
Lecture 22: Beyond Program Repair
(connecting repair to test-input generation)

17-355/17-655/17-819: Program Analysis
Rohan Padhye and Jonathan Aldrich

April 22, 2021

* Course materials developed with Claire Le Goues

1(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

The Big Picture

2(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Program Synthesis

Test-Input Generation

Program Repair

Fundamentally, it’s just a search problem

Fundamentally, it’s just a search problem
• Bug Finding ≍ Reachability ≍ Static Analysis ≍ Test-Input Generation
• SMT Solvers for Test-Input Generation (Symbolic/Concolic Execution)
• Random Evolutionary Search for Test-Input Generation (Fuzzing)
• SMT Solvers for Program Synthesis (Semfix/Angelix)
• Random Evolutionary Search for Program Synthesis (GenProg)
• SMT Solvers & Random Search for Program Synthesis
• Are all these problems equivalent???
• Can heuristics be reused?

3(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

SYNTHESIS ≍ REACHABILITY
Adapting test-input generation tools to perform program repair

4(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

“Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation”
ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. TACAS (2017).

Problem Formulation
• ”Synthesis” ≍ template-based program repair

o Given a program P and failing test suite T, find program P’ such that T
passes

o Assume: P à P’ can be done by applying a template (think: sketch) at some
known faulty location

• “Reachability” ≍ test-input generation
o Given a program P(x) and location L, find P(x) such that L is reached.

5

Motivating Example

6(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Template-based Repair

7

Linear Templates:

Template-based Repair

8

Linear Templates:

Example:

Repair to Reachability

9

Repair to Reachability

10

Reachability to Repair

11

Reachability to Repair

12

Reachability to Repair

13

CETI (Correcting Errors using Test Inputs)
• Benchmark program: tcas (written in C; 1608 tests and 41 faults)
• Fault localization: Tarantula (top-80 locations)
• Front-end: CIL
• Templates: modify constants and operators
• CETI transforms templates to reachability instances
• CETI uses KLEE to exhaustively search test program space

14

“Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation”
ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. TACAS (2017).

Evaluation on tcas
• GenProg repairs 11 of 41 defects
• Semfix repairs 34 of 41 defects
• CETI repairs 26 of 41 defects

15

The Big Picture

16(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Program Synthesis

Test-Input Generation

Program Repair

Fundamentally, it’s just a search problem

Recap: Challenges in Test-Input Generation
• Oracles

o What is a bug? Crash? Silent overflow? Infinite loop? Race condition? Undefined
behavior? How do we know when we have found a bug?

• Debugging
o Reproducibility
o Crash triaging
o Input minimization

• Roadblocks
o Dependencies in binary inputs (e.g. length of chunks, indexes into tables – see

PNG)
o Inputs with complex syntax and semantics (e.g. XML, JSON, C++)
o Stateful applications

Crash Triaging
• Given two crashing inputs x1 and x2, do they trigger the same bug?
• Very difficult to answer in practice
• Herustics: bug(x1) = bug(x2) only if…. (consider pros/cons of each)

o exitcode(x1) = exitcode(x2) // or exception or error msg
o coverage(x1) = coverage(x2)
o stacktrace(x1) = stacktrace(x2)
o newcoverage(x1, old) = newcoverage(x2, old) // AFL
o fix(x1) = fix(x2)

What if we could actually tell if they have the same fix???

19(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Key Idea:
Use templates to generate
(approximate) fixes for crashes
to cluster into equivalence classes

Problem Formulation
• Given a set of 𝑛 crashing inputs 𝑐!, 𝑐", 𝑐#, … 𝑐$.

o Program P crashes when executed with any input 𝑐!.
• Let 𝐵 = {𝑏!, 𝑏", … 𝑏%} be a set of bugs in the program (𝑛 ≥ 𝑚)

o Each bug 𝑏! is represented as a bucket of unique crashes {𝑐"!"…}

• Let 𝑇&: 𝑃 → 𝑃 be a transformation of program 𝑃 that fixes bug 𝑖.

20(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Ideal Bucketing
• Given a set of 𝑛 crashing inputs 𝑐!, 𝑐", 𝑐#, … 𝑐$.

o Program P crashes when executed with any input 𝑐!.
• Let 𝐵 = {𝑏!, 𝑏", … 𝑏%} be a set of bugs in the program (𝑛 ≥ 𝑚)

o Each bug 𝑏! is represented as a bucket of unique crashes {𝑐"!"…}

• Let 𝑇&: 𝑃 → 𝑃 be a transformation of program 𝑃 that fixes bug 𝑖.

21(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Imprecise Bucketing
• Given a set of 𝑛 crashing inputs 𝑐!, 𝑐", 𝑐#, … 𝑐$.

o Program P crashes when executed with any input 𝑐!.
• Let 𝐵 = {𝑏!, 𝑏", … 𝑏%} be a set of bugs in the program (𝑛 ≥ 𝑚)

o Each bug 𝑏! is represented as a bucket of unique crashes {𝑐"!"…}

• Let 𝑇&: 𝑃 → 𝑃 be a transformation of program 𝑃 that fixes bug 𝑖.

22(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Approximate Fixes with Templates

23(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Null Dereferences

Buffer Overflows – reduce length

Use GDB to locate crash point
and work backwards to find a good
place to apply template

The Big Picture

24(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Program Synthesis

Test-Input Generation

Program Repair

Fundamentally, it’s just a search problem

PROJECTS DISCUSSION

25(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

