is
something like “if this function terminates, x ¡ 0 upon termination”), coupled with (2)
rules for establishing the truth of assertions. Various logics have been used to encode such
assertions; for simplicity, we will begin by focusing on first-order logic.

In this system, a Hoare Triple encodes such assertions:

tP u S tQu

P is the precondition, Q is the postcondition, and S is a piece of code of interest. Relating
this back to our earlier understanding of program semantics, this can be read as “if P holds
in some state E and if xE,Sy ó E1, then Q holds in E1.” We distinguish between partial
(tP u S tQu) and total (rP s S rQs) correctness by saying that total correctness means that,
given precondition P , S will terminate, and Q will hold; partial correctness does not make
termination guarantees. We primarily focus on partial correctness.

66

11.1.1 Assertion judgements using operational semantics

Consider a simple assertion language adding first-order predicate logic to WHILE expressions:

P ::� true | false | e1 � e2 | e1 ¥ e2 | P1 ^ P2

| P1 _ P2 | P1 ñ P2 | @x.P | Dx.P

Note that we are somewhat sloppy in mixing logical variables and program variables; all
WHILE variables implicitly range over integers, and all WHILE boolean expressions are also
assertions.

We now define an assertion judgement E (P , read “P is true in E” or alternatively “E
entails P .” The (judgment is defined inductively on the structure of assertions, and relies on
the operational semantics of WHILE arithmetic expressions. For example:

E (true always
E (a1 � a2 iff xE, a1y ó n and xE, a2y ó n
E (a1 ¥ a2 iff xE, a1y ó n1, xE, a2y ó n2, and n1 ¥ n2
E (P1 ^ P2 iff E (P1 and E (P2

...
E (@x.P iff @n P Z.Erx ÞÑ ns (P
E (Dx.P iff Dn P Z.Erx ÞÑ ns (P

Now we can define formally the meaning of a partial correctness assertion (tP u S tQu:

@E.@E1.pE (P ^ xE,Sy ó E1q ñ E1 (Q

Question: What about total correctness?
This gives us a formal, but unsatisfactory, mechanism to decide (tP u S tQu. By defining

the judgement in terms of the operational semantics, we practically have to run the program
to verify an assertion! It’s also awkward/impossible to effectively verify the truth of a @x.P
assertion (check every integer?!). This motivates a new symbolic technique for deriving valid
assertions from others that are known to be valid.

11.1.2 Derivation rules for Hoare triples

We write $ P (read “we can prove P”) when P can be derived from basic axioms. The
derivation rules for $ P are the usual ones from first-order logic with arithmetic, like (but
obviously not limited to):

$ P $ Q

$ P ^Q
and

We can now write $ tP u S tQu when we can derive a triple using derivation rules. There
is one derivation rule for each statement type in the language (sound familiar?):

$ tP u skip tP u
skip

$ tra{xsP u x:=a tP u
assign

$ tP u S1 tP
1u $ tP 1u S2 tQu

$ tP u S1; S2 tQu
seq

$ tP ^ buS1tQu $ tP ^ bu S2 tQu

$ tP u if b then S1 else S2 tQu
if

Question: What can we do for while?

There is also the rule of consequence:

67

$ P 1 ñ P $ tP u S tQu $ Qñ Q1

$ tP 1u S tQ1u
consq

This rule is important because it lets us make progress even when the pre/post conditions
in our program don’t exactly match what we need (even if they’re logically equivalent) or are
stronger or weaker logically than ideal.

We can use this system to prove that triples hold. Consider ttrueu x :� e tx � eu, using (in
this case) the assignment rule plus the rule of consequence:

$ true ñ a � a ta � au x :� a tx � au

$ ttrueux :� atx � au

A system of axiomatic semantics is sound if everything we can prove is also true, that is:
if $ tP uStQu then (tP uStQu. This can be proven via simultaneous induction on the
structure of the operational semantics derivation and the axiomatic semantics proof; will not
conduct this proof in these notes. Intuitively, it expresses that the axiomatic proof we can
derive using these rules is equivalent to the operational semantics derivation

A system of axiomatic semantics is complete if we can prove all true things:
if (tP uStQu then $ tP uStQu The system we have outlined is relatively complete
(that is, as complete as the underlying logic). We now move to showing how to (soundly/-
completely) prove properties of programs using this style of semantics.

11.2 Proofs of a Program

Hoare-style verification is based on the idea of a specification as a contract between the
implementation of a function and its clients. The specification consists of the precondition and
a postcondition. The precondition is a predicate describing the condition the code/function
relies on for correct operation; the client must fulfill this condition. The postcondition is a
predicate describing the condition the function establishes after correctly running; the client
can rely on this condition being true after the call to the function.

Note that if a client calls a function without fulfilling its precondition, the function can
behave in any way at all and still be correct. Therefore, if a function must be robust to errors,
the precondition should include the possibility of erroneous input, and the postcondition
should describe what should happen in case of that input (e.g. an exception being thrown).

The goal in Hoare-style verification is thus to (statically!) prove that, given a pre-condition,
a particular post-condition will hold after a piece of code executes. We do this by generating
a logical formula known as a verification condition, constructed such that, if true, we know
that the program behaves as specified. The general strategy for doing this, introduced by
Dijkstra, relies on the idea of a weakest precondition of a statement with respect to the desired
post-condition. We then show that the given precondition implies it. However, loops, as ever,
complicate this strategy.

11.2.1 Strongest postconditions and weakest pre-conditions

We can write any number of perfectly valid Hoare triples. Consider the Hoare triple
tx � 5u x :� x � 2 tx ¡ 0u. This triple is clearly correct, because if x � 5 and we multiply x by
2, we get x � 10 which clearly implies that x ¡ 0. However, although correct, this Hoare triple
is not a precise as we might like. Specifically, we could write a stronger postcondition, i.e. one
that implies x ¡ 0. For example, x ¡ 5 ^ x 20 is stronger because it is more informative;

68

it pins down the value of x more precisely than x ¡ 0. The strongest postcondition possible
is x � 10; this is the most useful postcondition. Formally, if tP u S tQu and for all Q1 such that
tP u S tQ1u, Qñ Q1, then Q is the strongest postcondition of S with respect to P .

We can compute the strongest postcondition for a given statement and precondition using
the function sppS, P q. Consider the case of a statement of the form x :� e. If the condition
P held before the statement, we now know that P still holds and that x � e—where P and e
are now in terms of the old, pre-assigned value of x. For example, if P is x � y � 5, and S is
x :� x � z, then we should know that x1 � y � 5 and x � x1 � z, where x1 is the old value of
x. The program semantics doesn’t keep track of the old value of x, but we can express it by
introducing a fresh, existentially quantified variable x1. This gives us the following strongest
postcondition for assignment:1

sppx :� a, P q � Dx1.rx1{xsP ^ x � rx1{xsa

While this scheme is workable, it is awkward to existentially quantify over a fresh variable
at every statement; the formulas produced become unnecessarily complicated, and if we want
to use automated theorem provers, the additional quantification tends to cause problems.
Dijkstra proposed reasoning instead in terms of weakest preconditions, which turns out to work
better. If tP u S tQu and for all P 1 such that tP 1u S tQu, P 1 ñ P , then P is the weakest
precondition wppS,Qq of S with respect to Q.

We can define a function yielding the weakest precondition inductively, following the
Hoare rules. For for assignments, sequences, and if statements, this yields:

wppx :� a, P q � ra{xsP

wppS; T,Qq � wppS, wppT,Qqq

wppif b then S else T,Qq � bñ wppS,Qq ^ bñ wppT,Qq

11.2.2 Loops

As usual, things get tricky when we get to loops. Consider:

tP uwhilepi xq do f � f � i; i :� i� 1 donetf � x!u

What is the weakest precondition here? Fundamentally, we need to prove by induction
that the property we care about will generalize across an arbitrary number of loop iterations.
Thus, P is the base case, and we need some inductive hypothesis that is preserved when
executing loop body an arbitrary number of times. We commonly refer to this hypothesis as
a loop invariant, because it represents a condition that is always true (i.e. invariant) before and
after each execution of the loop.

Computing weakest preconditions on loops is very difficult on real languages. Instead,
we assume the provision of that loop invariant. A loop invariant must fulfill the following
conditions:

• P ñ I : The invariant is initially true. This condition is necessary as a base case, to
establish the induction hypothesis.

• tInv ^ bu S tInvu : Each execution of the loop preserves the invariant. This is the
inductive case of the proof.

1Recall that the operation rx1{xse denotes the capture-avoiding substitution of x1 for x in e; we rename bound
variables as we do the substitution so as to avoid conflicts.

69

• pInv ^ bq ñ Q : The invariant and the loop exit condition imply the postcondition.
This condition is simply demonstrating that the induction hypothesis/loop invariant we
have chosen is sufficiently strong to prove our postcondition Q.

The procedure outlined above only verifies partial correctness, because it does not reason
about how many times the loop may execute. Verifying full correctness involves placing an
upper bound on the number of remaining times the loop body will execute, typically called a
variant function, written v, because it is variant: we must prove that it decreases each time we go
through the loop. We mention this for the interested reader; we will not spend much time on it.

11.2.3 Proving programs

Assume a version of WHILE that annotates loops with invariants: whileinv b do S. Given such
a program, and associated pre- and post-conditions:

tP u S tQu

The proof strategy constructs a verification condition V CpSannot, Qq that we seek to prove
true (usually with the help of a theorem prover). V C is guaranteed to be stronger than
wppS,Qq but still weaker than P : P ñ V CpS,Qq ñ wppS,Qq We compute V C using a
verification condition generation procedure V CGen, which mostly follows the definition of
the wp function discussed above:

V CGenpskip, Qq � Q
V CGenpS1;S2, Qq � V CGenpS1, V CGenpS2, Qqq
V CGenpif b then S1 else S2, Qq � bñ V CGenpS1, Qq ^ bñ V CGenpS2, Qq
V CGenpx :� a,Qq � ra{xsQ

The one major point of difference is in the handling of loops:

V CGenpwhileinv b do S,Qq � Inv ^ p@x1...xn.Inv ñ pbñ V CGenpS, Invq ^ bñ Qqq

To see this in action, consider the following WHILE program:

r :� 1;
i :� 0;
while i m do

r :� r � n;
i :� i� 1

We wish to prove that this function computes the nth power of m and leaves the result in
r. We can state this with the postcondition r � nm.

Next, we need to determine a precondition for the program. We cannot simply compute
it with wp because we do not yet know the loop invariant is—and in fact, different loop in-
variants could lead to different preconditions. However, a bit of reasoning will help. We must
have m ¥ 0 because we have no provision for dividing by n, and we avoid the problematic
computation of 00 by assuming n ¡ 0. Thus our precondition will be m ¥ 0^ n ¡ 0.

A good heuristic for choosing a loop invariant is often to modify the postcondition of the
loop to make it depend on the loop index instead of some other variable. Since the loop index
runs from i to m, we can guess that we should replace m with i in the postcondition r � nm.
This gives us a first guess that the loop invariant should include r � ni.

70

This loop invariant is not strong enough, however, because the loop invariant conjoined
with the loop exit condition should imply the postcondition. The loop exit condition is i ¥ m,
but we need to know that i � m. We can get this if we add i ¤ m to the loop invariant. In
addition, for proving the loop body correct, we will also need to add 0 ¤ i and n ¡ 0 to the
loop invariant. Thus our full loop invariant will be r � ni ^ 0 ¤ i ¤ m^ n ¡ 0.

Our next task is to use weakest preconditions to generate proof obligations that will verify
the correctness of the specification. We will first ensure that the invariant is initially true when
the loop is reached, by propagating that invariant past the first two statements in the program:

tm ¥ 0^ n ¡ 0u
r :� 1;
i :� 0;
tr � ni ^ 0 ¤ i ¤ m^ n ¡ 0u

We propagate the loop invariant past i :� 0 to get r � n0^0 ¤ 0 ¤ m^n ¡ 0. We propagate
this past r :� 1 to get 1 � n0 ^ 0 ¤ 0 ¤ m^ n ¡ 0. Thus our proof obligation is to show that:

m ¥ 0^ n ¡ 0 ñ 1 � n0 ^ 0 ¤ 0 ¤ m^ n ¡ 0

We prove this with the following logic:

m ¥ 0^ n ¡ 0 by assumption
1 � n0 because n0 � 1 for all n ¡ 0 and we know n ¡ 0
0 ¤ 0 by definition of ¤
0 ¤ m because m ¥ 0 by assumption
n ¡ 0 by the assumption above
1 � n0 ^ 0 ¤ 0 ¤ m^ n ¡ 0 by conjunction of the above

To show the loop invariant is preserved, we have:

tr � ni ^ 0 ¤ i ¤ m^ n ¡ 0^ i mu
r :� r � n;
i :� i� 1;
tr � ni ^ 0 ¤ i ¤ m^ n ¡ 0u

We propagate the invariant past i :� i � 1 to get r � ni�1 ^ 0 ¤ i � 1 ¤ m ^ n ¡ 0. We
propagate this past r :� r �n to get: r �n � ni�1^ 0 ¤ i� 1 ¤ m^n ¡ 0. Our proof obligation
is therefore:

r � ni ^ 0 ¤ i ¤ m^ n ¡ 0^ i m
ñ r � n � ni�1 ^ 0 ¤ i� 1 ¤ m^ n ¡ 0

We can prove this as follows:

r � ni ^ 0 ¤ i ¤ m^ n ¡ 0^ i m by assumption
r � n � ni � n multiplying by n
r � n � ni�1 definition of exponentiation
0 ¤ i� 1 because 0 ¤ i
i� 1 m� 1 by adding 1 to inequality
i� 1 ¤ m by definition of ¤
n ¡ 0 by assumption
r � n � ni�1 ^ 0 ¤ i� 1 ¤ m^ n ¡ 0 by conjunction of the above

Last, we need to prove that the postcondition holds when we exit the loop. We have
already hinted at why this will be so when we chose the loop invariant. However, we can
state the proof obligation formally:

71

r � ni ^ 0 ¤ i ¤ m^ n ¡ 0^ i ¥ m
ñ r � nm

We can prove it as follows:

r � ni ^ 0 ¤ i ¤ m^ n ¡ 0^ i ¥ m by assumption
i � m because i ¤ m and i ¥ m
r � nm substituting m for i in assumption

72

Chapter 12

Satisfiability Modulo Theories

12.1 Motivation and Overview

Program analysis often makes use of techniques that generate and solve logical formulas.
For example, in Hoare-style verification, we used weakest preconditions and verification
conditions to generate formulas of the form P ñ Q. Usually P and Q have free variables x,
e.g. P could be x ¡ 3 and Q could be x ¡ 1. We want to prove, ideally automatically, that
P ñ Q no matter what x we choose, i.e. no matter what the model (an assignment from
variables to values) is. This is equivalent to saying P ñ Q is valid. We will see in subsequent
chapters how symbolic and concolic execution similarly generate sets of path conditions with
free variables, such as those that correspond to program inputs. We would like to determine
if such path conditions are feasible; we moreover would like to identify values for those free
variables, because that can help generate test inputs that cover particular program paths. SMT
solving addresses this type of problem. Although the general goal won’t be feasible for all
formulas, it is feasible for a useful subset of formulas.

Solving this problem begins by reducing general formula validity to another problem, that
of satisfiability. A formula F with free variable x is valid iff for all x, F is true. That’s the same
thing as saying there is no x for which F is false. But that’s furthermore the same as saying
there is no x for which F is true. This last formulation is asking whether F is satisfiable. It
turns out to be easier to seach for a single satisfying model (or prove there is none), then to
show that a formula is valid for all models.

Strictly speaking, satisfiability is for boolean formulas, or those that include boolean
variables as well as boolean operators such as ^,_, and . They may include quantifiers such
as @ and D, as well. But if we want to have variables over the integers or reals, and operations
over numbers (e.g. �,¡, the types of relations we’ve included even in our very simple WHILE

language), we need a solver for a theory, such as the theory of Presburger arithmetic (which
could prove that 2 � x � x � x), or the theory of arrays (which could prove that assigning
xrys to 3 and then looking up xrys yields 3). SMT solvers include a basic satisfiability checker,
and allow that checker to communicate with specialized solvers for those theories. This is the
meaning of the “Modulo Theories” in “Satisfiability Modulo Theories.”

12.2 DPLL for Boolean Satisfiability

In building to satisfiability modulo theories, we begin by discussing the problem of satisfia-
bility.

73

12.2.1 Boolean satisfiability (SAT)

Satisfiability decides whether a conjunction of literals in a theory is satisfiable. The “easiest”
theory is propositional logic. The problem of establishing satisfiability for boolean formulas
in propositional logic is referred to as SAT, and a decision procedure for it as a “SAT solver.”

We begin by transforming a formula F into conjuctive normal form (CNF)—i.e. a conjunction
of disjunctions of positive or negative literals. For example pa _ bq ^ p a _ cq ^ pb _ cq is
a CNF formula. If the formula is not already in CNF, we can put it into CNF by using De
Morgan’s laws, the double negative law, and the distributive laws:

 pP _Qq ðñ P ^ Q
 pP ^Qq ðñ P _ Q

 P ðñ P
pP ^ pQ_Rqq ðñ ppP ^Qq _ pP ^Rqq
pP _ pQ^Rqq ðñ ppP _Qq ^ pP _Rqq

The goal of the decision procedure is, given a formula, to say it is satisfiable; this can
be established by giving an example satisfying assignment. A satisfying assignment maps
variables to boolean values. So, X _ Y is satisfiable, and one satisfying assignment for it is
X ÞÑ true, Y ÞÑ false (there are other satisfying assignments as well). X ^ X , by contrast,
is not satisfiable.

The Cook-Levin theorem established that boolean satisfiability is NP-complete. In the
worst case, one can decide SAT for a given formula by simply trying all possible assignments.
For example, given:

DE.E (px_ y _ zq ^ p x_ yq ^ pzq

We can brute-force by conducting a backtracking search that tries all possible assignments
of true and false to x, y, z. There are 2n possible combinations in the worst case, where n is
the number of variables.

12.2.2 The DPLL Algorithm

The DPLL algorithm, named for its developers Davis, Putnam, Logemann, and Loveland,
is an efficient approach to deciding SAT. The DPLL algorithm improves on the backtracking
search with two innovations: unit propagation and pure literal elimination.

Let’s illustrate by example. Consider the following formula:

pb_ cq ^ paq ^ p a_ c_ dq ^ p c_ dq ^ p c_ d_ aq ^ pb_ dq

There is one clause with just a in it. This clause, like all other clauses, has to be true for
the whole formula to be true, so we must make a true for the formula to be satisfiable. We can
do this whenever we have a clause with just one literal in it, i.e. a unit clause. (Of course, if a
clause has just b, that tells us b must be false in any satisfying assignment). In this example,
we use the unit propagation rule to replace all occurrences of a with true. After simplifying,
this gives us:

pb_ cq ^ pc_ dq ^ p c_ dq ^ p c_ dq ^ pb_ dq

Now here we can see that b always occurs positively (i.e. without a in front of it). If
we set b to be true, that eliminates all occurrences of b from our formula, thereby making it
simpler—but it doesn’t change the satisfiability of the underlying formula. An analogous ap-
proach applies when a variable always occurs negatively. A literal that occurs only positively,
or only negatively, in a formula is called pure. Therefore, this simplification is called the pure
literal elimination rule, and applying it to the example above gives us:

74

pc_ dq ^ p c_ dq ^ p c_ dq

Now for this formula, neither of the above rules applies. We just have to pick a literal and
guess its value. Let’s pick c and set it to true. Simplifying, we get:

pdq ^ p dq

After applying the unit propagation rule (setting d to true) we get:

ptrueq ^ pfalseq

This didn’t work out! But remember, we guessed about the value of c. Let’s backtrack to
the formula where we made that choice:

pc_ dq ^ p c_ dq ^ p c_ dq

and now we’ll try things the other way, i.e. with c � false. Then we get the formula

pdq

because the last two clauses simplified to true once we know c is false. Now unit propaga-
tion sets d � true and then we have shown the formula is satisfiable. A real DPLL algorithm
would keep track of all the choices in the satisfying assignment, and would report back that a
is true, b is true, c is false, and d is true in the satisfying assignment.

This procedure—applying unit propagation and pure literal elimination eagerly, then
guessing a literal and backtracking if the guess goes wrong—is the essence of DPLL. Here’s
an algorithmic statement of DPLL, adapted slightly from a version on Wikipedia:

function DPLL(φ)
if φ � true then

return true
end if
if φ contains a false clause then

return false
end if
for all unit clauses l in φ do

φÐ UNIT-PROPAGATE(l, φ)
end for
for all literals l occurring pure in φ do

φÐ PURE-LITERAL-ASSIGN(l, φ)
end for
lÐ CHOOSE-LITERAL(φ)
return DPLL(φ^ l) _ DPLL(φ^ l)

end function
Mostly the algorithm above is straightforward, but there are a couple of notes. First,

why does the algorithm do unit propagation before pure literal assignment? It’s good to do
unit propagation first because it can create additional opportunities to apply further unit
propagation as well as pure literal assignment. On the other hand, pure literal assignment will
never create unit literals that didn’t exist before: pure assignment can eliminate entire clauses,
but never makes an existing clause shorter.

Secondly, the last line implements backtracking. We assume a short-cutting _ operation at
the level of the algorithm. So if the first recursive call to DPLL returns true, so does the current
call–but if it returns fall, we invoke DPLL with the chosen literal negated, which effectively
backtracks.

75

Exercise 1. Apply DPLL to the following formula, describing each step (unit propagation,
pure literal elimination, choosing a literal, or backtracking) and showing now it affects the
formula until you prove that the formula is satisfiable or not:

pa_ bq ^ pa_ cq ^ p a_ cq ^ pa_ cq ^ p a_ cq ^ p dq

There is a lot more to learn about DPLL, including hueristics for how to choose the literal l
to be guessed and smarter approaches to backtracking (e.g. non-chronological backtracking),
but in this class, let’s move on to consider SMT.

12.3 Solving SMT Problems

The approach above targets formulas in the theory of propositional logic. However, there
are many other possibly useful theories, and useful formulas may mix them. For example,
consider a conjunction of the following formulas:1

fpfpxq � fpyqq � a ^
fp0q � a� 2 ^
x � y

This problem mixes linear arithmetic with the theory of uninterpreted functions (here, f is
some unknown function). We may have a satisfiability procedure for each theory involved in
the formula, but how can we deal with their combination? Note that we can’t in general just
separate out the terms from each theory in a formula to see if they are separately satisfiable,
because multiple satisfying assignments might not be compatible. Instead, we handle each
domain separately (as a theory), and then combine them all together using DPLL and SAT as
the “glue”.

12.3.1 Definitions

A satisfiability modulo theories (SMT) solver operates on propositions involving both logical
terms and terms from theories (defined below). Effectively, such solvers replace all the theory
clauses in a mixed-theory formula with special propositional variables, and then use a pure
SAT solver to solve the result. If the solution involves any of the theory clauses, the solver
asks the theory if they can all be true. If not, new constraints are added to the formula, and
the process repeats.

In general, a theory is a set of sentences (syntax) with a deductive system that can determine
satisfiability (semantics). Usually, the set of sentences is formally defined by a grammar of
terms over atoms. The satisfying assignment (or model, or interpretation) maps literals (terms
or negated terms) to booleans. Useful theories include linear and non-linear arithmetic,
bitvectors, arrays, quantifiers, or strings, as well as uninterpreted functions (like f in our
example above).

An important feature of the kinds of theories we are discussing is that they all understand
equality. We do not delve deeply into how/why in these notes, but the fact is important to
how SMT can solve formulas that mix theories, as we will see below.

12.3.2 Basic SMT idea, illustrated

We will work through our example above to demonstrate the ideas behind SMT. The first
step is to separate the multiple theories. We can do this by replacing expressions with fresh
variables, in a procedure named Nelson-Oppen after its two inventors. For example, in the

1This example is due to Oliveras and Rodriguez-Carbonell

76

first formula, we’d like to factor out the subtraction, so we generate a fresh variable and divide
the formula into two:

fpe1q � a // in the theory of uninterpreted functions now
e1 � fpxq � fpyq // still a mixed formula

Now we want to separate out fpxq and fpyq as variables e2 and e3, so we get:

e1 � e2� e3 // in the theory of arithmetic now
e2 � fpxq // in the theory of uninterpreted functions
e3 � fpyq // in the theory of uninterpreted functions

We can do the same for fp0q � a� 2, yielding:

fpe4q � e5
e4 � 0
e5 � a� 2

We now have formulas in two theories. First, formulas in the theory of uninterpreted
functions:

fpe1q � a
e2 � fpxq
e3 � fpyq
fpe4q � e5
x � y

And second, formulas in the theory of arithmetic:

e1 � e2� e3
e4 � 0
e5 � a� 2
x � y

Notice that x � y is in both sets of formulas (remember, all theories understand equality).
First, however, let’s run a solver. The solver for uninterpreted functions has a congruence
closure rule that states, for all f, x, and y, if x � y then fpxq � fpyq. Applying this rule (since
x � y is something we know), we discover that fpxq � fpyq. Since fpxq � e2 and fpyq � e3,
by transitivity we know that e2 � e3.

But e2 and e3 are symbols that the arithmetic solver knows about, so we add e2 � e3 to the
set of formulas we know about arithmetic. Now the arithmetic solver can discover that e2 �
e3 � 0, and thus e1 � e4. We communicate this discovered equality to the uninterpreted func-
tions theory, and then we learn that a � e5 (again, using congruence closure and transitivity).

This fact goes back to the arithmetic solver, which evaluates the following constraints:

e1 � e2� e3
e4 � 0
e5 � a� 2
x � y
e2 � e3
a � e5

Now there is a contradiction: a � e5 but e5 � a � 2. That means the original formula is
unsatisfiable.

In this case, one theory was able to infer equality relationships that another theory could
directly use. But sometimes a theory doesn’t figure out an equality relationship, but only

77

certain correlations, e.g., e1 is either equal to e2 or e3. In the more general case, we can simply
generate a formula that represents all possible equalities between shared symbols, which
would look something like:

pe1 � e2_ e1 � e2q ^ pe2 � e3_ e2 � e3q ^ pe1 � e3_ e1 � e3q ^ ...

We can now look at all possible combinations of equalities. In fact, we can use DPLL to
do this, and DPLL also explains how we can combine expressions in the various theories with
boolean operators such as ^ and _. If we have a formula such as:2

x ¥ 0^ y � x� 1^ py ¡ 2_ y 1q

We can then convert each arithmetic (or uninterpreted function) formula into a fresh
propositional symbol, to get:

p1^ p2^ pp3_ p4q

and then run a SAT solver using DPLL. DPLL will return a satisfying assignment, such as
p1, p2, p3, p4. We then check this against each of the theories. In this case, the theory of arith-
metic finds a contradiction: p1, p2, and p4 can’t all be true, because p1 and p2 together imply
that y ¥ 1. We add a clause saying that these can’t all be true and give it back to the SAT solver:

p1^ p2^ pp3_ p4q ^ p p1_ p2_ p4q

Running DPLL again gives us p1, p2, p3, p4. We check this against the theory of
arithmetic, and it all works out.

12.3.3 DPLL(T)

This use of DPLL parameterized with respect to a set of theories T is called DPLL(T) or
(DPLL-T), and it is an SMT algorithm. At a high level, DPLL(T) works as we illustrated above:
it converts mixed constraints to boolean constraints and then runs DPLL, and then checks the
resulting assignments with the underlying theories to determine if they are valid. The version
of DPLL used in DPLL(T) has two key changes compared to the original, however.

First, DPLL(T) does not use the pure variable elimination optimization. This is because,
in pure propositional logic, variables are necessarily independent. If some variable x only
appears positively, you can set it to true and save time. With theories, variables may be
dependent. For example, consider

px ¡ 10_ x 3q ^ px ¡ 10_ x 9q ^ px 7q

In the above, x ¡ 10, but if we just set that term to be true as part of the model, the other
terms all become false. We cannot simply skip over it.

Second, unit propagation interacts with the theories to add constraints to the formula when
available. We saw this example above, when the theory of arithmetic found a contradiction in
a satisfying assignment to the formula

p1^ p2^ pp3_ p4q

and the solving procedure added a clause to the formula before giving it back to the SAT
solver.

2If we had multiple theories, I am assuming we’ve already added the equality constraints between them, as
described above.

78

12.3.4 Bonus: Arithmetic solvers

We discussed above how the solver for the theory of uninterpreted functions work; how does
the arithmetic solver work? In cases like the above example where we assert formulas of the
form y � x � 1, we can eliminate y by substituting it with x � 1 everywhere. In the cases
where we only constrain a variable using inequalities, there is a more general approach called
Fourier-Motzkin Elimination. In this approach, we take all inequalities that involve a variable
x and transform them into one of the following forms:

A ¤ x
x ¤ B

where A and B are linear formulas that don’t include x. We can then eliminate x, replacing
the above formulas with the equation A ¤ B. If we have multiple formulas with x on the
left and/or right, we just conjoin the cross product. There are various optimizations that are
applied in practice, but the basic algorithm is general and provides a broad understanding of
how arithmetic solvers work.

79

Chapter 13

Symbolic Execution

13.1 Overview

In previous lectures, we developed axiomatic semantics as a way to represent a program
meaning in terms of what is true after code executes. We used weakest preconditions (versus
strongest postconditions) to prove program properties (that is, that some property Q is true
after S executes, assuming P is true before it executes). However, because weakest precondi-
tions are typically infeasible to compute, we further extended our language to include loop
invariants, and used them to compute verification conditions to verify program properties.

13.1.1 Forward Verification Condition Intuition

Revisiting the verification condition generation procedure, recall that it effectively works
backwards (which should make sense, given our intuition regarding weakest preconditions).
This is visible in the way the recursive calls to V CGen worked. Consider computing the VC
for a sequence of assignments with respect to some post condition Q:

tP u
x :� e1
x :� e2
tQu

But what if instead, we went forwards, after all? We could get a proof obligation of the form:

@xn : prx0{xsP ^ x1 � rx0{xse1 ^ x2 � prx1{xse2qq ñ rx2{xsQ

We use fresh mathematical variables xi each time the value of the mutable program var x is
updated. For example, to prove the following:

tx ¡ 0u
x :� x � 2
x :� x� 1
tx ¡ 1u

we need to show that:

@x0, x1, x2 P Z : px0 ¡ 0^ x1 � x0 � 2^ x2 � x1 � 1q ñ x2 ¡ 1

Computing a verification conditions forwards is conducted using a technique known
as symbolic execution. Symbolic execution is a general technique that executes a program
abstractly, so that one abstract execution covers multiple possible inputs of the program
that share a particular execution path through the code. We introduce it as a mechanism to

80

generate verification conditions; one benefit of symbolic execution is that it makes axiomatic
semantics practical. However, it can also be viewed as a way to generalize testing, automate
testing, and find bugs in programs (as we will see).

Things get a bit more complicated when dealing with conditional branching. Consider:

ttrueu
if px 0q :

y :� �x
else :

y :� x
ty ¥ 0u

One option is to traverse each program path independently and generate distinct
verification conditions. If all of them can be proven to be true, then the program is correct:

@x0, y0 P Z : px0 0^ y0 � �x0q ñ y0 ¥ 0

@x0, y0 P Z : px0 ¥ 0^ y0 � x0q ñ y0 ¥ 0

Another option is to combine these conditions into one formula by merging information
at join points; that is, when the two branches of the if-else come together. Verification reduces
to showing that the following formula is true:

@x0, y0 P Z : ppx0 0 ñ y0 � �x0q _ px0 ¥ 0 ñ y0 � x0qq ñ y0 ¥ 0

The former strategy is often referred to as dynamic symbolic execution (DSE) while the latter
is static symbolic execution (SSE) [2, 31]. The advantage of SSE is that formulas can often be
made compact by removing redundancies (e.g. for variables that don’t get modified along
either conditional branch) and making other algebraic simplifications across paths. However,
DSE retains provenance; if any of the verification conditions don’t hold true, then it is easy
to determine the execution path along which an error occurs (and find a corresponding
input). Further, DSE lends itself well to performing under-approximate analysis when dealing
external library calls and loops with symbolic bounds.

13.1.2 Formalizing Forward VCGen

We can define forward verification condition generation in terms of symbolically evaluating
the program, using the same kinds of big-step rules we used for operational semantics. This
makes it easier to understand how verification conditions propagate along multiple program
paths and uses symbolic environments to track the formulas for mutable variables (which
mechanizes the generation of ”fresh” mathematical variables).

Symbolic expressions. We start by defining symbolic analogs for arithmetic expressions
and boolean predicates. We will call symbolic predicates guards and use the metavariable g,
as these will turn into guards for paths the symbolic evaluator explores. These analogs are the
same as the ordinary versions, except that in place of variables we use symbolic constants:

g ::� true as ::� α
| false | n
| not g | as1 opa as2
| g1 opb g2
| as1 opr as2

81

Next, we generalize the notion of the environment Σ, so that variables refer not just to
integers but to symbolic expressions:

Σ P Var Ñ as

Big-step rules for the symbolic evaluation of expressions results in symbolic expressions.
Since we don’t have actual values in many cases, the expressions won’t evaluate, but variables
will be replaced with symbolic constants. That is, we obtain a symbolic expression from a
concrete expression e by replacing all variables x in e with their values in the current symbolic
state Σ. When these values are concrete, we use the concrete values; if not, we replace
variables with symbolic constants:

xΣ, ny ó n
big-int

xΣ, xy ó Σpxq
big-var

xΣ, a1y ó as1 xΣ, a2y ó as2

xΣ, a1 � a2y ó as1 � as2
big-add

Dynamic symbolic execution (DSE) of statements. We can likewise define rules for state-
ment evaluation. These rules update not only the environment Σ, but also a path guard g
associated with that state:

xg,Σ, skipy ó xg,Σy
big-skip

xg,Σ, s1y ó xg
1,Σ1y xg1,Σ1, s2y ó xg

2,Σ2y

xg,Σ, s1; s2y ó xg
2,Σ2y

big-seq

xΣ, ay ó as

xg,Σ, x :� ay ó xg,Σrx ÞÑ assy
big-assign

xΣ, by ó g1 g ^ g1SAT xg ^ g1,Σ, s1y ó xg
2,Σ1y

xg,Σ, if b then s1 else s2, y ó xg
2,Σ1y

big-iftrue

xΣ, by ó g1 g ^ g1SAT xg ^ g1,Σ, s2y ó xg
2,Σ1y

xg,Σ, if b then s1 else s2, y ó xg
2,Σ1y

big-iffalse

The rules for skip, sequence, and assignment are compositional in the expected way. The
rules for if are more interesting. Here, we evaluate the condition to a symbolic predicate g1.
In the true case, we use a SMT solver to verify that the guard is satisfiable when conjoined
with the existing path condition. If that’s the case, we continue by evaluating the true branch
symbolically. The false case is analogous.

Doing this produces a symbolic state and a path condition or guard that describes that
state. In practice, however, multiple states or paths are possible given symbolic inputs,
and so in the general case, dynamic symbolic execution in fact produces a tree of possible
paths/symbolic states guarded by path conditions that lead to them.

82

Static symbolic execution (SSE) of statements As noted earlier, SSE merges symbolic
formulas at join points. We won’t write out all the rules for SSE here, but most of them are
similar to that of DSE with the main exception of big-seq which handles the sequence of
statements s1; s2. For static symbolic execution, we would consider all possible xg1,Σ1y such
that xg,Σ, s1y ó xg1,Σ1y, and merge these symbolic environments together before propagating
them to s2. How does merging work? Consider the merge of xg1,Σ1y with xg2,Σ1y to result
in Σmerged. The merging introduces fresh symbolic variables αx corresponding to each x
such that Σ1pxq � Σ2pxq; then sets Σmergedpxq � αx; and then adds to the path constraints
pg1 ñ αx � Σ1pxqq _ pg2 ñ αx � Σ2pxqq to the original constraint g. All other mappings that
are common in Σ1 and Σ2 are propagated as-is in Σmerged.

Loops. Speaking of multiple paths: what about loops? The simplest way to handle while is
analogous to if, above, but this will lead to a potentially infinite number of paths if the loop
conditions contain symbolic formulas that are always feasible. Practical DSE tools (such as
what is used in industry, discussed below) typically choose to symbolically “execute” loops
up to k times (where k is usually no more than 1 or 2). This approach is particularly applicable
if the goal is to find bugs or symbolically enumerate as many paths through the program as
possible, especially on real-world code without loop invariants.

k ¡ 0 xΣ, by ó g1 g ^ g1SAT xg ^ g1,Σ, s; whilek�1 b do sy ó xg
2,Σ1y

xg,Σ, whilek b do s, y ó xg
2,Σ1y

big-whiletrue

xΣ, by ó g1 g ^ g1SAT

xg,Σ, whilek b do s, y ó xg ^ g
1,Σy

big-whilefalse

In this formulation, we assume that all loops in the program are syntactically annotated with
a limit k (this may be a program-wide constant or be user-defined per loop). When k ¡ 0,
the rule big-whiletrue first checks if the loop condition is feasible, and if so it analyzes the
loop body and recursively subsequent iterations of the loop with a limit k � 1. Each time the
loop is analyzed, the rule big-whilefalse considers the case where the loop condition may be
false, and if this is feasible, simply propagates the symbolic environment and resulting path
condition. Note that when k � 0, we do not consider the case that the loop body executes
further. This form of k-limited symbolic execution is unsound for verification and incomplete
for bug finding.

In SSE, when we do have loop invariants1, we can incorporate them into the verification
condition no more than twice: once, the first time the loop invariant is encountered, and again
for an “arbitrary” loop iteration. For this arbitrary iteration, we determine which variables
could possibly be modified on the path back to the invariant through the loop (how might
we do this?). Then, we quantify over a new set of symbolic values for all of those variables
(setting them to “arbitrary” values).2 Static symbolic execution can then proceed through the
while loop to the rest of the program.

13.2 Symbolic Execution as a Generalization of Testing

Symbolic execution3 is fundamentally a way to generalize testing. A test involves executing
a program concretely on one specific input, and checking the results. In contrast, symbolic

1Note that some approaches or languages for verification support arbitrary invariant annotation to help prune
paths or render the verification problem simpler; the approach is the same.

2This approach can be similarly applied to extend symbolic execution to function calls.
3The general term “symbolic execution” will refer to DSE hereon and whenever used without qualification.

83

execution considers how the program executes abstractly on a family of related inputs.

13.2.1 Illustration

Consider the following code example, where a, b, and c are user-provided inputs:

1 int x=0, y=0, z=0;
2 if(a) {
3 x = -2;
4 }
5 if (b < 5) {
6 if (!a && c) { y = 1; }
7 z = 2;
8 }
9 assert(x + y + z != 3);

Question: What is an example input that will lead this assertion to fail? What path is it associated
with?

If we are good (or lucky) testers, we can stumble upon a combination of inputs that
triggers the assertion to fail, and then generalize to the combination of input spaces that will
lead to it (and hopefully fix it!).

Symbolic execution effectively inverts this process by describing the paths through the
program symbolically. Instead of executing the code on concrete inputs (like a = 1, b = 2, and
c = 1), it instead tracks execution in terms of symbolic inputs a � α, b � β, c � γ. If a branch
condition ever depends on unknown symbolic values, the symbolic execution engine simply
chooses one branch to take, recording the condition on the symbolic values that would lead to
that branch. We can split the state, and use a worklist algorithm to make sure we come back to
the other branch.

For example, consider abstractly executing a path through the program above, keeping
track of the (potentially symbolic) values of variables, and the conditions that must be true
in order for us to take that path. We can write this in tabular form, showing the values of the
path condition g and symbolic environment E after each line:

line g E

0 true a ÞÑ α, b ÞÑ β, c ÞÑ γ
1 true . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0
2 α . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0
5 α^ β ¥ 5 . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0
9 α^ β ¥ 5^ 0� 0� 0 � 3 . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0

In the example, we arbitrarily picked the path where the abstract value of a, i.e. α, is false,
and the abstract value of b, i.e. β, is not less than 5. We build up a path condition out of these
boolean predicates as we hit each branch in the code. The assignment to x, y, and z updates
the symbolic state E with expressions for each variable; in this case we know they are all equal
to 0. At line 9, we treat the assert statement like a branch. In this case, the branch expression
evaluates to 0� 0� 0 � 3 which is true, so the assertion is not violated.

Now, we can run symbolic execution again along another path (this style of analysis
should feel familiar; note that I haven’t given you termination guarantees, however, unlike
in abstract interpretation! That’s where the slacker vs. non-slacker debate comes back in...).
We can do this multiple times, until we explore all paths in the program (exercise to the reader:
how many paths are there in the program above?) or we run out of time. If we continue doing this,
eventually we will explore the following path:

84

line g E

0 true a ÞÑ α, b ÞÑ β, c ÞÑ γ
1 true . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0
2 α . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0
5 α^ β 5 . . . , x ÞÑ 0, y ÞÑ 0, z ÞÑ 0
6 α^ β 5^ γ . . . , x ÞÑ 0, y ÞÑ 1, z ÞÑ 0
6 α^ β 5^ γ . . . , x ÞÑ 0, y ÞÑ 1, z ÞÑ 2
9 α^ β 5^ p0� 1� 2 � 3q . . . , x ÞÑ 0, y ÞÑ 1, z ÞÑ 2

Along this path, we have α ^ β 5. This means we assign y to 1 and z to 2, meaning
that the assertion 0� 1� 2 � 3 on line 9 is false. Symbolic execution has found an error in the
program!

13.2.2 Symbolic Execution History and Industrial Use

Symbolic execution was originally proposed (as a way to generalize testing) in the 1970s [5, 18],
but it relied on automated theorem proving, and the algorithms and hardware of that period
weren’t ready for widespread use. With recent advances in SAT/SMT solving and four
decades of Moore’s Law applied to hardware, symbolic execution is now practical in many
more situations, and is used extensively in program analysis research as well as some
emerging industry tools. One of the most prominent examples is the use of the PREfix to find
errors in C/C++ code within Microsoft; the Klee symbolic execution engine is well known in
open source and research contexts.

Of course, programs with loops have infinite numbers of paths, so exhaustive symbolic
execution is not possible. Instead, tools take heuristics, as discussed above. To avoid analyzing
complex library code, symbolic executors may use an abstract model of libraries. So, in its
most common practical formulations, which uses heuristics scalability and termination,
symbolic execution is typically less general than abstract interpretation. However, symbolic
execution can often avoid approximating in places where AI must approximate to ensure
termination. This means that symbolic execution can avoid giving false warnings; any error
found by symbolic execution represents a real, feasible path through the program, and (as we
will see) can be witnessed with a test case that illustrates the error.

13.3 Optional: Heap Manipulating Programs

We can extend the idea of symbolic execution to heap-manipulating programs. Consider the
following extensions to the grammar of arithmetic expressions and statements, supporting
memory allocation with malloc as well as dereferences and stores:

a ::� . . . | �a | malloc
S ::� . . . | �a :� a

Now we can define memories as a basic memory µ that can be extended based on stores
into the heap. The memory is modeled as an array, which allows SMT solvers to reason about
it using the theory of arrays:

m ::� µ | mras ÞÑ ass

Finally, we extend symbolic expressions to include heap reads:

as ::� . . . | mrass

Now we can define extended version of the arithmetic expression and statement execution
semantics that take (and produce, in the case of statements) a memory:

85

α R Σ,m

xΣ,malloc,my ó α
big-malloc

xΣ, a,my ó as

xΣ, �a,my ó mrass
big-deref

xΣ, a,my ó as xΣ, a1,my ó a1s
xg,Σ,m, �a :� a1y ó xg,Σ,mras ÞÑ a1ssy

big-store

86

Chapter 14

Concolic Testing

14.1 Introduction

We have discussed symbolic execution from two perspectives: as a method for forward
verification condition generation, as well as a method that generalizes testing. We will
continue to focus on this latter perspective by discussing key approaches that have allowed
symbolic execution to find real bugs in practice.

14.1.1 Motivation

Companies today spend a huge amount of time and energy testing software to determine
whether it does the right thing, and to find and then eliminate bugs. A major challenge is
writing adequate test cases that cover all of the source code, as well as finding inputs that lead
to difficult-to-trigger corner case defects.

Symbolic execution is a promising approach to exploring different execution paths through
programs. However, it has significant limitations. For paths that are long and involve many
conditions, SMT solvers may not be able to find satisfying assignments to variables that lead
to a test case that follows that path. Other paths may be short but involve computations
that are outside the capabilities of the solver, such as non-linear arithmetic or cryptographic
functions. For example, consider the following function:

1 testme(int x, int y){
2 if(bbox(x)==y){
3 ERROR;
4 } else {
5 // OK
6 }
7 }

If we assume that the implementation of bbox is unavailable, or is too complicated for
a theorem prover to reason about, then symbolic execution may not be able to determine
whether the error is reachable.

14.1.2 Statically modeling functions

We have several options for symbolically executing a program with functions (like the one
we developed for interprocedural dataflow analysis). Inlining is somewhat more practical
here as we are not computing fixpoints. We can also simply symbolically execute the called
methods, too; because we are not joining abstract state over multiple possible paths, we do
not immediately lose precision as we would in interprocedural abstract interpretation.

If we continue to operate in a language with pre and postconditions specified at the func-
tion level (as we assumed in Hoare-Style verification), we can also use those to model function

87

behavior statically. Assuming pre- and post-conditions encoded in the same expression
language as guards, epre and epost:

xepost,Σy ó apost

xg,Σ, returny ó xapost,Σy
big-return

Question: what about function calls? Note that if the language involves heap-manipulation, this
question becomes more or less difficult!

At some point, however, symbolic execution will reach the “edges” of the application:
a library, system, or assembly code call. For certain libraries, a simpler version is available
(such as libc implemented for embedded systems). Other tools allow custom code models,
such as the implementation of a ramdisk to model kernel fs code. This is of course very labor
intensive. Even when this code can be pulled in and executed symbolically, there are times
that the code is simply too complicated to be tractably reasoned about statically, such as if it
involves non-linear arithmetic.

The challenges of fully statically symbolically executing all code directly motivate concolic
testing. Concolic testing combines concrete execution (i.e. testing) with symbolic execution.1

14.1.3 Goals

We will consider the specific goal of automatically unit testing programs to find assertion
violations and run-time errors such as divide by zero. We can reduce these problems to input
generation: given a statement s in program P , compute input i such that P piq executes s.2 For
example, if we have a statement assert x > 5, we can translate that into the code:

1 if (!(x > 5))
2 ERROR;

Now if line 2 is reachable, the assertion is violated. We can play a similar trick with run-time
errors. For example, a statement involving division x = 3 / i can be placed under a guard:

1 if (i != 0)
2 x = 3 / i;
3 else
4 ERROR;

14.2 Concolic execution overview

In concolic execution, symbolic execution is used to solve for inputs that lead along a certain
path. However, when a part of the path condition is infeasible for the SMT solver to handle,
we substitute values from a test run of the program. In many cases, this allows us to make
progress towards covering parts of the code that we could not reach through either symbolic
execution or randomly generated tests.

Consider the testme example from the motivating section. Although symbolic analysis
cannot solve for values of x and y that allow execution to reach the error, we can generate
random test cases. These random test cases are unlikely to reach the error: for each x there
is only one y that will work, and random input generation is unlikely to find it. However,
concolic testing can use the concrete value of x and the result of running bbox(x) in order
to solve for a matching y value. Running the code with the original x and the solution for y
results in a test case that reaches the error.

In order to understand how concolic testing works in detail, consider a more realistic and
more complete example:

1The word concolic is a portmanteau of concrete and symbolic
2This formulation is due to Wolfram Schulte

88

1 int double (int v) {
2 return 2*v;
3 }
4
5 void bar(int x, int y) {
6 z = double (y);
7 if (z == x) {
8 if (x > y+10) {
9 ERROR;

10 }
11 }
12 }

We want to test the function bar. We start with random inputs such as x � 22, y � 7. We
then run the test case and look at the path that is taken by execution: in this case, we compute
z � 14 and skip the outer conditional. We then execute symbolically along this path. Given
inputs x � x0, y � y0, we discover that at the end of execution z � 2 � y0, and we come up
with a path condition 2 � y0 � x0.

In order to reach other statements in the program, the concolic execution engine picks a
branch to reverse. In this case there is only one branch touched by the current execution path;
this is the branch that produced the path condition above. We negate the path condition to get
2 � y0 �� x0 and ask the SMT solver to give us a satisfying solution.

Assume the SMT solver produces the solution x0 � 2, y0 � 1. We run the code with that
input. This time the first branch is taken but the second one is not. Symbolic execution returns
the same end result, but this time produces a path condition 2 � y0 �� x0 ^ x0 ¤ y0 � 10.

Now to explore a different path we could reverse either test, but we’ve already explored
the path that involves negating the first condition. So in order to explore new code, the
concolic execution engine negates the condition from the second if statement, leaving the
first as-is. We hand the formula 2 � y0 �� x0 ^ x0 ¡ y0 � 10 to an SMT solver, which produces
a solution x0 � 30, y0 � 15. This input leads to the error.

The example above involves no problematic SMT formulas, so regular symbolic execution
would suffice. The following example illustrates a variant of the example in which concolic
execution is essential:

1 int foo(int v) {
2 return v*v%50;
3 }
4
5 void baz(int x, int y) {
6 z = foo(y);
7 if (z == x) {
8 if (x > y+10) {
9 ERROR;

10 }
11 }
12 }

Although the code to be tested in baz is almost the same as bar above, the problem is
more difficult because of the non-linear arithmetic and the modulus operator in foo. If we
take the same two initial inputs, x � 22, y � 7, symbolic execution gives us the formula
z � py0 � y0q%50, and the path condition is x0 � py0 � y0q%50. This formula is not linear in the
input y0, and so it may defeat the SMT solver.

We can address the issue by treating foo, the function that includes nonlinear computa-
tion, concretely instead of symbolically. In the symbolic state we now get z � foopy0q, and
for y0 � 7 we have z � 49. The path condition becaomse foopy0q � x0, and when we negate
this we get foopy0q �� x0, or 49 �� x0. This is trivially solvable with x0 �� 49. We leave
y0 � 7 as before; this is the best choice because y0 is an input to foopy0q so if we change it, then

89

setting x0 � 49 may not lead to taking the first conditional. In this case, the new test case of
x � 49, y � 7 finds the error.

14.3 Implementation

Ball and Daniel [3] give the following pseudocode for concolic execution (which they call
dynamic symbolic execution):
1 i = an input to program P
2 while defined(i):
3 p = path covered by execution P(i)
4 cond = pathCondition(p)
5 s = SMT(Not(cond))
6 i = s.model()

Broadly, this just systematizes the approach illustrated in the previous section. However,
a number of details are worth noting:

First, when negating the path condition, there is a choice about how to do it. As discussed
above, the usual approach is to put the path conditions in the order in which they were
generated by symbolic execution. The concolic execution engine may target a particular
region of code for execution. It finds the first branch for which the path to that region diverges
from the current test case. The path conditions are left unchanged up to this branch, but the
condition for this branch is negated. Any conditions beyond the branch under consideration
are simply omitted. With this approach, the solution provided by the SMT solver will result in
execution reaching the branch and then taking it in the opposite direction, leading execution
closer to the targeted region of code.

Second, when generating the path condition, the concolic execution engine may choose
to replace some expressions with constants taken from the run of the test case, rather than
treating those expressions symbolically. These expressions can be chosen for one of several
reasons. First, we may choose formulas that are difficult to invert, such as non-linear arith-
metic or cryptographic hash functions. Second, we may choose code that is highly complex,
leading to formulas that are too large to solve efficiently. Third, we may decide that some code
is not important to test, such as low-level libraries that the code we are writing depends on.
While sometimes these libraries could be analyzable, when they add no value to the testing
process, they simply make the formulas harder to solve than they are when the libraries are
analyzed using concrete data.

14.4 Concolic Path Condition Soundness

Concolic execution is motivated by the presence of subexpressions within a path condition
that are difficult for a SMT solver to reason about. The key idea of concolic execution is to
replace these subexpressions with appropriate concrete values. Where possible, we would
like this replacement to be sound. Intuitively, a replacement is sound if any solution to the new
path condition is also a solution to the old one. This means that even after the substitution,
concolic execution will successfully drive the program down the desired path. Let’s make this
idea more formal.

Let g be a negated path condition. Let M be a map from symbolic constants α to integers
n. We write rM sg for the boolean expression we get by substituting all the symbolic constants
in g with the corresponding integer values given in M ; this is only defined if the free symbolic
constants FCpgq are the same as domainpMq. We define rM sas similarly for substitution of
symbolic constants with values in arithmetic expressions.

Given g and a map M that represents the inputs to a concrete test case execution, concolic
execution may replace a subexpression as of g with the concrete value n achieved in testing.

90

Note that n � rM sas. Let the new guard be g1 � rn{assg (again, we consider this after negating
the last constraint in the path).

We say that g1 is a sound concolic path condition if for all alternative test inputs
M 1 such that rM 1sg1 is true, we have rextendpM 1,Mqsg true. Here, the extend func-
tion extends the symbolic constants in M 1 with any that are necessary to match the
domain of M . More precisely, @α1 P domainpM 1q, extendpM 1,Mqrα1s � M 1rα1s and
@α P pdomainpMq � domainpM 1qq, extendpM 1,Mqrαs �M rαs.

In class we saw an example of a path condition g and a sound concolic replacement g1

for it. In particular, g was x0 �� py0 � y0q%50 after negation and g1 was x0 �� 49 after
negation. This is trivially sound because the only solution is x0 �� 49, which when extended
with y0 �� 7 from the original test case yields a new test input that fulfills the original path
condition x0 �� py0 � y0q%50.

As an exercise:

• Give an example path condition g, test input M , and concolic path condition g1 resulting
from replacing a subexpression as of g with a concrete value n � rM sas, such that g1 is
unsound.

• Witness the unsoundness by also providing a test input M 1 that satisfies g1 but not g.

• Give a condition on g,M, g1 and/or as that is sufficient to ensure that g1 is sound.

• Prove that your condition is sufficient for soundness.

14.5 Acknowledgments

The structure of these notes and the examples are adapted from a presentation by Koushik Sen.

91

Chapter 15

Program Synthesis

Note: A complete, if lengthy, resource on inductive program synthesis is the book “Program
Synthesis” by Gulwani et. al [12]. You need not read the whole thing; I encourage you to
investigate the portions of interest to you, and skim as appropriate. Many references in this
document are drawn from there; if you are interested, it contains many more.

15.1 Program Synthesis Overview

The problem of program synthesis can be expressed as follows:

DP . @x . ϕpx, P pxqq

In the setting of constructive logic, proving the validity of a formula that begins with an
existential involves coming up with a witness, or concrete example, that can be plugged into
the rest of the formula to demonstrate that it is true. In this case, the witness is a program
P that satisfies some specification ϕ on all inputs. We take a liberal view of P in discussing
synthesis, as a wide variety of artifact types have beeen successfully synthesized (anything
that reads inputs or produces outputs). Beyond (relatively small) program snippets of the
expected variety, this includes protocols, interpreters, classifiers, compression algorithms or
implementations, scheduling policies, and cache coherence protocols for multicore processors.
The specification ϕ is an expression of the user intent, and may be expressed in one of several
ways: a formula, a reference implementation, input/output pairs, traces, demonstrations, or
a syntactic sketch, among other options.

Program synthesis can thus be considered along three dimensions:

(1) Expressing user intent. User intent (or ϕ in the above) can be expressed in a number of
ways, including logical specifications, input/output examples [8] (often with some kind of
user- or synthesizer-driven interaction), traces, natural language [6, 11, 19], or full- or partial
programs [33]. In this latter category lies reference implementations, such as executable
specifications (which give the desired output for a given input) or declarative specifications
(which check whether a given input/output pair is correct). Some synthesis techniques
allow for multi-modal specifications, including pre- and post- conditions, safety assertions at
arbitrary program points, or partial program templates.

Such specifications can constrain two aspects of the synthesis problem:

• Observable behavior, such as an input/output relation, a full executable specification
or safety property. This specifies what a program should compute.

• Structural properties, or internal computation steps. These are often expressed as a
sketch or template, but can be further constrained by assertions over the number or va-
riety of operations in a synthesized programs (or number of iterations, number of cache

92

misses, etc, depending on the synthesis problem in question). Indeed, one of the key
principles behind the scaling of many modern synthesis techniques lie in the way they
syntactically restrict the space of possible programs, often via a sketch, grammar, or DSL.

.
Note that basically all of the above types of specifications can be translated to constraints

in some form or another. Techniques that operate over multiple types of specifications can
overcome various challenges that come up over the course of an arbitrary synthesis problem.
Different specification types are more suitable for some types of problems than others.
In addition, trace- or sketch-based specifications can allow a synthesizer to decompose a
synthesis problems into intermediate program points.

Question: how many ways can we specify a sorting algorithm?

(2) Search space of possible programs. The search space naturally includes programs, often
constructed of subsets of normal programming languages. This can include a predefined set
of considered operators or control structures, defined as grammars. However, other spaces are
considered for various synthesis problems, like logics of various kinds, which can be useful
for, e.g., synthesizing graph/tree algorithms.

(3) Search technique. At a high level, there are two general approaches to logical synthesis:

• Deductive (or classic) synthesis (e.g., [22]), which maps a high-level (e.g. logical)
specification to an executable implementation, classically using a theorem prover. Such
approaches are efficient and provably correct: thanks to the semantics-preserving rules,
only correct programs are explored. However, they require complete specifications and
sufficient axiomatization of the domain. These approaches are classically applied to e.g.,
controller synthesis.

• Inductive (sometimes called syntax-guided) synthesis, which takes a partial (and often
multi-modal) specification and constructs a program that satisfies it. These techniques
are more flexible in their specification requirements and require no axioms, but often
at the cost of lower efficiency and weaker bounded guarantees on the optimality of
synthesized code.

Deductive synthesis shares quite a bit in common, conceptually, with compilation:
rewriting a specification according to various rules to achieve a new program in at a different
level of representation. However, deductive synthesis approaches assume a complete formal
specification of the desired user intent was provided. In many cases, this can be as complicated
as writing the program itself.

This has motivated new inductive synthesis approaches, towards which considerable
modern research energy has been dedicated. This category of techniques lends itself to a wide
variety of search strategies, including brute-force or enumerative [1] (you might be surprised!),
probabilistic inference/belief propagation [10], or genetic programming [17]. Alternatively,
techniques based on logical reasoning delegate the search problem to a constraint solver. We
will spend more time on this set of techniques.

15.2 Deductive Synthesis

We will very briefly overview Denali [16], a prototypical deductive synthesis technique for
superoptimization.1 Denali seeks to generate short sequences of provably optimal loop-free

1This explanation is further illustrated using the associated lecture slides.

93

machine instructions, for use primarily in compilation. While compilers generate reasonably
good code, there are cases in which we would instead prefer provably optimal code. Generat-
ing such code is the task of a superoptimizer (so-called because the title of optimization “has
been given to a field that does not aspire to optimize but only to improve”). Early approaches
for superoptimization attempted to enumerate via brute force (in order of increasing length)
efficient sequences of instructions, with correctness checked by hand and against a set of test
cases. This correctness critierion is challenging to confirm, however, and does not necessarily
result in optimality.

Joshi et al. propose an approach to superoptimization based on theorem proving. The
“obvious” approach (which they do not take) would be to, given a desired program fragment
P, express in formal logic “no program of the target architecture computes P in at most N
cycles.” However, this obvious approach is very difficult to manage with a theorem prover,
because it must be expressed using nested quantifiers.

Instead, they propose a process based on the idea that for sufficiently simple programs,
equivalence between a desired P and some alternative implementation M for all inputs is
essentially the universal validity of an equality between two vectors of terms (the one M
computes, and the terms specified by P in the computatoin). This type of equivalience can be
proved by matching, which is a well understood technique in theorem proving.

To do this, their technique, named Denali, takes as input a program P written in a DSL
for the associated target architecture. It then constructs an E-graph using the specified desired
program P as input. An E-graph is a term DAG corresponding to the expression to be
synthesized, augmented with an equivalence relation on the nodes of the DAG. Two nodes
are equivalent if the terms they represent are identical in value. Denali then uses a theorem
prover, along with two sets of axioms (encoding instruction semantics—an interpreter for the
target language, effectively—and algebraic properties—memory modeling, mostly), to search
the e-graph for the most efficient way to compute the expression.

15.3 Inductive Synthesis

Inductive synthesis uses inductive reasoning to construct programs in response to partial spec-
ifications. The program is synthesized via a symbolic interpretation of a space of candidates,
rather than by deriving the candidate directly. So, to synthesize such a program, we basically
only require an interpreter, rather than a sufficient set of derivation axioms. Inductive synthe-
sis is applicable to a variety of problem types, such as string transformation (FlashFill) [9], data
extraction/processing/wrangling [8, 32], layout transformation of tables or tree-shaped struc-
tures [34], graphics (constructing structured, repetitive drawings) [13, 4], program repair [23,
20] (spoiler alert!), superoptimization [16], and efficient synchronization, among others.

Inductive synthesis consists of several family of approaches; we will overview several
prominent examples, without claiming to be complete.

15.3.1 SKETCH, CEGIS, and SyGuS

SKETCH is a well-known synthesis system that allows programs to provide partial programs
(a sketch) that expresses the high-level structure of the intended implementation but leaves
holes for low-level implementation details. The synthesizer fills these holes from a finite set
of choices, using an approach now known as Counterexample-guided Inductive Synthesis
(CEGIS) [33, 30]. This well-known synthesis architecture divies the problem into search and
verification components, and uses the output from the latter to refine the specification given to
the former.

We have a diagram to illustrate on slides.

94

Syntax-Guided Synthesis (or SyGuS) formalizes the problem of program synthesis where
specification is supplemented with a syntactic template. This defines a search space of
possible programs that the synthesizer effectively traverses. Many search strategies exist; two
especially well-known strategies are enumerative search (which can be remarkably effective,
though rarely scales), and deductive or top down search, which recursively reduces the problem
into simpler sub-problems.

15.3.2 Oracle-guided synthesis

Templates or sketches are often helpful and easy to write. However, they are not always
available. Beyond search or enumeration, constraint-based approaches translate a program’s
specification into a constraint system that is provided to a solver. This can be especially
effective if combined with an outer CEGIS loop that provides oracles.

This kind of synthesis can be effective when the properties we care about are relatively
easy to verify. For example, imagine we wanted to find a maximum number m in a list l.
Here’s a specification of this as a synthesis problem:

DPmax@l,m : Pmaxplq � mñ pm P lq ^ p@x P l : m ¥ xq

Given a particular program Pmax, we can prove it correct by showing that the following
formula holds:

@l,m : Pmaxplq � mñ pm P lq ^ p@x P l : m ¥ xq

Let’s look in particular at counterexample generation from a logical viewpoint. To capture
this, iinstead of proving that a program satisfies the formula above, we can instead disprove
its negation, which is:

Dl,m : pPmaxplq � mq ^ pm R l _ Dx P l : m xq

If the above is satisfiable, a solver will give us a counterexample, which we can use to
strengthen the specification–so that next time the synthesis engine will give us a program
that excludes this counterexample. We can make this counterexample more useful by asking
the solver not just to provide us with an input that produces an error, but also to provide the
corresponding correct output m�:

Dl,m� : pPmaxplq � m�q ^ pm� P lq ^ p@x P l : m� ¥ xq

This is a much stronger constraint than the original counterexample, as it says what the
program should output in this case rather than one example of something it should not
output. Thus we now have an additional test case for the next round of synthesis. This
counterexample-guided sythesis approach was originally introduced for SKETCH, and was
generalized to oracle-guided inductive synthesis by Jha and Seshia. Different oracles have
been developed for this type of synthesis. We will discuss component-based oracle-guided
program synthesis in detail, which illustrates the use of distinguishing oracles.

15.4 Oracle-guided Component-based Program Synthesis

Problem statement and intuition.2 Given a set of input-output pairs α0, β0 ¡ . . . αn, βn ¡
and N components f1, . . . fN , the goal is to synthesize a function f out of the components such
that @αi.fpαiq produces βi. We achieve this by constructing and solving a set of constraints

2These notes are inspired by Section III.B of Nguyen et al., ICSE 2013 [27] ...which provides a really beautifully
clear exposition of the work that originally proposed this type of synthesis in Jha et al., ICSE 2010 [15].

95

over f , passing those constraints to an SMT solver, and using a returned satisfying model to
reconstruct f . In this approach, the synthesized function will have the following form:

0 z0 :� input0

1 z1 :� input1

.
m zm :� inputm

m� 1 zm�1 :� f?pz?, . . . , z?q
m� 2 zm�2 :� f?pz?, . . . , z?q
.
m�N zm�N :� f?pz?, . . . , z?q
m�N � 1 return z?

The thing we have to do is fill in the ? indexes in the program above. These indexes
essentially define the order in which functions are invoked and what arguments they are
invoked with. We will assume that each component is used once, without loss of generality,
since we can duplicate the components.

Definitions. We will set up the problem for the solver using two sets of variables. One set
represents the input values passed to each component, and the output value that component
produces, when the program is run for a given test case. We use ÝÑχ i to denote the vector
of input values passed to component i and ri to denote the result value computed by that
component. So if we have a single component (numbered 1) that adds two numbers, the input
valuesÝÑχ 1 might be (1,3) for a given test case and the output r1 in that case would be 4. We use
Q to denote the set of all variables representing inputs and R to denote the set of all variables
representing outputs:

Q :�
�N
i�1
ÝÑχ i

R :�
�N
i�1 ri

We also define the overall program’s inputs to be the vector ÝÑY and the program’s output
to be r.

The other set of variables determines the location of each component, as well as the
locations at which each of its inputs were defined. We call these location variables. For each
variable x, we define a location variable lx, which denotes where x is defined. Thus lri is the
location variable for the result of component i and ÝÑlχi is the vector of location variables for the
inputs of component i. So if we have lr3 � 5 and ÝÑlχ3 is (2,4), then we will invoke component
#3 at line 5, and we will pass variables z2 and z4 to it. L is the set of all location variables:

L :� tlx | x P QYRY
ÝÑ
Y Y ru

We will have two sets of constraints: one to ensure the program is well-formed, and the
other that ensures the program encodes the desired functionality.

Well-formedness. ψwfp denotes the well-formedness constraint. Let M � |
ÝÑ
Y | � N , where N

is the number of available components:

ψwfppL,Q,Rq
def
�

�

xPQ
p0 ¤ lx Mq ^

�

xPR
p|
ÝÑ
Y | ¤ lx Mq ^

ψconspL,Rq ^ ψacycpL,Q,Rq

The first line of that definition says that input locations are in the range 0 to M , while
component output locations are all defined after program inputs are declared. ψcons and ψacyc

96

dictate that there is only one component in each line and that the inputs of each component
are defined before they are used, respectively:

ψconspL,Rq
def
�

�

x,yPR,x�y
plx � lyq

ψacycpL,Q,Rq
def
�

N�

i�1

�

xPÝÑχ i

lx lri

Functionality. φfunc denotes the functionality constraint that guarantees that the solution f
satisfies the given input-output pairs:

φfuncpL,α, βq
def
� ψconnpL,

ÝÑ
Y , r,Q,Rq ^ φlibpQ,Rq ^ pα �

ÝÑ
Y q ^ pβ � rq

ψconnpL,
ÝÑ
Y , r,Q,Rq

def
�

�

x,yPQYRY
ÝÑ
Y Ytru

plx � ly ñ x � yq

φlibpQ,Rq
def
� p

N�

i�1
φipÝÑχ i, riqq

ψconn encodes the meaning of the location variables: If two locations are equal, then the
values of the variables defined at those locations are also equal. φlib encodes the semantics of
the provided basic components, with φi representing the specification of component fi. The
rest of φfunc encodes that if the input to the synthesized function is α, the output must be β.

Almost done! φfunc provides constraints over a single input-output pair αi, βi, we still
need to generalize it over all n provided pairs t αi, βi ¡ |1 ¤ i ¤ nu:

θ
def
� p

n�

i�1
φfuncpL,αi, βiqq ^ ψwfppL,Q,Rq

θ collects up all the previous constraints, and says that the synthesized function f should
satisfy all input-output pairs and the function has to be well formed.

LVal2Prog. The only real unknowns in all of θ are the values for the location variables L. So,
the solver that provides a satisfying assignment to θ is basically giving a valuation of L that
we then turn into a constructed program as follows:

Given a valuation of L, Lval2ProgpLq converts it to a program as follows: The ith line of

the program is zi � fjpzσ1 , ..., zσηq when lrj �� i and
η�

k�1

plχk
j
�� σkq, where η is the number

of inputs for component fj and χkj denotes the kth input parameter of component fj . The
program output is produced in line lr.

Example. Assume we only have one component, +. + has two inputs: χ1
� and χ2

�. The
output variable is r�. Further assume that the desired program f has one input Y0 (which
we call input0 in the actual program text) and one output r. Given a mapping for location
variables of: tlr� ÞÑ 1, lχ1

�

ÞÑ 0, lχ2
�

ÞÑ 0, lr ÞÑ 1, lY ÞÑ 0u, then the program looks like:

0 z0 :� input0

1 z1 :� z0 � z0
2 return z1

This occurs because the location of the variables used as input to + are both on the same
line (0), which is also the same line as the input to the program (0). lr, the return variable of the
program, is defined on line 1, which is also where the output of the + component is located.
(lr�). We added the return on line 2 as syntactic sugar.

97

Chapter 16

Fuzz Testing

So far, we have looked at program analysis techniques that perform deep introspection of the
source code in order to over-approximate or under-approximate program behavior, often with
the goal of finding program bugs. But what if we did not want to look at the program source
code at all? This might be the case either if we did not have access to source code (e.g. when
analyzing third-party binaries) or because we are dealing with programs so large and complex
that any sort of static analysis with super-linear complexity is too expensive. This chapter1

provides an introduction to a technique that is very popular for stress testing industrial code.

16.1 Random Fuzzing

Practioners have long known that simply generating test inputs at random is a scalable
and surprisingly effective method for finding implementation faults in computer systems.
Random test generation was first popularized for finding faults in hardware in the 1970s
and 80s: random test-input generators were developed for sequential circuits, memories, ICs,
floating point units, cache controllers, etc.

Random test-case generation as a methodology for finding software bugs was initially
dismissed: Myers’ 1979 book The Art of Software Testing [26] states “the least effective method-
ology of all is random-input testing”. However, by the 1980s random testing was found to be
“more cost effective” than systematic techniques and “a useful validation tool” that achieves
“a very high degree of coverage” [14]. Many of these results reflect experiences in testing
software that operated on a fixed set of numeric inputs, such as computer simulations.

In 1990, Miller et al. [24] developed fuzz, a tool for testing the reliability of Unix utilities
by generating random sequences of characters as input2. They were able to crash dozens
of standard widely used Unix utilities including vi, emacs, as, ftp, spell, and uniq by
simply feeding random input data generated by fuzz. A common cause of these crashes
was segfaults; many of the tested programs had input-validation bugs such as missing size
checks or improper format strings that could cause the programs to read/write memory out
of bounds when presented with unexpected inputs. Such buffer overflow bugs were and remain
serious security vulnerabilities3.

Today, fuzz testing, or simply fuzzing, refers to any test-input generation technique that
produces inputs using some randomized algorithm. The input generator is itself sometimes

1This chapter was largely adapted from text in Rohan Padhye’s Ph.D. thesis [28].
2Apparently, one of the authors accidentally discovered fuzz testing when working from home one “dark and

stormy night”; the rain introduced noise in the phone lines which were transmitting his commands to a remote
Unix system and caused programs at the other end to crash [24].

3MITRE Corporatation’s Common Weakness Enumeration (CWE) list ranks buffer overflows as number 1 in the
top 25 most dangerous software errors in 2019 [25].

98

referred to as a fuzzer. In the three decades following Miller et al.’s work, fuzz testing has
become a rich field of research for finding security vulnerabilities.

The key advantage of fuzz testing over systematic techniques such as symbolic execution is
scalability: a randomized search can explore many program behaviors quickly and can be eas-
ily parallelized. Possibly fueled by the increasing availability of cheap computing resources,
fuzz testing has become one of the predominant automated testing methods used in practice.
For example, Google’s ClusterFuzz system has found more than 16,000 bugs in the Chrome
web browser and over 11,000 bugs across 160+ open-source projects by January 2019 [7].

Modern fuzzers rarely generate inputs randomly from scratch: it is very unlikely that
inputs constructed as purely random sequences of bytes will exercise a non-trivial fraction of
a complex software system. The two broad approaches to smarter input generation include
model-based fuzzing and mutation-based fuzzing.

Model-based fuzzers generate inputs based on some understanding of what kind of inputs
a program expects. Although this might seem unintuitive—the goal of fuzzing is to generate
unexpected inputs that reveal software bugs—the idea is that generating inputs having some
basic structure or syntax will guarantee that certain parts of a test program’s code logic
are exercised. For example, grammar-based fuzzing techniques use context-free grammar
specifications to generate strings belong to a particular language.

Mutation-based fuzzers generate inputs by performing random changes on valid seed in-
puts. The idea is that making small random changes to a valid input, such as flipping some bits
in an input to a program that processes binary data (e.g. a media player), or inserting random
keywords in a text input to a parser (e.g. in a database query processor) will correspond to sub-
tle changes in the execution path of the test program through its control-flow graph. Random
mutations will create new, previously unseen and possibly unexpected inputs, while retaining
much of the syntax, structure, and other features of the valid seed input. This idea has been
used extensively by security-oriented fuzzers for discovering memory-corrution errors in com-
monly used software such as Unix utilities, network protocol implementations, and C libraries.

Both model-based fuzzers and mutation-based fuzzers make use of some knowledge about
what kind of inputs a program expects. Both techniques as described above are black box; that
is, they do not analyze the test program’s source code or collect any additional information
during program execution. Such black box testing is incredibly efficient, especially when
compared to white box techniques such as symbolic execution which need to collect path
constraints for every execution. Black-box fuzzers are also embarassingly parallelizable since
the generation of every input is independent from every other input. However, a direct
consequence of this fact is that the probability of generating an input that reveals a bug is
the exact same when generating the very first input as it is when generating say the hundred
millionth input. Some of the most important questions about the random testing strategy
include “‘How long should it run?” and “Has it covered all the important cases?”.

One way to measure the quality of a set of test inputs generated by a fuzzer is to use proxy
metrics such as code coverage, which correspond to the amount or fraction of program code
that is exercised by test inputs. Common granularities of code coverage include line coverage,
statement coverage, branch coverage, basic-block coverage, and edge coverage (the latter two refer to
nodes and edges in a program’s control-flow graph respectively). A straightforward strategy
for tracking the progress of a fuzzing session is to measure the code coverage achieved by
all the inputs generated so far; fuzzing is no longer viable when the rate of increasing code
coverage falls below a certain threshold. However, measuring code coverage requires test
programs to be instrumented with code that tracks which parts of the program are being
exercised when executing test inputs. This instrumentation adds performance overhead, and
can reduce the overall fuzzing efficiency.

Collecting code coverage during a fuzzing session does brings one very important advan-
tage, at least to mutation-based fuzzers. The coverage information can be used to augment

99

Algorithm 1 The coverage-guided fuzzing algorithm

Input: an instrumented test program p, a set of initial seed inputs I
Output: a corpus of automatically generated inputs S, a set of failing test inputs F

1: S Ð I
2: F ÐH
3: totalCoverage ÐH
4: repeat �Main fuzzing loop
5: for i in S do
6: if sample FUZZPROB(i) then
7: i 1 Ð MUTATEpiq � Generate new test input i1

8: coverage, result Ð EXECUTEpp, i 1q � Run test with new input i1

9: if result � FAILURE then
10: F Ð F Y ti1u
11: else if coverage � totalCoverage then
12: S Ð S Y ti1u � Save i1 if new code coverage achieved
13: totalCoverageÐ totalCoverageY coverage
14: end if
15: end if
16: end for
17: until given time budget expires
18: return S,F

the set of seed inputs: automatically generated (i.e., fuzzed) inputs that exercise previously
uncovered code can be used as the basis for subsequent mutation. In this way, fuzzing can
become feedback-directed and test inputs can evolve over time. The vast majority of recent
progress in fuzz testing, both in terms of new research and new discoveries of serious software
bugs, has stemmed from the field of coverage-guided fuzzing (CGF).

16.2 Coverage-Guided Fuzzing (CGF)

Algorithm 1 describes how CGF works at a high level. The CGF algorithm takes as input an
instrumented test program p and a set of user-provided seed inputs I. CGF maintains three
global states: (1) S is a set of saved inputs to be mutated by the algorithm, (2) F is a set of bug-
revealing inputs corresponding to test failures, and (2) totalCoverage tracks the cumulative
coverage of the program on the inputs in S. CGF can track any kind of coverage; in practice,
branch coverage or edge coverage is commonly used. S is initialized to the set of user-provided
seed inputs (Line 1) and totalCoverage is initialized to the empty set (Line 3). The main fuzzing
loop of CGF (Line 4) keeps making passes over the set of inputs (Line 5), selecting an input
i from the set S. With some probability (Line 6) determined by an implementation-specific
heuristic function FUZZPROB(i), CGF decides whether to mutate the input i or not. If i is se-
lected for mutation, CGF randomly mutates i to generate i1 (Line 7). The random mutation can
be selected from a set of predefined mutations such as bit flipping, byte flipping, arithmetic
increment and decrement of integer values, replacing of bytes with handpicked interesting
values, etc. CGF then executes the program p with the newly generated input i1 (Line 8). The
coverage corresponding to this execution is collected into the variable coverage. The variable
result whether the execution terminated normally or abnormally (e.g. with a crash or time-
out). Inputs corresponding to test failures are added to a set F (Line 10). If the observed
coverage coverage when executing a non-failing input contains some new coverage point that
is not present in the global cumulative coverage totalCoverage (Line 11), then the new input i 1

is added to the set of saved inputs S (Line 12) and totalCoverage is updated to include the new

100

1 void* Test(int16_t a, int16_t b) {
2 if (a % 3 == 2) {
3 if (a > 0x1000) {
4 if (b >= 0x0123) {
5 if (a == b) {
6 abort();
7 } else {
8 return malloc(a);
9 }

10 }
11 }
12 }
13 }

(a) Sample function in the test program. Pa-
rameters a and b are the test inputs.

Seed

Target

New coverage

Waypoint
(mem)

Waypoint
(cmp)

Legend:
a=0x0000, b=0x0000

a=0x0020, b=0x0000

a=0x1220, b=0x0000

a=0x1220, b=0xF020

a=0x1220, b=0xF000

a=0x1220, b=0xF220

a=0x1220, b=0x1220

a=0xF320, b=0xF000

a=0xFF20, b=0xF000

a=0xFFFE, b=0xF000

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

(b) Sample fuzzed inputs starting with initial seed a � 0,
b � 0. Arrows indicate mutations.

Figure 16.1: A motivating example for custom fuzzing waypoints.

coverage (Line 13). The input i1 will then get mutated during a future iteration of the fuzzing
loop. The fuzzing loop continues until a time budget has expired (Line 17). Finally, the gener-
ated test corpus S and the set of failing inputs F are returned as the result of fuzzing (Line 18).

16.2.1 Contemporary CGF Tools: AFL and libFuzzer

CGF was popularized by AFL [35]—which stands for American Fuzzy Lop—an open-source
fuzzing tool developed by Michał Zalewski at Google. AFL starts fuzzing using a user-
provided set of seed input files, corresponding to set I in Algorithm 1. The mutations applied
by AFL to generate new inputs include:

• Bitflips/byteflips at random locations.

• Setting bytes to random or interesting (0, MAX INT) values at random locations.

• Deleting/cloning random blocks of bytes.

AFL also occasionally performs splicing mutations, more commonly called a crossover muta-
tion. For a candidate input i, a splicing mutation chooses a random input i1 in S and pastes a
random sub-sequence from i1 at a random offset in i. This stage runs only when AFL has not
discovered new coverage in several cycles of the main fuzzing loop. AFL also allows users to
specify a dictionary of keywords or magic byte sequenees that are then randomly inserted into
mutated inputs.

LibFuzzer is another widely used CGF tool that targets the LLVM platform. Since around
2016, libFuzzer [21] has been included as part of the LLVM project. Together, AFL and
libFuzzer have been used to discover thousands of security vulnerabilities, mostly in C/C++
programs such as Google Chrome, OpenSSL, Mozilla Firefox, Adobe Flash, VLC Media
Player, and others.

16.3 Domain-Specific Fuzzing with Waypoints

Consider the sample test program in Figure 16.1a. The function Test takes as input two
16-bit integers, a and b. A common test objective is to generate inputs that maximize code
coverage in this program. We apply Algorithm 1 to perform CGF on this test program. Let us
assume that we start with the seed input: a=0x0000, b=0x0000. The seed input does not satisfy

101

the condition at Line 2. The CGF algorithm randomly mutates this seed input and executes
the test program on the mutated inputs while looking for new code coverage. Figure 16.1b
depicts in grey boxes a series of sample inputs which may be saved by CGF, starting with
the initial seed input i1 in an yellow box. A solid arrow between two inputs, say i and i1,
indicates that the input i is mutated to generate i1. After some attempts, CGF may mutate
the value of a in i1 to a value such as 0x0020, which satisfies the condition at Line 2. Since
such an input leads to new code being executed, it gets saved to S. In Fig. 16.1b, this is input
i2. Small, byte-level mutations enable CGF to subsequently generate inputs that satisfy the
branch condition at Line 3 and Line 4 of Fig. 16.1a. This is because there are many possible
solutions that satisfy the comparisons a > 0x1000 and b >= 0x0123 respectively; we call
these soft comparisons. Fig. 16.1b shows the corresponding inputs in our example: i3 and i4.
However, it is much more difficult for CGF to generate inputs to satisfy comparisons such as
a == b at Line 5; we call these hard comparisons. Random byte-level mutations on inputs
i1–i4 are unlikely to produce an input where a == b. Therefore, the code at Line 6 may not
be exercised in a reasonable amount of time using conventional CGF.

Now, consider another test objective, where we would like to generate inputs that maxi-
mize the amount of memory that is dynamically allocated via malloc. This objective is useful
for generating stress tests or to discover potential out-of-memory related bugs. The CGF algo-
rithm enables us to generate inputs that invoke malloc statement at Line 8, such as i4. How-
ever, this input only allocates 0x1220 bytes (i.e., just over 4KB) of memory. Although random
mutations on this input are likely to generate inputs that allocate larger amount of memory,
CGF will never save these because they have the same coverage as i4. Thus, it is unlikely that
CGF will discover the maximum memory-allocating input in a reasonable amount of time.

Both of the challenges listed above can be addressed if we save some useful intermediate
inputs to S regardless of whether they increase code coverage. Then, random mutations on
these intermediate inputs may produce inputs achieving our test objectives. Such intermediate
inputs are called waypoints. For example, to overcome hard comparisons such as a == b, we
want to save intermediate inputs if they maximize the number of common bits between a and
b. Let us call this strategy cmp. The blue boxes in Fig. 16.1b show inputs that may be saved
to S when using the cmp strategy for waypoints. In such a strategy, the inputs i5 and i6 are
saved to S even though they do not achieve new code coverage. Now, input i6 can easily be
mutated to input i7, which satisfies the condition a == b. Thus, we easily discover an input
that triggers abort at Line 6 of Fig. 16.1a. Similarly, to achieve the objective of maximizing
memory allocation, we save waypoints that allocate more memory at a given call to malloc
than any other input in S. Fig. 16.1b shows sample waypoints i8 and i9 that may be saved with
this strategy, called mem. The dotted arrow from i9 to i10 indicates that, after several such way-
points, random mutations will eventually lead us to generating input i10. This input causes
the test program to allocate the maximum possible memory at Line 8, which is almost 64KB.

Now, consider a change to the condition at Line 4 of Figure 16.1a. Instead of an inequality,
suppose the condition is b == 0x0123. To generate inputs that invoke malloc at Line 8, we
first need to overcome a hard comparison of b with 0x0123. We can combine the two strate-
gies for saving waypoints as follows: save a new input i if either it increases the number of
common bits between operands of hard comparisons or if it increases the amount of memory
allocated at some call to malloc. A combination of these strategies was demonstrated [29]
to automatically generate PNG bombs and LZ4 bombs, i.e. tiny inputs that allocate 2–4 GB of
memory, when fuzzing libpng and libarchive respectively.

The general idea of changing the input-saving criteria beyond code coverage by us-
ing domain-specific feedback has been used to generate worst-case performance bugs,
exercise state machines in data-intensive applications, discover side-channel leakages in
privacy-sensitive applications, and even synthesize input sequeneces to play video games.

102

Bibliography

[1] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Madhusu-
dan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In M. Irlbeck, D. A. Peled, and
A. Pretschner, editors, Dependable Software Systems Engineering, volume 40 of NATO
Science for Peace and Security Series, D: Information and Communication Security, pages 1–25.
IOS Press, 2015.

[2] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing symbolic execution with
veritesting. In Proceedings of the 36th International Conference on Software Engineering, ICSE
2014, pages 1083–1094, 2014.

[3] T. Ball and J. Daniel. Deconstructing dynamic symbolic execution. In Proceedings of the
2014 Marktoberdorf Summer School on Dependable Software Systems Engineering, 2015.

[4] R. Chugh, B. Hempel, M. Spradlin, and J. Albers. Programmatic and direct manipulation,
together at last. SIGPLAN Not., 51(6):341–354, June 2016.

[5] L. A. Clarke. A program testing system. In Proc. of the 1976 annual conference, pages
488–491, 1976.

[6] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. R, and S. Roy. Pro-
gram synthesis using natural language. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 345–356, New York, NY, USA, 2016. ACM.

[7] Google. Clusterfuzz - readme. https://github.com/google/clusterfuzz/
blob/2ae06a430c6f9bfcf418490f3416f28a94d51515/README.md. Retrieved:
June 2020.

[8] S. Gulwani. Programming by examples: Applications, algorithms, and ambiguity
resolution. In Proceedings of the 8th International Joint Conference on Automated Reasoning -
Volume 9706, pages 9–14, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[9] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using examples.
Commun. ACM, 55(8):97–105, Aug. 2012.

[10] S. Gulwani and N. Jojic. Program verification as probabilistic inference. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’07, pages 277–289, New York, NY, USA, 2007. ACM.

[11] S. Gulwani and M. Marron. Nlyze: Interactive programming by natural language for
spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 803–814, New York,
NY, USA, 2014. ACM.

[12] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and Trends in
Programming Languages, 4(1-2):1–119, 2017.

103

https://github.com/google/clusterfuzz/blob/2ae06a430c6f9bfcf418490f3416f28a94d51515/README.md
https://github.com/google/clusterfuzz/blob/2ae06a430c6f9bfcf418490f3416f28a94d51515/README.md

[13] B. Hempel and R. Chugh. Semi-automated svg programming via direct manipulation.
In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST
’16, pages 379–390, New York, NY, USA, 2016. ACM.

[14] D. C. Ince. The automatic generation of test data. The Computer Journal, 30(1):63–69, 1987.

[15] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program
synthesis. In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 215–224, New York, NY, USA, 2010. ACM.

[16] R. Joshi, G. Nelson, and K. Randall. Denali: A goal-directed superoptimizer. SIGPLAN
Not., 37(5):304–314, May 2002.

[17] G. Katz and D. Peled. Genetic programming and model checking: Synthesizing new mu-
tual exclusion algorithms. In Proceedings of the 6th International Symposium on Automated
Technology for Verification and Analysis, ATVA ’08, pages 33–47, Berlin, Heidelberg, 2008.
Springer-Verlag.

[18] J. C. King. Symbolic execution and program testing. Commun. ACM, 19:385–394, July 1976.

[19] V. Le, S. Gulwani, and Z. Su. Smartsynth: Synthesizing smartphone automation scripts
from natural language. In Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’13, pages 193–206, New York, NY, USA, 2013.
ACM.

[20] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic method for
automated software repair. IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[21] LLVM Developer Group. libfuzzer. http://llvm.org/docs/LibFuzzer.html,
2016. Accessed March 20, 2019.

[22] Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun. ACM,
14(3):151–165, Mar. 1971.

[23] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable Multiline Program Patch
Synthesis via Symbolic Analysis. In International Conference on Software Engineering, ICSE
’16, pages 691–701, 2016.

[24] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix utilities.
Commun. ACM, 33(12):32–44, December 1990.

[25] MITRE. 2019 cwe top 25 most dangerous software errors. https://cwe.mitre.org/
top25/archive/2019/2019_cwe_top25.html. Retrieved: June 2020.

[26] G. J. Myers. Art of Software Testing. Wiley, 1979.

[27] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair
via semantic analysis. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 772–781, Piscataway, NJ, USA, 2013. IEEE Press.

[28] R. Padhye. Abstractions and Algorithms for Specializing Dynamic Program Analysis and
Random Fuzz Testing. PhD thesis, EECS Department, University of California, Berkeley,
Jul 2020.

[29] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar. Fuzzfactory: domain-
specific fuzzing with waypoints. Proceedings of the ACM on Programming Languages,
3(OOPSLA):1–29, 2019.

104

http://llvm.org/docs/LibFuzzer.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

[30] O. Polozov and S. Gulwani. Flashmeta: A framework for inductive program synthesis.
SIGPLAN Not., 50(10):107–126, Oct. 2015.

[31] K. Sen, G. Necula, L. Gong, and W. Choi. Multise: Multi-path symbolic execution using
value summaries. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 842–853, 2015.

[32] R. Singh and S. Gulwani. Transforming spreadsheet data types using examples. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’16, pages 343–356, New York, NY, USA, 2016. ACM.

[33] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA, USA, 2008.
AAI3353225.

[34] N. Yaghmazadeh, C. Klinger, I. Dillig, and S. Chaudhuri. Synthesizing transformations
on hierarchically structured data. SIGPLAN Not., 51(6):508–521, June 2016.

[35] M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl, 2014.
Accessed March 20, 2019.

105

http://lcamtuf.coredump.cx/afl

	Introduction
	The While Language and Program Representation
	The While Language
	While3Addr: A Representation for Analysis
	Extensions
	Control flow graphs

	Program Semantics
	Operational Semantics
	While: Big-step operational semantics
	While: Small-step operational semantics
	While3Addr: Small-step semantics
	Derivations and provability

	Proof techniques using operational semantics

	A Dataflow Analysis Framework for While3Addr
	Defining a dataflow analysis
	Running a dataflow analysis
	Straightline code
	Alternative Paths: Illustration

	Join
	Dataflow analysis of loops
	A convenience: the abstract value and complete lattices

	Analysis execution strategy

	Dataflow Analysis Examples
	Integer Sign Analysis
	Constant Propagation
	Reaching Definitions
	Live Variables

	Dataflow Analysis Termination and Correctness
	Termination
	Montonicity of Zero Analysis
	Correctness

	Widening Operators and Collecting Semantics for Dataflow Analysis
	Widening operators: Dealing with Infinite-Height Lattices
	Example: Interval Analysis
	The Widening Operator

	Collecting Semantics (Reaching Definitions)

	Interprocedural Analysis
	Two Simple Approaches
	Interprocedural Control Flow Graphs
	Context Sensitive Analysis
	Precision and Termination
	Approaches to Limiting Context-Sensitivity

	Control Flow Analysis for Functional Languages
	A simple, labeled, functional language
	Simple Control Flow Analysis
	0-CFA
	0-CFA with dataflow information

	m-Calling Context Sensitive Control Flow Analysis (m-CFA)

	Advanced Interprocedural Analysis: Pointer Analysis and Object-Oriented Call Graph Construction
	Pointer Analysis
	Andersen's Points-To Analysis
	Field Sensitivity
	Steensgaard's Points-To Analysis

	Dynamic dispatch
	Simple approaches
	0-CFA Style Object-Oriented Call Graph Construction

	Axiomatic Semantics and Hoare-style Verification
	Axiomatic Semantics
	Assertion judgements using operational semantics
	Derivation rules for Hoare triples

	Proofs of a Program
	Strongest postconditions and weakest pre-conditions
	Loops
	Proving programs

	Satisfiability Modulo Theories
	Motivation and Overview
	DPLL for Boolean Satisfiability
	Boolean satisfiability (SAT)
	The DPLL Algorithm

	Solving SMT Problems
	Definitions
	Basic SMT idea, illustrated
	DPLL(T)
	Bonus: Arithmetic solvers

	Symbolic Execution
	Overview
	Forward Verification Condition Intuition
	Formalizing Forward VCGen

	Symbolic Execution as a Generalization of Testing
	Illustration
	Symbolic Execution History and Industrial Use

	Optional: Heap Manipulating Programs

	Concolic Testing
	Introduction
	Motivation
	Statically modeling functions
	Goals

	Concolic execution overview
	Implementation
	Concolic Path Condition Soundness
	Acknowledgments

	Program Synthesis
	Program Synthesis Overview
	Deductive Synthesis
	Inductive Synthesis
	SKETCH, CEGIS, and SyGuS
	Oracle-guided synthesis

	Oracle-guided Component-based Program Synthesis

	Fuzz Testing
	Random Fuzzing
	Coverage-Guided Fuzzing (CGF)
	Contemporary CGF Tools: AFL and libFuzzer

	Domain-Specific Fuzzing with Waypoints

