Lecture 22: Beyond Program Repalr

(connecting repair to test-input generation)

17-355/17-655/17-819: Program Analysis
Rohan Padhye and Jonathan Aldrich
April 22, 2021

* Course materials developed with Claire Le Goues

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

The Big Picture

Test-Input Generation

Program Synthesis Program Repair

Fundamentally, it’s just a search problem

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Fundamentally, it’'s just a search problem

* Bug Finding = Reachability = Static Analysis = Test-Input Generation
e SMT Solvers for Test-Input Generation (Symbolic/Concolic Execution)
e Random Evolutionary Search for Test-Input Generation (Fuzzing)

e SMT Solvers for Program Synthesis (Semfix/Angelix)

« Random Evolutionary Search for Program Synthesis (GenProg)

e SMT Solvers & Random Search for Program Synthesis

Are all these problems equivalent???
Can heuristics be reused?

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Adapting test-input generation tools to perform program repair

SYNTHESIS =< REACHABILITY

“Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation”
ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. TACAS (2017).

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Problem Formulation

« "Synthesis” = template-based program repair

o Given a program P and failing test suite T, find program P’ such that T
passes

o Assume: P 2 P’ can be done by applying a template (think: sketch) at some
known faulty location

+ "Reachabllity” = test-input generation
o Given a program P(x) and location L, find P(x) such that L is reached.

C OO Ok WN -

Motivating Example

up + 100

int is_upward(int in,int up,int down){
int bias, r;
if (in)
bias = downj; J/fix: bias =
else
bias = up;
if (bias > down)
|
else
r = 0

ECEUER T35

Inputs Output
Test|in up down|expected observed |Passed?
1 1 0 100 0 0 v’
2 L L B 1 0 X
3 | 0100 50 1 1 v’
4 |1 -20 60 1 0 X
5 [0 O 10 0 0 v’
6 [0 O -10 1 | v’

Template-based Repalir

Linear Templates:

Template-based Repalir

Linear Templates:

Example:

bias

*bias +

*xin +

*up +

*down ;

Repair to Reachability

int epy€y s€29568 y€asp //glebal inputs

int is_upwardp(int in,int up,int
down) {
int bias, r;
L dan)
bias =
cot+ci*bias+co*xin+tcgxuptcyg*xdown;
else
bias = up;
if (bias > down)
r = il
else
B = 0;

Repair to Reachability

inmt egyéq ;€946 yean f/fglebal inpuGs return r;
i
int is_upwardp(int in,int up,int
down) { int main() {
19t bias . P if (is_upwardp(1,0,100) = 0 &
L 1 daih) — is_upwardp(1,11,110) = 1 &
bias = is_.upwardp (0,100,50) = 1 &
cotci*bias+coxintcz*kuptcygxdown; is_.upwardp(1,—20,60) =— 1 &
else is_upwardp (0,0,10) = 0 &&
bias = up: is_.upwardp(0,0,—10) = 1){
if (bias > down) [L]
r = 1; }
else return O0;
r = 0; }

10

Reachability to Repair

//global inputs
int x, ¥;

int L4
if (2 % = =)
if (x> y 4+ 10)
[L]

return O;

}

11

Reachability to Repair

//global inputs

int x, ¥; int Pg () {
if (2x|z| = |y|)
int P ;
» 8{* . —) if([z]> [y [+10)
if (x >y 4+ 10) — //loc L in P
[L] raise
REACHED;
return O;
} return O;

}

12

Reachability to Repair

//global inputs

int x, ¥; int Pg() {
if (2x|z| = |y|)
int P ;
» 8{* . —) if([z]> [y [+10)
if (x >y + 10) — //loc L in P
[L] raise
REACHED;
return O;
} return O0O;
i

int maing () {
//synthesize x,

It % o— G5
int y = cy;
try

Pq () ;

catch (REACHED)

return 1;

return O;

h 4

13

CETI (Correcting Errors using Test Inputs)

« Benchmark program: tcas (written in C; 1608 tests and 41 faults)
 Fault localization: Tarantula (top-80 locations)

* Front-end: CIL

« Templates: modify constants and operators

« CETI transforms templates to reachability instances

» CETI uses KLEE to exhaustively search test program space

“Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation”
ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. TACAS (2017).

Carnegie Mellon University
School of Computer Science

institute for

SOFTWARE
RESEARCH

Fvaluation on tcas

* GenProg repairs 11 of 41 defects
« Semfix repairs 34 of 41 defects—

* CETI repairs 26 of 41 defects

Table 1. Repair Results for 41 Tcas Defects

Bug Type |R-Progs|T(s)/Repair? Bug Type |R-Progs|T(s)|/Repair?
incorrect op 6143 21 v’ v22|missing code 5553 | 175 -
v2|missing code 6993 29 v v23|missing code 5824 164 i=
v3|incorrect op 8006 18 v’ v24|missing code 6050 | 231 -
v4|incorrect op 5900 21 v v25|incorrect op 5983 19 v’
v5|missing code 8440 | 394 = v26|missing code 8004 195
v6 |incorrect op 5872 19 v v27|missing code 8440 | 270 -
v7|incorrect const| 7302 18 v’ v28|incorrect op 9072 11 v’
v8|incorrect const| 6013 19 v’ v29|missing code 6914 195 -
v9|incorrect op 5938 24 v’ v30|missing code 6533 | 170 =
v10|incorrect op 7154 18 v v31|multiple 4302 16 v’
v11l|multiple 6308 | 123 - v32|multiple 4493 17 v
v12|incorrect op 8442 25 v’ v33|multiple 9070 | 224 =
v13|incorrect const| 7845 21 v v34|incorrect op 8442 75 v’
v14|incorrect const| 1252 22 v’ v35|multiple 9070 184 —
v15|multiple 7760 | 258 -~ v36|incorrect const| 6334 10 v
v16|incorrect const| 5470 19 v v37|missing code 7523 174 =
v17|incorrect const| 7302 12 v v38|missing code 7685 | 209 -
v18|incorrect const| 7383 18 v v39|incorrect op 5983 20 v’
v19|incorrect const| 6920 19 v v40|missing code 7364 136 -
v20|incorrect op 5938 19 v v41 |missing code 5899 29 v
v21|missing code 5939 31 v’

15

The Big Picture

Test-Input Generation

Program Synthesis Program Repair

Fundamentally, it’s just a search problem

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

16

Recap: Challenges in Test-Input Generation

 Qracles

o Whatis a bug? Crash? Silent overflow? Infinite loop? Race condition? Undefined
behavior? How do we know when we have found a bug?

« Debugging
o Reproducibility
o Crash triaging
o Input minimization

 Roadblocks

o Dependencies in binary inputs (e.g. length of chunks, indexes into tables — see
PNG)

o Inputs with complex syntax and semantics (e.g. XML, JSON, C++)
o Stateful applications

Crash Triaging

* Given two crashing inputs x1 and x2, do they trigger the same bug?

« Very difficult to answer in practice

» Herustics: bug(x1) = bug(x2) only if.... (consider pros/cons of each)
o exitcode(x1) = exitcode(x2) // or exception or error msg

coverage(x1) = coverage(x2)

stacktrace(x1) = stacktrace(x2)

newcoverage(x1, old) = newcoverage(x2, old) // AFL
fix(x1) = fix(x2)

O O O O

What if we could actually tell if they have the same fix???

Semantic Crash Bucketing

Rijnard van Tonder
School of Computer Science
Carnegie Mellon University

USA
rvt@cs.cmu.edu

ABSTRACT

Precise crash triage is important for automated dynamic testing
tools, like fuzzers. At scale, fuzzers produce millions of crashing
inputs. Fuzzers use heuristics, like stack hashes, to cut down on
duplicate bug reports. These heuristics are fast, but often imprecise:
even after deduplication, hundreds of uniquely reported crashes
can still correspond to the same bug. Remaining crashes must be
inspected manually, incurring considerable effort. In this paper we
present Semantic Crash Bucketing, a generic method for precise
crash bucketing using program transformation. Semantic Crash
Bucketing maps crashing inputs to unique bugs as a function of
changing a program (i.e., a semantic delta). We observe that a real
bug fix precisely identifies crashes belonging to the same bug. Our
insight is to approximate real bug fixes with lightweight program
transformation to obtain the same level of precision. Our approach
uses (a) patch templates and (b) semantic feedback from the pro-
gram to automatically generate and apply approximate fixes for
general bug classes. Our evaluation shows that approximate fixes
are competitive with using true fixes for crash bucketing, and sig-
nificantly outperforms built-in deduplication techniques for three
state of the art fuzzers.

John Kotheimer
Heinz College
Carnegie Mellon University

john.kotheimer@alumni.cmu.edu

Claire Le Goues
School of Computer Science
Carnegie Mellon University

USA
clegoues@cs.cmu.edu

1 INTRODUCTION

The advent of large scale fuzzing services, such as Google’s OSS-
Fuzz [1, 45] and Microsoft’s fuzzing service [9], attest to the effec-
tiveness of automatic bug finding tools. When operating at scale,
accurately identifying unique bugs is critical for (a) reducing time-
consuming manual debugging efforts [14, 41], (b) characterizing
the effectiveness of automated bug-finding tools [12, 14, 37, 42, 48],
and (c) ranking interesting crashing test cases [14]. However, one
outstanding challenge in effectively deploying automated fuzzing
techniques is accurately identifying unique bugs during crash triage.
Fuzzers often generate thousands of crashing inputs that ultimately
correspond to the same bug [14], and the sheer number of crashing
inputs preclude manual inspection. This is a hard problem, and an
area of active research [17].

Automated crash triage techniques seek to approximately bucket
multiple crashing (but ultimately equivalent) inputs [14, 17, 37, 41],
to reduce the number of redundant bug reports an engineer must
inspect by hand. At a high level, automated testing tools like fuzzers
and symbolic executors typically use tool-specific, heuristic buck-
eting strategies. Both research and industry standard triage tech-
niques have known limitations [17, 42]. Techniques may assume

Key ldea:

Use templates to generate
(approximate) fixes for crashes

to cluster into equivalence classes

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye 19

Problem Formulation

 Given a set of n crashing inputs ¢y, ¢,, c3, ... Cj,.
o Program P crashes when executed with any input c;.

* Let B ={by, b,,...b,,} be a set of bugs in the program (n > m)
o Each bug b; is represented as a bucket of unique crashes {cy,. ... }

e LetT;: P — P be a transformation of program P that fixes bug i.

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

20

|deal Bucketing

 Given a set of n crashing inputs ¢y, ¢,, c3, ... Cj,.
o Program P crashes when executed with any input c;.

* Let B ={by, b,,...b,,} be a set of bugs in the program (n > m)
o Each bug b; is represented as a bucket of unique crashes {cy,. ... }

e LetT;: P — P be a transformation of program P that fixes bug i.

Y b; € B,

Vbj€B\bjs.t.
Y c; € bi, (T;(P), c;i) +> crash
Vcj € bj,(Ti(P), cj) ~ crash

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

21

Imprecise Bucketing

 Given a set of n crashing inputs ¢y, ¢,, c3, ... Cj,.
o Program P crashes when executed with any input c;.

* Let B ={by, b,,...b,,} be a set of bugs in the program (n > m)
o Each bug b; is represented as a bucket of unique crashes {cy,. ... }

e LetT;: P — P be a transformation of program P that fixes bug i.
db; € B,
dbj € B\ b;s.t.
Y c € b;,(T;(P), c) #> crash
d cqup € bj, (Ti(P), cdup) ¥ crash

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

22

Approximate Fixes with Templates

Null Dereferences
Use GDB to locate crash point

1 it (%%%PVAR%%% == null) { and work backwards to find a good
2 exit (1 01); place to apply template
3 1}

Buffer Overflows — reduce length

1 // Modify a possible overflowing memcpy call
2 size_t angelic_length = 1;
3 memcpy (%%%DST%%% , %%%SRC%%% , angelic_length);

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

23

The Big Picture

Test-Input Generation

Program Synthesis Program Repair

Fundamentally, it’s just a search problem

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

24

PROJECTS DISCUSSION

