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Motivation: How should we analyze this?

• * means something we can’t 
analyze (user input, random 
value)

• Line 5: the lock is held if and 
only if old = new
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Motivation: How should we analyze this?

• * means something we can’t 
analyze (user input, random 
value)

• Line 10: the lock is held if and 
only if got_lock = 1
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Tradeoffs…
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Dataflow analysis requires fixed 
abstractions, e.g., zero/non-zero, 
locked/unlocked

Symbolic execution shows need to 
eliminate infeasible paths, see 
lock/unlock on correlated branches 
(more complicated logic!). 

Explicit-state Model Checking needs 
programs to be represented as a 
finite state model…state explosion??



Enter: Abstraction Refinement

• Can we get both soundness and the precision to eliminate infeasible 
paths?
o In general: of course not!  That’s undecidable.
o But in many situations we can solve it with abstraction refinement.

• …what will we lose? 
o Answer: Termination guarantees.  OH WELL.
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CEGAR: Counterexample Guided Abstraction Refinement
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Spec
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Program
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Path 
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Begin with a 
coarse 
abstraction

Check for 
property 
violation.

Is the error path 
actually feasible?  
Hint: weakest 
preconditions!

Refine abstraction to 
exclude infeasible 
“error” path



Property: Locking Protocol

“An attempt to re-acquire an acquired lock or 
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

lock

lock

unlock

unlock



Example Blast Input

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return;
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return;
}

lock

lock

unlock

unlock



Incorporating Specs

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return;
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return;
}

0 1

lock

lock

unlock

ERR
unlock

Example ( ) {
1: do{

if L=1 goto ERR;
else L=1; 
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

if L=0 goto ERR;
else L=0;
new ++;

}
4: } while(new != old);
5:  if L=0 goto ERR;

else L=0; 
return;

ERR: abort(); 
}   

Example ( ) {
1: do{

if L=1 goto ERR;
else L=1; 
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

if L=0 goto ERR;
else L=0;
new ++;

}
4: } while(new != old);
5:  if L=0 goto ERR;

else L=0; 
return;

ERR: abort(); 
}   9

Original program 
violates spec iff

new program 
reaches ERR



Program As 
Labeled Transition System

State
Transition

3: unlock();
new++;

4:} …

3: unlock();
new++;

4:} …

pc
lock
old
new
q

 3

 5
 5
 0x133a

pc
lock
old
new
q

 4

 5
 6
 0x133a

Example ( ) {
1: do {

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return; }

Example ( ) {
1: do {

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return; } 10



The Safety Verification Problem

Initial

Error
(e.g., states with
PC = Err)

Is there a path from an initial to an error state ?

Problem: Infinite state graph (old=1, old=2, old=…)

Solution : Set of states ' logical formula

Safe States
(never reach 

Error)

11



Representing
[Sets of States] as Formulas

[F]
states satisfying F  {s | s ⊨ F }

F
Formula over prog. vars

[F1]  [F2] F1  F2

[F1]  [F2] F1  F2

[F] F 

[F1]  [F2] F1  F2

i.e. F1  F2  unsatisfiable
12



Idea 1: Predicate Abstraction

• Predicates on program state:
lock                 (i.e., lock=true)
old = new

• States satisfying same predicates
are equivalent
– Merged into one abstract state

• #abstract states is finite
– Thus model-checking the 

abstraction will be feasible!
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Abstract States and Transitions

State

3: unlock();
new++;

4:} …

3: unlock();
new++;

4:} …

pc
lock
old
new
q

 3

 5
 5
 0x133a

pc
lock
old
new
q

 4

 5
 6
 0x133a

lock 
old=new

 lock 
 old=new

Theorem Prover 
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Abstraction

State

3: unlock();
new++;

4:} …

3: unlock();
new++;

4:} …

pc
lock
old
new
q

 3

 5
 5
 0x133a

c2

pc
lock
old
new
q

 4

 5
 6
 0x133a

A1 A2

lock 
old=new

 lock 
 old=new

Theorem Prover 

Existential Lifting 
(i.e., A1A2 iff c1A1. c2A2. c1c2)

c1
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Abstraction

State

3: unlock();
new++;

4:} …

3: unlock();
new++;

4:} …

pc
lock
old
new
q

 3

 5
 5
 0x133a

pc
lock
old
new
q

 4

 5
 6
 0x133a

lock 
old=new

 lock 
 old=new
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Analyze Abstraction

Analyze finite graph 

Over Approximate: 
Abstract. Safe  System Safe

No false negatives

Problem
Spurious counterexamples
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Idea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction!
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1. Add predicates to distinguish
states across cut

2. Build refined abstraction

Solution
Use spurious counterexamples
to refine abstraction

Idea 2: Counterex.-Guided Refinement

Imprecision due to merge
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Iterative Abstraction-Refinement

1. Add predicates to distinguish
states across cut

2. Build refined abstraction
-eliminates counterexample

3. Repeat search
Until real counterexample
or system proved safe

Solution
Use spurious counterexamples
to refine abstraction

[Kurshan et al 93] [Clarke et al 00]
[Ball-Rajamani 01]
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Problem: Abstraction is Expensive

Reachable

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Observe
Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100 ,
#Reach ~ 1000’s 
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Safe

Solution
Build abstraction during search

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Solution1: Only Abstract Reachable States

22



Solution
Don’t refine error-free regions

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Solution2: Don’t Refine Error-Free Regions

Error 
Free
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Build reachability tree. 

• Generate Abstract Reachability Tree
o Contains all reachable nodes
o Annotates each node with state

 Initially LOCK = 0 or LOCK = 1

 Cross product of CFG nodes and data flow abstraction

• Algorithm: depth-first search
o Generate nodes one by one
o If you come to a node that’s already in the tree, stop

 This state has already been explored through a different control flow path

o If you come to an error node, stop

24



Less abstractly: first build a control-flow graph…
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2

3

4

5

6

ret

lock();
old=new;

[T]

[T]

[new != old]

unlock();
new++;

unlock();

[new = old]

then use it to build a reachability tree



Key Idea: Reachability Tree
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1

2

3

4

3

Unroll Abstraction
1. Pick tree-node (=abs. state)

(CFG node + abstractions like lock status)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Initial

We repeat node 3 
rather than looping 

back (but cut off there)



Key Idea: Reachability Tree

3

1

2

3

4 5

3

7

6

Error Free

Unroll Abstraction
1. Pick tree-node (=abs. state)

(CFG node + abstractions like lock status)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Initial



Key Idea: Reachability Tree

3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAFE

Unroll Abstraction
1. Pick tree-node (=abs. state)

(CFG node + abstractions like lock status)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Initial
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Less abstractly: build reachability tree
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2

3

4

5

6

ret

lock();
old=new;

[T]

[T]

[new != old]

unlock();
new++;

unlock();

[new = old]



Build-and-Search 

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

Reachability Tree
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Build-and-Search 

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

lock()
old = new
q=q->next

LOCK2

2

Reachability Tree
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Build-and-Search 

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK

[q!=NULL]

3

3

Reachability Tree
32



Build-and-Search 

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

q->data = new
unlock()
new++

4

4

 LOCK

Reachability Tree
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Build-and-Search 

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

 LOCK

 LOCK

[new==old]

5
5

Reachability Tree
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Build-and-Search 

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

 LOCK

 LOCK5
5

unlock()

 LOCK

Reachability Tree
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Depth First Search Example

36



Is the Error Real?

• Use weakest preconditions to find out the weakest 
precondition that leads to the error
o If the weakest precondition is false, there is no initial program 

condition that can lead to the error
o Therefore the error is spurious

• Blast uses a variant of weakest preconditions
o creates a new variable for each assignment before using weakest 

preconditions
o Instead of substituting on assignment, adds new constraint
o Helps isolate the reason for the spurious error more effectively
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Is the Error Real?
• assume True;

• lock();

• old = new;

• assume True;

• unlock();

• new++;

• assume new==old

• error (lock==0)
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Model Locking as Assignment
• assume True;

• lock = 1;

• old = new;

• assume True;

• lock = 0;

• new = new + 1;

• assume new==old

• error (lock==0)

39



Index the Variables
• assume True;

• lock1 = 1

• old1 = new1;

• assume True;

• lock2 = 0

• new2 = new1 + 1

• assume new2==old1

• error (lock2==0)

40



Generate Weakest Preconditions
• assume True;

• lock1 = 1

• old1 = new1;

• assume True;

• lock2 = 0

• new2 = new1 + 1

• assume new2==old1

• error (lock2==0)

 True

 lock1==1

 old1==new1

 True

 lock2==0

 new2==new1+1

 new2==old1

lock2==0

41

Contradictory!



Relevant Sidebar: Craig Interpolation

• Given an unsatisfiable formula A 
 B, the Craig Interpolant I  is a 
formula such that:
o A  I
o I  B is unsatisfiable
o I only refers to variables mentioned 

in both A and B

• It is guaranteed to exist, proof 
elided. 

•  True

•  lock1==1

•  old1==new1

•  True

•  lock2==0

•  new2==new1+1

•  new2==old1

• lock2==0

42



Why is the Error Spurious?

• More precisely, what predicate could we 
track that would eliminate the spurious 
error message?

• Consider, for each node, the constraints 
generated before that node (c1) and after 
that node (c2)

• Find a condition I such that
o c1 => I

 I is true at the node

o I only contains variables mentioned in 
both c1 and c2
 I mentions only variables in scope (not old 

or future copies)

o I  c2 = false
 I is enough to show that the rest of the 

path is infeasible

o I is guaranteed to exist
 See Craig Interpolation

•  True

•  lock1==1

•  old1==new1

•  True

•  lock2==0

•  new2==new1+1

•  new2==old1

• lock2==0

43

Interpolant:
old == new



Analyze Counterexample

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

 LOCK

 LOCK5
5

 LOCK

Reachability Tree

lock()
old = new
q=q->next

[q!=NULL]

q->data = new
unlock()
new++

[new==old]

unlock()
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Analyze Counterexample

Predicates: LOCK

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

 LOCK

 LOCK5
5

 LOCK

[new==old]

new++

old = new

Inconsistent

new == old

Reachability Tree
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Reanalyzing the Program

• Explore a subtree again
o Start where new predicates were discovered

o This time, track the new predicates

o If the conjunction of the predicates on a node is false, stop exploring—this node is 
unreachable
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Reanalysis of Example (Left Side)

47

UnreachableAlready Covered



Analyzing the Right Hand Side

48

Exercise: run weakest 
preconditions from the 
unlock() at the end of the 
path 1-7-8-10-11-12.

Recall that we model locking 
with a variable lock, so 
unlock() is an error if lock==0



Reanalysis

49

Key: L = locked=1
Z = got_lock=0



Generate Weakest Preconditions

• assume True;

• got_lock = 0;

• assume True;

• assume got_lock != 0;

• error (lock==0)

50



Why is the Error Spurious?

• More precisely, what predicate could we 
track that would eliminate the spurious 
error message?

• Consider, for each node, the constraints 
generated before that node (c1) and after 
that node (c2)

• Find a condition I such that
o c1 => I

 I is true at the node

o I only contains variables mentioned in 
both c1 and c2
 I mentions only variables in scope (not old 

or future copies)

o I  c2 = false
 I is enough to show that the rest of the 

path is infeasible

o I is guaranteed to exist
 See Craig Interpolation

•  True

•  got_lock==0

•  True

•  got_lock!=0

• lock==0

51

Exercise: now find the 
Craig interpolant



Repeat Build-and-Search 

Predicates: LOCK, new==old 

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

Reachability Tree
52

…but only at the minimum suffix!



Repeat Build-and-Search 

Predicates: LOCK, new==old 

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

 LOCK ,  new = old

[new==old]

Reachability Tree
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Repeat Build-and-Search 

Predicates: LOCK, new==old 

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

 LOCK ,  new = old

 LOCK,  
 new == old

1

[new!=old]

4

Reachability Tree
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Repeat Build-and-Search 

Predicates: LOCK, new==old 

 LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

2

2

3

3

4

4

1

4

LOCK , new=old4

4

 LOCK , new==old

5
5

SAFE

Reachability Tree

LOCK , new==old

LOCK , new==old

 LOCK ,  new = old

 LOCK,  
 new == old
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Key Idea: Reachability Tree

3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAFE

Unroll
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates
- Rebuild subtree with new preds.

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Initial
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Blast Techniques, Graphically

• Explores reachable state, not all paths

o Stops when state already seen on another 
path

• Lazy Abstraction

o Uses predicates on demand

o Only applies predicate to relevant 
part of tree

57
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Experimental Results
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Termination

• Not guaranteed
o The system could go on generating predicates forever

• Can guarantee termination
o Restrict the set of possible predicates to a finite subset

 Finite height lattices in data flow analysis!

o Those predicates are enough to predict observable behavior of program
 E.g. the ordering of lock and unlock statements

 Predicates are restricted in practice
• E.g. likely can’t handle arbitrary quantification as in Dafny
• Model checking is hard if properties depend on heap data, for example

o Can’t prove arbitrary properties in this case

• In practice
o Terminate abstraction refinement after a time bound
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Key Points of CEGAR

• To prove a property, may need to strengthen it
o Just like strengthening induction hypothesis

• CEGAR figures out strengthening automatically
o From analyzing why errors are spurious

• Blast uses lazy abstraction
o Only uses an abstraction in the parts of the program where it is 

needed
o Only builds the part of the abstract state that is reached
o Explored state space is much smaller than potential state space
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Blast in Practice

• Has scaled past 100,000 lines of code
o Realistically starts producing worse results after a few 10K lines

• Sound up to certain limitations
o Assumes restricted (“safe”) use of C

 No aliases of different types; how realistic?

o No recursion, no function pointers

o Need models for library functions

• Has also been used to find memory safety errors, race 
conditions, generate test cases
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