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Hoare Logic-based Verification So Far

* Focus on imperative programs without functions or memory allocation
o E.g.the WHILE language

S = x :=a | skip | S; ; S,
| if P then S, else S, | while P do S
a = x | n | a; op, a,

* What about other constructs?
o Function calls
o Heap data structures - e.g. pointers and records
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A Language with Functions and Records

* We define a program as a list of declarations D followed by a list of statements
o Functions have one parameter, and include pre- and post-condition specifications
o Records are a named structure with a set of field declarations

D := fun g(x) requires P ensures Q) { S }
| record R { flds }
flds == fieldf;| flds flds
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Extended expression and statement syntax

S

* We also extend statements and expressions
o Function call and field assignment statements

= Function calls are statements because they have side effects - awkward in an expression
o New record and field read expressions

T i=a
skip

S1; 52

if b then S; else Ss
while bdo S

z := g(a)
x.f:=a

b

true
false
not b
b1 opy b2
a1 Opr a2

a = T opy
n op;
a1 OPq G2
new R 0Pg
a.f
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Verifying Functions

(P1SiQ}
fun g(x) requires P ensures ) { S } OK

fn-defn

* Example (we extend to multiple arguments)
fun exp(x,n)
requiresn >0
ensures result = x"{
result:=1
count:=0
while count<ndo
result ;= result * x
count:=count+ 1

}



Verifying Function Calls - An Example

decls(g) = fun g(y) requires P ensures () .

— fn-call
([e/y)P } = = 9(a) { [o/y, afresulllQ} 7
fun exp(x,n) {true}
requiresn >0 ji=2
ensures result =x"{ ...} Z = exp(y, |)

{z=y?]



Verifying Field Assignments

{ [a/m.f]Px}fx%fa’:: (P field-assign (simplified)
{true}

xf=2

z=y*xf

{z=y*2}



The Challenge of Aliasing
{true) x.f ¢ a

x=newR {l[a/x.fIP}z.f:=a{ P}

* This program verifies!
But it’s not correct

y=X * Issue: P contains elements that might be
affected by the assignment
yf=2 * How can we fix this problem?

{xf=1}
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Addressing Aliasing

 If we know x =y, then we can update y.f when we update x.f
 If we know x =y, then we can preserve knowledge of y.f when we update x.f

 Ifwe don’t know whether x =y or not, we “forget” knowledge of y.f
o One possibility: replace all occurrences of y.f with an existentially quantified variable

Challenge 1: tracking aliasing doesn’t scale
o Ifyou have nvariables, there are n * (n-1) / 2 aliasing conditions!

" FOrw,X,Y,Z: WEXAWEYAWZZAXZYAXZZIAY#L
= Too much specification to be realistic

Challenge 2: tracking aliasing is unmodular
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Tracking Aliasing Conditions is Unmodular

fun doubleXF(x) X =newR
requiresx =y Ax.f=nAyf=m y=newR
ensuresX =y AX.f=n*2 Ay.f=m{ x.f=1
X.f=x.f*2 y.f=3
} doubleXF(x)
doubleXF doesn’t use V. assertx.f=2 Ayf=3

It’s unmodular for its

spec to mention y.




The Frame Rule supports modular specification
{P}S{Q} wars(R) n assigned(S)
{PAR}S{QAR}

* The frame rule allows us to reason about direct effects of S (transforming P to Q),
and “carry over” other things we know (in R)

o One caution: we must be sure that R does not mention any variables assigned by S

* With the Frame Rule, we can call a function that does not mentiony in its spec
and still preserve our knowledge abouty

=2 frame (simplified)
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How the Frame Rule Helps i s aly e

frame rule here to carry

_ over our knowledge that
fun double(x) x=1 /=3
requires x=n y=3
ensures result=n*2 { X = double(x)
result=x* 2 assertx=2Ay=3

}
decls(double) = fun double(x) requires x = n ensures result = n*2... all
{x=1}z:=double(x) { x =2} frame fn
{lx=1Ay=3}x:=double(x){x=2Ary=3}




But we need a frame rule that addresses aliasing]!

{P}S{Q} wars(R)n assigned(S)
{PAR}S{Q AR}

=2 frame (simplified)

What if R mentions a
field of an object that is

|Idea: Let’s make sure assigned in S?
that P describes all of

the object-field

combinations that S

could access.




Resource Logics talk about state that is owned

fun doubleXF(x) We’'re only allowed to
_ mention x.f in the
requires acc(x.f) * x.f=n formula because we

have asserted acc(x.f)
ensures acc(x.f) *x.f=n*2{

X.f=xf*2

*is a special kind of

acc(x.f) means we own conjunction (see next
x.f and can use it in this slide)

function and its
specification

This is a research logic called Implicit Dynamic Frames (IDF)



The full Frame Rule, considering aliasing

{P}S{Q} wars(R)nassigned(S) =& P, R,S self-framed
{Px R} 5{Q = R}

frame (full)

A self-framed formula only
mentions object fields that it

The separating conjuction owns.

*is like A, but any given
object field can be owned
by only one side.

x.f = 3 is not self-framed.
acc(x.f) * x.f=3 is self-framed

Thus acc(x.f) * acc(y.f)
implies x #y




The allocation rule in Implicit Dynamic Frames

{true} x :=new R { V. f € fields(R) . acc(x.f) } alloc

* Provides the permission to all fields in the newly allocated object
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Quiz: check the full example by filling in the {}’s

fun doubleXF(x) {true}
requires acc(x.f) * x.f=n X=newR
ensures acc(x.f) * x.f=n*2{ y=newR
X.f=x.f*2 {
} x.f=1
y.f=3
{
doubleXF(x)

{ace(x.f) * x.f=2 * acc(y.f) *y.f=3}



What about recursive data structures?

record Node { int val; Node next; }

predicate list(Node n, int sum) = Can define recursive
if (n = null) predicates that describe
then ds1 . acc(n.val) * acc(n.next) properties of a data

* list(n.next, s1) * sum=n.val+s1 structure—in this case that a
list sums to a particular value
fun cons(Node n, intv)
requires list(n, s)
ensures list(result, s+v)
result = new Node Functions can use fold and

unfold to move between a
predicate and its unfolded

result.val=v
result.next=n
fold list(result, s+v)

definition
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Dynamic verification increases runtime overhead for
weaker assurances

Static verification has a large upfront specification cost

Gradual verification allows developers to deal with this
cost incrementally

» without unnecessary effort
* with iImmediate feedback




Naive Verification Attempt

int findMax (Node 1)

ensures max (result,l)

int m := 1l.val;
Node curr := 1l.next;
while (curr !'= null)
1f (curr.val > m) {
m := curr.val;

[ N

}

curr := Ccurr.next;

}

return m;

&&

contains (result,l)

Description
3|1 Precondition at 15.11 might not hold. Insufficie
3|2 |Location might not be readable.
K:’3 The postcondition at 24.13 might not hold. The €
ﬁ34 The postcondition at 24.13 might not hold. The ¢

input(24,13): Error: Precondition at 15.11 mi|
input(31,12): Error: Location might not be re
input(22,3): Error: The postcondition at 24.1
input(22,3): Error: The postcondition at 24.1

Boogie program verifier finished with 4 verif

s \o
o0

~

e.valid.

evaluate to true.

evaluate to true.

:nt fraction at 15.11 for Node.valid.

(pression at 24.13 might not evaluate to true.
(pression at 24.23 might not evaluate to true.




Naive Verification Attempt: Missing Preconditions

int findMax (Node 1)

requires 1 !'= null
ensures max (result,l) && contains (result,l)

int m := 1l.val;

Node curr := l.next;
while(curr !'= null) {
1f (curr.val > m) {

m := curr.val;

}

curr := Ccurr.next;

}

return m;




Naive Verification Attempt: Missing Loop Invariants

int findMax (Node 1)

requlires 1 != null
ensures max (result,l) && contains (result,l)

int m := 1l.val;
Node curr := 1l.next;
while(curr !'= null) LOOP INVARIANTS {

1f (curr.val > m) {
m := curr.val;

}

curr := Ccurr.next;

}

return m;




Naive Verification Attempt: Missing Folds and Unfolds

int findMax (Node 1)

requires 1 != null
ensures max (result,l) && contains(result,l)

int m := 1l.val;
Node curr := l.next;
FOLDS/UNFOLDS
while (curr != null) LOOP INVARIANTS {
if(curr.val > m) { m := curr.val,; }
curr := cCcurr.next;
FOLDS/UNFOLDS

FOLDS/UNFOLDS
return m;




Naive Verification Attempt: Missing Lemmas

int findMax (Node 1)

requires 1 != null
ensures max (result,l) && contains(result,l)

int m := 1l.val;
Node curr := l.next;
FOLDS/UNFOLDS
while (curr != null) LOOP INVARIANTS {
if(curr.val > m) { m := curr.val,; }
curr := cCcurr.next;
FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS
return m;




Naive Verification Attempt: Missing Specifications

int findMax (Node 1)

requires 1 !'= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1.next;

FOLDS/UNFOLDS
while (curr != null) LOOP INVARIANTS {

if(curr.val > m) { m := curr.val; }
curr := cCcurr.next;
FOLDS/UNFOLDS
LEMMAS

FOLDS/UNFOLDS
return m;




Gradual Verification to the Rescue

int findMax (Node 1)
requires °?
ensures max (result,l) && contains (result,l)

int m := 1l.val;
Node curr := l.next;
while (curr != null) 2 {
1f (curr.val > m) {
m := curr.val;

}

curr := cCcurr.next;

J

return m;




Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains (result,l)

int m := 1l.val;
Node curr := l.next;
while (curr != null) 2 {
1f (curr.val > m) {
m := curr.val;

}

curr := cCcurr.next;

J

return m;




Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1l.val;
Node curr := 1l.next;
while (curr != null) ? && LOOP INVARIANTS {
1f (curr.val > m) {
m := curr.val;
}

curr := Ccurr.next;

}

return m;




Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1l.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT {
1f(curr.val > m) { m := curr.val,; }

curr := Ccurr.next;

}

return m;

[ e




Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1l.val;

Node curr := 1l.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT {
1f(curr.val > m) { m := curr.val; }
curr := cCcurr.next;

FOLDS/UNFOLDS
return m;

[ e




Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT
if(curr.val > m) { m := curr.val; }

curr := Ccurr.next;
FOLDS/UNFOLDS

FOLDS/UNFOLDS
return m;




Naive Verification Attempt: Missing Specifications

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT
if(curr.val > m) { m := curr.val; }

curr := Ccurr.next;
FOLDS/UNFOLDS
LEMMAS

FOLDS/UNFOLDS
return m;




Incremental Static Verification of List Insertion

100%
90%
80%
70%

60%
% of Verification

Conditions Statically 50%
Verified

40%

30%

20%

Incremental Static Verification of List Insertion

100%

Replacing
Lemma & Folds

22

Replacing Data
S (LoSC)

Invariant

13

Full Static

Specification

44
(LoSC)

25 30 35
ification Code

(Lines of Spec Code)

40

45

50



Gradual Verification Framework

4 N

i imisti
Static OTMITETE

"Lifted” (AGT) Static

Verification e ..
Verification
System functions, System soundness,
N 4 predicates,
judgments gradual

Gradual formulas | 00 guarantee,
T handle ? Dynamic conservative
Verification extension

System

Gradual Verification
System



Extending the Prior Gradual Verification Approach

p
. Optimistic
Static “Lifted" > :
e . » Static
Verification e L.
Verification
System
: System
Q 1. Semantics of

imprecise formulas
Gradual formul

b1+ ¢

Dynamic
Verification

Sys&em

2. Consistency
between static and

run-time checks



1. Giving the Right Meaning to Imprecise Formulas

Adhere to SGG
and
Conservative

. ~1cX\C
Extension
i IDF Concepts
o
“ —
U

Abstract
Predicates

Static gradual guarantee - any specification increment with correct specifications will
not fail to statically verify




Meaning of Imprecise Formulas: By Example

{ acyclic(l) } Accessibility
Sep.aratlr.lg 1 := new Node (3,1); predicate -
conjunction - denotes
preds must refer assert acyclic(l); permission to
access a heap
location

to different heap

locations — —

* acc (root.next) * acyclic(root.next)

L ——



Meaning of Imprecise Formulas: By Example

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

R — R

{ acyclic(1l) }
1 := new Node(3,1);
{ 1 '= null * acc(l.val) * acc(l.next)

* acyclic(l.next) }

assert acyclic(l);

10000 — B



Meaning of Imprecise Formulas: By Example

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

T — B

{ acyclic(1l) }

1l := new Node (3,1);

{ 1 '= null * acc(l.val) * acc(l.next)
* acyclic(l.next) }

fold acyclic(l);

{ 1 '= null * acyclic(l) }

assert acyclic(l);

00



Meaning of Imprecise Formulas: By Example

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

r—»*

? gives
acyclic(l.next)
{ 2}

1l := new Node (3,1);
{ ? * 1 '= null * acc(l.val) * acc(l.next) }
fold acyclic(l);

{ 2 * 1 !'= null * acyclic(l) }
assert acyclic(l);

S —



Meaning of Imprecise Formulas: By Example

? * 1 !'= null * acc(l.val) * acc(l.next)

Set Interpretation

null * acc(l.val)

v
'= null * acc(l.val)

* acc(l.next)

1 == null * 1

* acc(l.ne

Self-framed

Satisfiable
l '= null * acc(l.val) * acc(l.next)

« acyelic(l.next) preserves (implies

/ e o




2. Run-time checking

a Static Verification A
Adhere to DGG
Accessibility
predicates
\

Dynamic gradual guarantee — reducing the precision of specifications does not change
the runtime system’s observable behavior for a verified program

L —




Dynamically Verifying Predicates

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

? gives
{ 2} acyclic(l.next)
1 := new Node(3,1);
{ ? * l !: null X am~Al1l «» oeXt) }
fold acyclic(l); Equi-recursive

{ 2 * 1 != null * acycls
assert acyclic(l);

—




Dynamically Verifying Accessibility Predicates




Dynamically Verifying Accessibility Predicates

main (™ length (Node x) length
I requires
acyclic (x) main




Dynamically Verifying Accessibility Predicates

main | length (Node x) length
I I requires
acyclic (x) main




Dynamically Verifying Accessibility Predicates

main |

length (Node x)
requires
acyclic (x)

length (Node x)
requires °?

length

main

length

main




Dynamically Verifying Accessibility Predicates

main

length (Node x)
requires
acyclic (x)

length (Node x)
requires °?

length

main

length | |

main



Incremental static verification is made possible with Gradual Verification

Challenges Current & Future Work

1. Semantics of imprecise 2. Consistency between Prototype
formulas static & run-time checks implementation

Formative user studies
Solution: Any precise Solution:

formula that is * Acc preds: ownership Performance studies
* Self-framed set

» Satisfiable Abstract preds: equi- Summative user studies
 Implies static part recursively




