Software Model Checking and
Counter-example Guided
Abstraction Refinement

17-355/17-655/17-819: Program Analysis
Rohan Padhye and Jonathan Aldrich
April 29, 2021

Slides developed with Claire Le Goues

. . || . .
institute for | Carnegie Mellon University

SOFTWARE -
| S r ResearcH | School of Computer Science

Motivation: How should we analyze this?

* * means something we can’t

2: do { analyze (user input, random
lock(); value)
; o op + Line 5: the lock is held if and
: i : ~
. unlock(): only if old = new
new++,;
5: } while (new !'= o0ld);
6: unlock();
return;

. . || . 3
institute for | Carnegie Mellon University

SOFTWARE -
| S r ResearcH | School of Computer Science

Motivation: How should we analyze this?

Example() { * * means something we can’t
1: if (*){ analyze (user input, random
7: do { value)
got_lock = 0; _ _ _
8- if (*){ * Line 10: the lock is held if and
9 lock(); only if got_lock=1
got_lock++;
10: if (got_-lock){
11: unlock();
12: } while ()
h

. . || . 3
institute for | Carnegie Mellon University

SOFTWARE -
| S r ResearcH | School of Computer Science

Dataflow analysis requires fixed

abstractions, e.g., zero/non-zero,

TradeOffS'" locked/unlocked
Example() {
1: if (x){ 2: do
7: do { lock();

got_lock = 0; old = new;
8: if (%) 3: if (*){
9: lock(); 4. unlock();

gOt_lO ck++ ’ new++;

¥
10: if (got-lock){ 5: 1} while (new !'= old);
11: unlock(); 6: unlock();

return;

12: } while (%)

} - Explicit-state Model Checking needs

programs to be represented as a
finite state model...state explosion??

Symbolic execution shows need to
eliminate infeasible paths, see

lock/unlock on correlated branches
(more complicated logic!).

Enter: Abstraction Refinement

« Can we get both soundness and the precision to eliminate infeasible
paths?
o In general: of course not! That’s undecidable.
o Butin many situations we can solve it with abstraction refinement.

* ...whatwill we lose?
o Answer: Termination guarantees. OH WELL.

SOFTWARE
RESEARCH

|Sf institute for |~ Carnegie Mellon University

School of Computer Science

CEGAR: Counterexample Guided Abstraction Refinement

Program,
Property
Spec

M|

Begin with a
coarse
abstraction

SOFTWARE

Check for
property

violation.

Abstract Abstract Model N
0
Using Program " Checker [Eror Property
Predicates Holds
New Error
Predicates Found
A\ 4
Generate Infeasible Path Feasible
New | Feasibility ————» Report
Predicates Checker Bug

Refine abstraction to
exclude infeasible
“error” path

institute for | Carnegie Mellon University

RESEARCH

School of Computer Science

Is the error path
actually feasible?
Hint: weakest
preconditions!

Property: Locking Protocol

lock

unlock

unlock lock

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

institute for |~ Carnegie Mellon University

SOFTWARE -
| S r ResearcH | School of Computer Science

Example Blast Input

Example () {
1: do{
lock () ; lock

old = new;
q = g—->next; ‘-

2: if (g != NULL) {
3: g->data = new;
unlock () ; unlock lock

new ++,;

}
4: } while(new != old);
5: unlock ()

\W/

esearch | School of Computer Science

Incorporating Specs

PERTRNE () Example () {
1: dof{ 1: dof
lock () ; - dov
old = new; if L=1 goto ERR;
q = g->next; else L=1;
2: if (g !'= NULL) { old = new;
3: g->data = new; B B)
unlock () ; q = J->next;
new ++; 2: if (g !'= NULL) {
} 3 g->data = new;
4: } while(new != old); if L=0 goto ERR;
5: unlock () else L=0:
return; ’
) new ++;
lock }
4: } while(new != o0ld);
5: if L=0 goto ERR;
else 1=0: O(ig;il;al program
unlock lock return; V’ﬁeivesr;pfacr;’ff
| ERR: abort() pros

\ reaches ERR 4

Program As
Labeled Transition System

—:~—l state Transition
Ly @ - @

i o .09 o o2 o l pc 3 3: unlock(); P€ — 4
T T lock —> @ et : lock ~Q
e ° o | old —5 4- ’ old —5
T ; l l new — 5 = new > 6
—T_/ T i T ——e| g 1 0x133a q > 0x133a
— ® o—o
T T Example () {
1: do {
° ® e lock () ;
old = new;

[

b ¢ q = g->next;

T \ 2: if (g != NULL){
— ® [[3: g->data = new;

unlock () ;

}
4: } while(new != old);
5: unlock ();
return; }

The Safety Verification Problem

Error

(e.g., states with
PC = Err)

Safe States

(never reach
Error)

Initial

Is there a path from an initial to an error state ?
Problem: Infinite state graph (old=1, old=2, old=...)
Solution : Set of states ' logical formula

Representing
[Sets of States] as Formulas

[F] F

states satisfying F {s | s £ F}| Formula over prog. vars
[F1] N [F2] FinF,

[F1] v [F;] Fiv F,

[F] —~F

[F1] < [F,] Fi=F,

i.e. F, A —=F, unsatisfiable

ldea 1: Predicate Abstraction

0 0 R e Predicates on program state:
//T e 4\¢_/‘ I lock (i.e., lock=true)

! old = new

i
S
e o ¢ Statessatisfying same predicates

- Merged into one abstract state

t
.
7 :
are equivalent
e
—

e fHabstract states is finite

._

i

Bl s

T \) / - Thus model-checking the

7 °/* abstraction will be feasible!
L

Abstract States and Transitions

State

@ - @

3: unlock () ;
o new++,; O
E 4: } ...

>
Theorem Prover

lock — lock
old=new — old=new

Abstraction

1__.14__ 1, 1, State
I t t 11
1% N I |11 € - @D
—— ——
4 4 4] 3: unlock() ;
new++,;
—r— I——»' I l 4:} ..
M MEL LS
v I I I I
—— —— ——
I I { /l A X A,
| ﬂ*——bl ::I __: Theorem Prover
lock — lock
old=new — old=new

Existential Lifting
(i.e., A;2>A, iff 3c,eA,. c,€A,. c2¢,) 15

Abstraction

—_ State
HH @ - @
| 3: unlock();
l . }n.e"w-l--l-;
\\ t
I
Ll »

lock — lock
old=new — old=new

Analyze Abstraction

Analyze finite graph

Over Approximate:

t Abstract. Safe = System Safe
_,| T 1 No false negatives
t
_J:}.' \ "] Problem
t 1 / | Spurious counterexamples
=)
—

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction!

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
states across cut
2. Build refined abstraction

Imprecision due to merge

19

|lterative Abstraction-Refinement

Solution
Use spurious counterexamples
to refine abstraction

2
J 1. Add predicates to distinguish
L4 states across cut
l | 2. Build refined abstraction
g i < -eliminates counterexample
// 3. Repeat search
Until real counterexample

or system proved safe
[Kurshan et al 93] [Clarke et al 00]

[Ball-Rajamani 01]

20

Problem: Abstraction is Expensive

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

|/

—_—

Reachable

Observe

Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100
#Reach ~ 1000’s

21

Solution1: Only Abstract Reachable States

Z

Problem Solution

#abstract states = 2#predicates Build abstraction during search
Exponential Thm. Prover queries

Safe

Solution2: Don’t Refine Error-Free Regions

Problem Solution

#abstract states = 2#predicates Don’t refine error-free regions
Exponential Thm. Prover queries

Build reachability tree.

* Generate Abstract Reachability Tree
o Contains all reachable nodes

o Annotates each node with state
= |nitially LOCK=0orLOCK=1
= Cross product of CFG nodes and data flow abstraction

* Algorithm: depth-first search

o Generate nodes one by one

o If you come to a node that’s already in the tree, stop
= This state has already been explored through a different control flow path

o Ifyou come to an error node, stop

S r institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | School of Computer Science

Less abstractly: first build a control-flow graph...
then use it to build a reachability tree

2: do {
lock();
old = new;
3: if (%)
4: unlock(); [new != old]
new++;
5: } while (new !'= old);
6: unlock();
return;

unlock();

. . | . .
institute for | Carnegie Mellon University
| S r SOFTWARE

ResearcH | School of Computer Science

Reachability Tree

Unroll Abstraction
1 1. Pick tree-node (=abs. state)

(CFG node + abstractions like lock status)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

We repeat node 3
rather than looping
back (but cut off there)
S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | School of Computer Science

Key Idea: Reachability Tree

Initial .
1 Unroll Abstraction
1 1. Pick tree-node (=abs. state)
5 (CFG node + abstractions like lock status)
2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

3
j-/ \5 Find min infeasible suffix
- Learn new predicates
3 . 3 - Rebuild subtree with new preds.
Error Free

SOFTWARE .
ResearcH | School of Computer Science

S r institute for |~ Carnegie Mellon University

Key Idea: Reachability Tree

Initial .
1 Unroll Abstraction
1 1. Pick tree-node (=abs. state)
2 (CFG node + abstractions like lock status)
2. Add children (=abs. successors)
_/ 3. On re-visiting abs. state, cut-off
3 6
:{-/ \5 £ 1 Find min infeasible suffix
\ ! \ - Learn new predicates
3 3 11 [8] [1] - Rebuild subtree with new preds.
Error Free

S1: Only Abstract Reachable States
SAFE S2: Don’t refine error-free regions

28

Less abstractly: build reachability tree

2: do {
lock();
old = new;
3: if (%)
4: unlock(); [new != old]
new++;
. 1 I = .
6 wnteckOs R unocks
) ’ new++;
return;

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | School of Computer Science

Example () {
1l: dof{
lock() ;

old = new;

g = g->next;

Build-and-Search

1| —Lock

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}lwhile (new != old);

5: unlock ();

}

1

Predicates: Lock

Reachability Tree

30

Build-and-Search

Example () {
1l: do{
lock () ;
old = new; lock () 1| —LOCK
q = g->next; old = new |
2: if (g != NULL) { g=g->next - .
3: g->data = new; 2 Lock
unlock () ;
new ++;
}
4:}while(new != old);

5: unlock ();
}

1——2

Reachability Tree

Predicates: Lock 31

Build-and-Search

Example () {
1l: do{
lock() ;
old = new; 11 —LOCK
g = g—->next; !
2: if (g != NULL) { —L .
3: g->data = new; 2 Lock
unlock () ; [g!=NULL]
new ++;
; 3 LOCK
4:}lwhile (new != old);

5: unlock ();
}

1—-2—1-3

Reachability Tree

Predicates: Lock 32

Build-and-Search

Example () {
1l: do{
lock () ;
old = new; 1 — LOCK
q = g->next; '
2: if (g != NULL) { —L ‘
3: g->data = new; 2 LOCK
unlock () ;
new ++; _/
: 3 LOCK
4:}while (new != old); g->data = new
5: unlock (); unlock () O
} new++
4 — LOCK

w—>h

12—

Reachability Tree

Predicates: Lock 33

Example () {
1l: dof{
lock() ;

old = new;

Build-and-Search

g = g->next;

2: if (g != NULL) {
3: g->data = new;

unlock () ;
new ++;

}

Li:}while(new !'= old);

5: unlock ();
}

12—

W—r D= U1

Predicates: Lock

1| —Lock
2 | LOCK
3 LOCK
4 — LOCK
[new==01d]
5 - LOCK

Reachability Tree

34

Build-and-Search

Example () {
1l: dof{
lock() ;
old = new; 11 —LOCK
g = g—->next; '
2: if (g != NULL) { —‘1'— ‘
3: g->data = new; 2| LOCK
unlock() ;
new ++;
/ 3 LOCK
4:}while(new != o0ld);
5: unlock (); (:)
¥
4 —~ LOCK
5 - LOCK
5 .
‘I; unlock () O
T - LOCK
1—1-2—-3

Reachability Tree

Predicates: Lock 35

Depth First Search Example

[T] [T]

()
unlock() \
new-++ [got lock !'=0]

@ LOCK=0

36

Is the Error Real?

* Use weakest preconditions to find out the weakest
precondition that leads to the error

o Ifthe weakest precondition is false, there is no initial program
condition that can lead to the error

o Therefore the error is spurious

 Blast uses a variant of weakest preconditions

o creates a new variable for each assignment before using weakest
preconditions

o Instead of substituting on assignment, adds new constraint
o Helps isolate the reason for the spurious error more effectively

SOFTWARE .
ResearcH | School of Computer Science

. . || . .
| S r institute for |~ Carnegie Mellon University

Is the Error Real?

LOCK=0
e assume True; (T] °

* lock(); LOCK=0
o — . lock()
old = new;
« assume True; o LOCK=1
* unlock();
© new++;

e assume new==old

« error (lock==0) ° LOCK=0

unlock()

@ LOCK=0

SOFTWARE
RESEARCH

|Sf institute for |~ Carnegie Mellon University

School of Computer Science

Model Locking as Assignment

e assume True;

* lock=1;

* old =new;

e assume True;

* lock=0;

* new=new+1;

e assume new==old
* error (lock==0)

S r institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | School of Computer Science

Index the Variables

* assume True;

e lockl=1

e old1l =newl;

e assume True;

* lock2=0

° new2=newl+1

e assume new2==old1
 error (lock2==0)

S r institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | School of Computer Science

Generate Weakest Preconditions

e assume True;

. lockl =1
. old1 = newl: A lock1==1
A old1==newl

e assume True; \
* lock2=0 A True

A lock2==0 Contradictory!

A True

° new2=newl +1

A hew2==newl+1
e assume new2==old1

A hew2==0ld1
lock2==0

* error (lock2==0)

S r institute for |~ Carnegie Mellon University

SOFTWARE .
ResearcH | School of Computer Science

Relevant Sidebar: Craig Interpolation

e Given an unsatisfiable formulaA « A True
A B, the Craig Interpolant | is a

formula such that: * Alockl==
o A=>1 e Aoldl==newl
o IABis unsatisfial?le _ e ATrue
o |l only refers to variables mentioned
in both A and B e Alock2==0

* [tis guaranteed to exist, proof
elided.

A hew2==newl+1
A hew2==0ld1
lock2==0

42

Why is the Error Spurious?

More precisely, what predicate could we
track that would eliminate the spurious
error message?

Consider, for each node, the constraints
generated before that node (c1) and after
that node (c2)

Find a condition | such that
o cl=>I|
= |jstrue atthe node

o lonly contains variables mentioned in
both c1 and c2

= | mentions only variables in scope (not old
or future copies)

o |Ac2="false

= |is enough to show that the rest of the
path is infeasible

o |is guaranteed to exist
= See Craig Interpolation

A True

A lockl==
Aoldl==newl*—
A True

A lock2==0

A new2==npewl+1

A hew2==0ld1
lock2==0

Interpolant:

old == new

43

Analyze Counterexample

Example () {
1: dof
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {

3: g->data = new;
unlock () ;
new ++;
}
4:}lwhile (new != old);

5: unlock ();
}

wW—>Dh— U1

124

Predicates: Lock

LOCK

— LOCK

— LOCK

O

— LOCK

— LOCK

LOCK

lock ()
old = new
g=g->next

[q!=NULL]

g->data = new
unlock ()
new+-+

[new==01d]

unlock ()

Reachability Tree

44

Analyze Counterexample

Example () {
1: dof
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {

3: g->data = new;
unlock () ;
new ++;
}
4:}lwhile (new != old);

5: unlock ();
}

wW—>Dh— U1

124

Predicates: Lock

1
.

2
3 LOCK
4 — LOCK
5 — LOCK

ﬁo
— LOCK

— LOCK

. old = new
LOCK

new++

[new==01d]

Inconsistent

new == old

Reachability Tree

45

Reanalyzing the Program

* Explore a subtree again
o Start where new predicates were discovered
o This time, track the new predicates

o Ifthe conjunction of the predicates on a node is false, stop exploring—this node is
unreachable

SOFTWARE
RESEARCH

|Sf institute for |~ Carnegie Mellon University

School of Computer Science

Reanalysis of Example (Left Side)

)
[T]

[T]

[new != old]

unlm
)

N

LDC7LDCKQ False False unlock()
& new=cl

T LOCKE=0 & new=old
Already Covered Unreachable

47

Analyzing the Right Hand Side

1] [T]

A

[got lock !'=0]

[T]

Exercise: run weakest
preconditions from the
unlock() at the end of the
path 1-7-8-10-11-12.

Recall that we model locking

with a variable lock, so
unlock() is an error if lock==0

48

Reanalysis
1 E le ()
N [T] 1:"&1:5 ?*){{

/% < 7: do {

(got_lock=0) ‘ gOt—lo‘:k = 0;
e 8: if (x){
ﬂk\[] 9: lock();

T

got_lock++;

@
lock() }
golockt) (10)¢ 1omg) 10: if (got_-lock){
e 11: unlock();

[get lock=0] \}/E) ’ }
4 unlock() 12: } while (%)

Ofs)

School of Computer Science

\G%D
SOFTWARE
RESEARCH

Generate Weakest Preconditions

e assume True;
got_lock = 0;
assume True;

assume got_lock !'=0;

error (lock==0)

. . | . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | School of Computer Science

Why is the Error Spurious?

* More precisely, what predicate could we
track that would eliminate the spurious
error message?

* Consider, for each node, the constraints
generated before that node (c1) and after
that node (c2)

* Find a condition | such that
o cl=>I|
= |jstrue atthe node

o lonly contains variables mentioned in
both c1 and c2

= | mentions only variables in scope (not old
or future copies)

o |Ac2="false

= |is enough to show that the rest of the
path is infeasible

o lis guaranteed to exist
= See Craig Interpolation

A True

A got_lock==0
A True

A got_lock!=0
lock==0

Exercise: now find the
Craig interpolant

51

Repeat Build-and-Search

Example () {
1l: do{
lock() ;

old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}lwhile (new != old);

5: unlock ();
}

1

Predicates: LOCK, new==old

1| — LOCK

...but only at the minimum suffix!

Reachability Tree

52

Repeat Build-and-Search

Example () {

1: dof{
lock () ;
old = new; 1| — LOCK
g = g->next;

2: if (g != NULL) { .

Sk g->data = new; LOCK , new==old 2

unlock () ;
new ++;
}

. LOCK , new==old | 3
|_4: }while (new != old);

5: unlock (); O
}

_ LOCK , —new =old | 4

. %[new==old]

4,

1

23

Reachability Tree

Predicates: LOCK, new==old

Repeat Build-and-Search

Example () {

1: dof{
lock () ;
old = new; 1| — LOCK
g = g->next;

2: if (g != NULL) { .

Sk g->data = new; LOCK , new==old 2

unlock () ;
new ++;
}

. LOCK , new==old | 3
Li:}whlle(new !'= old);

5: unlock (); O
}

_ LOCK , —new =old | 4

. % [new!=01d]

1
— LOCK,
: 4. — new == old
1———»2-——»3

Reachability Tree

Predicates: LOCK, new==old

Repeat Build-and-Search

Example () {

1: dof{
lock () ;
old = new; 1| — LOCK
g = g->next;

2: if (g != NULL) { .

Sk g->data = new; LOCK , new==old 2

}

unlock () ; __ﬂ“////
new ++;
| SAFE

LOCK , new==old | 3

4:}while (new != old);
5: unlock (); O
1
- LOCK , — new = old 4 4| Lock , hew=old
1 5
«~—15
oce, O
4, | 44 — new == old
p |
1___}2 T3 — LOCK , new==old

Predicates: LOCK, new==old ReaC h ab] h ty Tree 55

Key Idea: Reachability Tree

Initial
1
L

2

Unroll

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix

/\l

\ - Learn new predicates

1] - Rebuild subtree with new preds.

Error Free

SAFE

S1: Only Abstract Reachable States
S2: Don’t refine error-free regions

56

Blast Techniques, Graphically

* Explores reachable state, not all paths * Lazy Abstraction

o Stops when state already seen on another
path

o Uses predicates on demand

o Only applies predicate to relevant
part of tree

[new pred J

new pred
Ilock=0 & ... new=old got lock=0

COVERED'! T =S Io

Experimental Results

Program [Postprocessed| Predicates |[BLAST Time|Ctrex analysis|Proof Size
LOC Total[Active (sec) (sec) (bytes)
gpmouse.c 23539 2 2 0.50 0.00 175
ide.c 18131 5 5 4.59 0.01 253
ahalb52x.c 17736 2 2 20.93 0.00
tlan.c 16506 5) 4 428.63 403.33 405
cdaudio.c 17798 85 45 1398.62 540.96 156787
floppy.c 17386 62 37 2086.35 1565.34
fixed] 93 44 395.97 17.46 60129
kbfiltr.c 12131 54 40 64.16 5.89
48 35 256.92 165.25
[fixed] 37 34 10.00 0.38 7619
mouclass.c 17372 o7 46 54.46 3.34
parport.c 61781 193 | 50 1980.09 519.69 102967

M|

institute for
SOFTWARE
RESEARCH

Carnegie Mellon University
School of Computer Science

Termination

* Not guaranteed
o The system could go on generating predicates forever

e Can guarantee termination
o Restrict the set of possible predicates to a finite subset
= Finite height lattices in data flow analysis!
o Those predicates are enough to predict observable behavior of program
= E.g.the ordering of lock and unlock statements

= Predicates are restricted in practice
» E.g. likely can’t handle arbitrary quantification as in Dafny
* Model checking is hard if properties depend on heap data, for example

o Can’t prove arbitrary properties in this case

* |n practice
o Terminate abstraction refinement after a time bound

SOFTWARE
RESEARCH

|Sf institute for |~ Carnegie Mellon University

School of Computer Science

Key Points of CEGAR

* To prove a property, may need to strengthen it
o Just like strengthening induction hypothesis

* CEGAR figures out strengthening automatically
o From analyzing why errors are spurious

* Blast uses /azy abstraction

o Only uses an abstraction in the parts of the program where it is
needed

o Only builds the part of the abstract state that is reached
o Explored state space is muchsmaller than potential state space

. . | . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | School of Computer Science

Blast in Practice

* Has scaled past 100,000 lines of code
o Realistically starts producing worse results after a few 10K lines

* Sound up to certain limitations

o Assumes restricted (“safe”) use of C
= No aliases of different types; how realistic?

o No recursion, no function pointers
o Need models for library functions

* Has also been used to find memory safety errors, race
conditions, generate test cases

SOFTWARE .
ResearcH | School of Computer Science

S r institute for |~ Carnegie Mellon University

