Lecture 26:
Scaling Up Verification:
Heap-Manipulating Programs
and Gradual Verification

17-355/17-655/17-819: Program Analysis
Rohan Padhye and Jonathan Aldrich
May 6, 2021

* Course materials developed with Claire Le Goues

. institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Hoare Logic-based Verification So Far

* Focus on imperative programs without functions or memory allocation
o E.g.the WHILE language

S = x :=a | skip | S; ; S,
| if P then S, else S, | while P do S
a = x | n | a; op, a,

* What about other constructs?
o Function calls
o Heap data structures - e.g. pointers and records

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

A Language with Functions and Records

* We define a program as a list of declarations D followed by a list of statements
o Functions have one parameter, and include pre- and post-condition specifications
o Records are a named structure with a set of field declarations

D := fun g(x) requires P ensures Q) { S }
| record R { flds }
flds == fieldf;| flds flds

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Extended expression and statement syntax

S

* We also extend statements and expressions
o Function call and field assignment statements

= Function calls are statements because they have side effects - awkward in an expression
o New record and field read expressions

T i=a
skip

S1; 52

if b then S; else Ss
while bdo S

z := g(a)
x.f:=a

b

true
false
not b
b1 opy b2
a1 Opr a2

a = T opy
n op;
a1 OPq G2
new R 0Pg
a.f

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

and | or
< | < |
> | =
=1/

Verifying Functions

(P1SiQ}
fun g(x) requires P ensures) { S } OK

fn-defn

* Example (we extend to multiple arguments)
fun exp(x,n)
requiresn >0
ensures result = x"{
result:=1
count:=0
while count<ndo
result ;= result * x
count:=count+ 1

}

Verifying Function Calls - An Example

decls(g) = fun g(y) requires P ensures () .

— fn-call
([e/y)P } = = 9(a) { [o/y, afresulllQ} 7
fun exp(x,n) {true}
requiresn >0 ji=2
ensures result =x"{ ...} Z = exp(y, |)

{z=y?]

Verifying Field Assignments

{ [a/m.f]Px}fx%fa’:: (P field-assign (simplified)
{true}

xf=2

z=y*xf

{z=y*2}

The Challenge of Aliasing
{true) x.f ¢ a

x=newR {l[a/x.fIP}z.f:=a{ P}

* This program verifies!
But it’s not correct

y=X * Issue: P contains elements that might be
affected by the assignment
yf=2 * How can we fix this problem?

{xf=1}

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Addressing Aliasing

 If we know x =y, then we can update y.f when we update x.f
 If we know x =y, then we can preserve knowledge of y.f when we update x.f

 Ifwe don’t know whether x =y or not, we “forget” knowledge of y.f
o One possibility: replace all occurrences of y.f with an existentially quantified variable

Challenge 1: tracking aliasing doesn’t scale
o Ifyou have nvariables, there are n * (n-1) / 2 aliasing conditions!

" FOrw,X,Y,Z: WEXAWEYAWZZAXZYAXZZIAY#L
= Too much specification to be realistic

Challenge 2: tracking aliasing is unmodular

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Tracking Aliasing Conditions is Unmodular

fun doubleXF(x) X =newR
requiresx =y Ax.f=nAyf=m y=newR
ensuresX =y AX.f=n*2 Ay.f=m{ x.f=1
X.f=x.f*2 y.f=3
} doubleXF(x)
doubleXF doesn’t use V. assertx.f=2 Ayf=3

It’s unmodular for its

spec to mention y.

The Frame Rule supports modular specification
{P}S{Q} wars(R) n assigned(S)
{PAR}S{QAR}

* The frame rule allows us to reason about direct effects of S (transforming P to Q),
and “carry over” other things we know (in R)

o One caution: we must be sure that R does not mention any variables assigned by S

* With the Frame Rule, we can call a function that does not mentiony in its spec
and still preserve our knowledge abouty

=2 frame (simplified)

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

How the Frame Rule Helps i s aly e

frame rule here to carry

_ over our knowledge that
fun double(x) x=1 /=3
requires x=n y=3
ensures result=n*2 { X = double(x)
result=x* 2 assertx=2Ay=3

}
decls(double) = fun double(x) requires x = n ensures result = n*2... all
{x=1}z:=double(x) { x =2} frame fn
{lx=1Ay=3}x:=double(x){x=2Ary=3}

But we need a frame rule that addresses aliasing]!

{P}S{Q} wars(R)n assigned(S)
{PAR}S{Q AR}

=2 frame (simplified)

What if R mentions a
field of an object that is

|Idea: Let’s make sure assigned in S?
that P describes all of

the object-field

combinations that S

could access.

Resource Logics talk about state that is owned

fun doubleXF(x) We’'re only allowed to
_ mention x.f in the
requires acc(x.f) * x.f=n formula because we

have asserted acc(x.f)
ensures acc(x.f) *x.f=n*2{

X.f=xf*2

*is a special kind of

acc(x.f) means we own conjunction (see next
x.f and can use it in this slide)

function and its
specification

This is a research logic called Implicit Dynamic Frames (IDF)

The full Frame Rule, considering aliasing

{P}S{Q} wars(R)nassigned(S) =& P, R,S self-framed
{Px R} 5{Q = R}

frame (full)

A self-framed formula only
mentions object fields that it

The separating conjuction owns.

*is like A, but any given
object field can be owned
by only one side.

x.f = 3 is not self-framed.
acc(x.f) * x.f=3 is self-framed

Thus acc(x.f) * acc(y.f)
implies x #y

The allocation rule in Implicit Dynamic Frames

{true} x :=new R { V. f € fields(R) . acc(x.f) } alloc

* Provides the permission to all fields in the newly allocated object

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Quiz: check the full example by filling in the {}’s

fun doubleXF(x) {true}
requires acc(x.f) * x.f=n X=newR
ensures acc(x.f) * x.f=n*2{ y=newR
X.f=x.f*2 {
} x.f=1
y.f=3
{
doubleXF(x)

{ace(x.f) * x.f=2 * acc(y.f) *y.f=3}

What about recursive data structures?

record Node { int val; Node next; }

predicate list(Node n, int sum) = Can define recursive
if (n = null) predicates that describe
then ds1 . acc(n.val) * acc(n.next) properties of a data

* list(n.next, s1) * sum=n.val+s1 structure—in this case that a
list sums to a particular value
fun cons(Node n, intv)
requires list(n, s)
ensures list(result, s+v)
result = new Node Functions can use fold and

unfold to move between a
predicate and its unfolded

result.val=v
result.next=n
fold list(result, s+v)

definition

Gradual Verification of Recursive Heap Data Structures

Jenna Wise (Carnegie Mellon University, Johannes Bader (Jane Street), Cameron Wong (Jane Street),

Jonathan Aldrich (Carnegie Mellon University), Eric Tanter (University of Chile), Joshua Sunshine (Carnegie Mellon University)

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Dynamic verification increases runtime overhead for
weaker assurances

Static verification has a large upfront specification cost

Gradual verification allows developers to deal with this
cost incrementally

» without unnecessary effort
* with iImmediate feedback

Naive Verification Attempt

int findMax (Node 1)

ensures max (result,l)

int m := 1l.val;
Node curr := 1l.next;
while (curr !'= null)
1f (curr.val > m) {
m := curr.val;

[N

}

curr := Ccurr.next;

}

return m;

&&

contains (result,l)

Description
3|1 Precondition at 15.11 might not hold. Insufficie
3|2 |Location might not be readable.
K:’3 The postcondition at 24.13 might not hold. The €
ﬁ34 The postcondition at 24.13 might not hold. The ¢

input(24,13): Error: Precondition at 15.11 mi|
input(31,12): Error: Location might not be re
input(22,3): Error: The postcondition at 24.1
input(22,3): Error: The postcondition at 24.1

Boogie program verifier finished with 4 verif

s \o
o0

~

e.valid.

evaluate to true.

evaluate to true.

:nt fraction at 15.11 for Node.valid.

(pression at 24.13 might not evaluate to true.
(pression at 24.23 might not evaluate to true.

Naive Verification Attempt: Missing Preconditions

int findMax (Node 1)

requires 1 !'= null
ensures max (result,l) && contains (result,l)

int m := 1l.val;

Node curr := l.next;
while(curr !'= null) {
1f (curr.val > m) {

m := curr.val;

}

curr := Ccurr.next;

}

return m;

Naive Verification Attempt: Missing Loop Invariants

int findMax (Node 1)

requlires 1 != null
ensures max (result,l) && contains (result,l)

int m := 1l.val;
Node curr := 1l.next;
while(curr !'= null) LOOP INVARIANTS {

1f (curr.val > m) {
m := curr.val;

}

curr := Ccurr.next;

}

return m;

Naive Verification Attempt: Missing Folds and Unfolds

int findMax (Node 1)

requires 1 != null
ensures max (result,l) && contains(result,l)

int m := 1l.val;
Node curr := l.next;
FOLDS/UNFOLDS
while (curr != null) LOOP INVARIANTS {
if(curr.val > m) { m := curr.val,; }
curr := cCcurr.next;
FOLDS/UNFOLDS

FOLDS/UNFOLDS
return m;

Naive Verification Attempt: Missing Lemmas

int findMax (Node 1)

requires 1 != null
ensures max (result,l) && contains(result,l)

int m := 1l.val;
Node curr := l.next;
FOLDS/UNFOLDS
while (curr != null) LOOP INVARIANTS {
if(curr.val > m) { m := curr.val,; }
curr := cCcurr.next;
FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS
return m;

Naive Verification Attempt: Missing Specifications

int findMax (Node 1)

requires 1 !'= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1.next;

FOLDS/UNFOLDS
while (curr != null) LOOP INVARIANTS {

if(curr.val > m) { m := curr.val; }
curr := cCcurr.next;
FOLDS/UNFOLDS
LEMMAS

FOLDS/UNFOLDS
return m;

Gradual Verification to the Rescue

int findMax (Node 1)
requires °?
ensures max (result,l) && contains (result,l)

int m := 1l.val;
Node curr := l.next;
while (curr != null) 2 {
1f (curr.val > m) {
m := curr.val;

}

curr := cCcurr.next;

J

return m;

Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains (result,l)

int m := 1l.val;
Node curr := l.next;
while (curr != null) 2 {
1f (curr.val > m) {
m := curr.val;

}

curr := cCcurr.next;

J

return m;

Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1l.val;
Node curr := 1l.next;
while (curr != null) ? && LOOP INVARIANTS {
1f (curr.val > m) {
m := curr.val;
}

curr := Ccurr.next;

}

return m;

Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1l.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT {
1f(curr.val > m) { m := curr.val,; }

curr := Ccurr.next;

}

return m;

[e

Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1l.val;

Node curr := 1l.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT {
1f(curr.val > m) { m := curr.val; }
curr := cCcurr.next;

FOLDS/UNFOLDS
return m;

[e

Gradual Verification to the Rescue

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT
if(curr.val > m) { m := curr.val; }

curr := Ccurr.next;
FOLDS/UNFOLDS

FOLDS/UNFOLDS
return m;

Naive Verification Attempt: Missing Specifications

int findMax (Node 1)
requires ? && 1 '= null
ensures max (result,l) && contains(result,l)

int m := 1.val;
Node curr := 1.next;
FOLDS/UNFOLDS

while (curr != null) ? && LOOP INVARIANT
if(curr.val > m) { m := curr.val; }

curr := Ccurr.next;
FOLDS/UNFOLDS
LEMMAS

FOLDS/UNFOLDS
return m;

Incremental Static Verification of List Insertion

100%
90%
80%
70%

60%
% of Verification

Conditions Statically 50%
Verified

40%

30%

20%

Incremental Static Verification of List Insertion

100%

Replacing
Lemma & Folds

22

Replacing Data
S (LoSC)

Invariant

13

Full Static

Specification

44
(LoSC)

25 30 35
ification Code

(Lines of Spec Code)

40

45

50

Gradual Verification Framework

4 N

i imisti
Static OTMITETE

"Lifted” (AGT) Static

Verification e ..
Verification
System functions, System soundness,
N 4 predicates,
judgments gradual

Gradual formulas | 00 guarantee,
T handle ? Dynamic conservative
Verification extension

System

Gradual Verification
System

Extending the Prior Gradual Verification Approach

p
. Optimistic
Static “Lifted" > :
e . » Static
Verification e L.
Verification
System
: System
Q 1. Semantics of

imprecise formulas
Gradual formul

b1+ ¢

Dynamic
Verification

Sys&em

2. Consistency
between static and

run-time checks

1. Giving the Right Meaning to Imprecise Formulas

Adhere to SGG
and
Conservative

. ~1cX\C
Extension
i IDF Concepts
o
“ —
U

Abstract
Predicates

Static gradual guarantee - any specification increment with correct specifications will
not fail to statically verify

Meaning of Imprecise Formulas: By Example

{ acyclic(l) } Accessibility
Sep.aratlr.lg 1 := new Node (3,1); predicate -
conjunction - denotes
preds must refer assert acyclic(l); permission to
access a heap
location

to different heap

locations — —

* acc (root.next) * acyclic(root.next)

L ——

Meaning of Imprecise Formulas: By Example

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

R — R

{ acyclic(1l) }
1 := new Node(3,1);
{ 1 '= null * acc(l.val) * acc(l.next)

* acyclic(l.next) }

assert acyclic(l);

10000 — B

Meaning of Imprecise Formulas: By Example

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

T — B

{ acyclic(1l) }

1l := new Node (3,1);

{ 1 '= null * acc(l.val) * acc(l.next)
* acyclic(l.next) }

fold acyclic(l);

{ 1 '= null * acyclic(l) }

assert acyclic(l);

00

Meaning of Imprecise Formulas: By Example

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

r—»*

? gives
acyclic(l.next)
{ 2}

1l := new Node (3,1);
{ ? * 1 '= null * acc(l.val) * acc(l.next) }
fold acyclic(l);

{ 2 * 1 !'= null * acyclic(l) }
assert acyclic(l);

S —

Meaning of Imprecise Formulas: By Example

? * 1 !'= null * acc(l.val) * acc(l.next)

Set Interpretation

null * acc(l.val)

v
'= null * acc(l.val)

* acc(l.next)

1 == null * 1

* acc(l.ne

Self-framed

Satisfiable
l '= null * acc(l.val) * acc(l.next)

« acyelic(l.next) preserves (implies

/ e o

2. Run-time checking

a Static Verification A
Adhere to DGG
Accessibility
predicates
\

Dynamic gradual guarantee — reducing the precision of specifications does not change
the runtime system’s observable behavior for a verified program

L —

Dynamically Verifying Predicates

predicate acyclic (Node root) =
1f root == null then true else acc(root.val)
* acc(root.next) * acyclic(root.next)

? gives
{ 2} acyclic(l.next)
1 := new Node(3,1);
{ ? * l !: null X am~Al1l «» oeXt) }
fold acyclic(l); Equi-recursive

{ 2 * 1 != null * acycls
assert acyclic(l);

—

Dynamically Verifying Accessibility Predicates

Dynamically Verifying Accessibility Predicates

main (™ length (Node x) length
I requires
acyclic (x) main

Dynamically Verifying Accessibility Predicates

main | length (Node x) length
I I requires
acyclic (x) main

Dynamically Verifying Accessibility Predicates

main |

length (Node x)
requires
acyclic (x)

length (Node x)
requires °?

length

main

length

main

Dynamically Verifying Accessibility Predicates

main

length (Node x)
requires
acyclic (x)

length (Node x)
requires °?

length

main

length | |

main

Incremental static verification is made possible with Gradual Verification

Challenges Current & Future Work

1. Semantics of imprecise 2. Consistency between Prototype
formulas static & run-time checks implementation

Formative user studies
Solution: Any precise Solution:

formula that is * Acc preds: ownership Performance studies
* Self-framed set

» Satisfiable Abstract preds: equi- Summative user studies
 Implies static part recursively

