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The Big Picture
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Fundamentally, it’s just a search problem
• Bug Finding ≍ Reachability ≍ Static Analysis ≍ Test-Input Generation
• SMT Solvers for Test-Input Generation (Symbolic/Concolic Execution)
• Random Evolutionary Search for Test-Input Generation (Fuzzing)
• SMT Solvers for Program Synthesis (Semfix/Angelix)
• Random Evolutionary Search for Program Synthesis (GenProg)
• SMT Solvers & Random Search for Program Synthesis
• Are all these problems equivalent???
• Can heuristics be reused?
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SYNTHESIS ≍ REACHABILITY
Adapting test-input generation tools to perform program repair
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“Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation” 
ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. TACAS (2017).



Problem Formulation
• ”Synthesis” ≍ template-based program repair

o Given a program P and failing test suite T, find program P’ such that T 
passes

o Assume: P à P’ can be done by applying a template (think: sketch) at some 
known faulty location

• “Reachability” ≍ test-input generation
o Given a program P(x) and location L, find P(x) such that L is reached.
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Motivating Example
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Template-based Repair
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Linear Templates:



Template-based Repair
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Linear Templates:

Example:



Repair to Reachability
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Repair to Reachability
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Reachability to Repair
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Reachability to Repair
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Reachability to Repair
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CETI (Correcting Errors using Test Inputs)
• Benchmark program: tcas (written in C; 1608 tests and 41 faults)
• Fault localization: Tarantula (top-80 locations)
• Front-end: CIL
• Templates: modify constants and operators
• CETI transforms templates to reachability instances
• CETI uses KLEE to exhaustively search test program space

14

“Connecting Program Synthesis and Reachability: Automatic Program Repair using Test-Input Generation” 
ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. TACAS (2017).



Evaluation on tcas
• GenProg repairs 11 of 41 defects
• Semfix repairs 34 of 41 defects
• CETI repairs 26 of 41 defects
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The Big Picture
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Recap: Challenges in Test-Input Generation
• Oracles

o What is a bug? Crash? Silent overflow? Infinite loop? Race condition? Undefined 
behavior? How do we know when we have found a bug?

• Debugging
o Reproducibility
o Crash triaging
o Input minimization

• Roadblocks
o Dependencies in binary inputs (e.g. length of chunks, indexes into tables – see 

PNG)
o Inputs with complex syntax and semantics (e.g. XML, JSON, C++)
o Stateful applications



Crash Triaging
• Given two crashing inputs x1 and x2, do they trigger the same bug?
• Very difficult to answer in practice
• Herustics: bug(x1) = bug(x2) only if…. (consider pros/cons of each)

o exitcode(x1) = exitcode(x2) // or exception or error msg
o coverage(x1) = coverage(x2)
o stacktrace(x1) = stacktrace(x2)
o newcoverage(x1, old) = newcoverage(x2, old)  // AFL
o fix(x1) = fix(x2)

What if we could actually tell if they have the same fix???
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Key Idea: 
Use templates to generate
(approximate) fixes for crashes
to cluster into equivalence classes



Problem Formulation
• Given a set of 𝑛 crashing inputs 𝑐!, 𝑐", 𝑐#, … 𝑐$.

o Program P crashes when executed with any input 𝑐!.
• Let 𝐵 = {𝑏!, 𝑏", … 𝑏%} be a set of bugs in the program (𝑛 ≥ 𝑚)

o Each bug 𝑏! is represented as a bucket of unique crashes {𝑐"!"…}

• Let 𝑇&: 𝑃 → 𝑃 be a transformation of program 𝑃 that fixes bug 𝑖.
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Ideal Bucketing
• Given a set of 𝑛 crashing inputs 𝑐!, 𝑐", 𝑐#, … 𝑐$.

o Program P crashes when executed with any input 𝑐!.
• Let 𝐵 = {𝑏!, 𝑏", … 𝑏%} be a set of bugs in the program (𝑛 ≥ 𝑚)

o Each bug 𝑏! is represented as a bucket of unique crashes {𝑐"!"…}

• Let 𝑇&: 𝑃 → 𝑃 be a transformation of program 𝑃 that fixes bug 𝑖.
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Imprecise Bucketing
• Given a set of 𝑛 crashing inputs 𝑐!, 𝑐", 𝑐#, … 𝑐$.

o Program P crashes when executed with any input 𝑐!.
• Let 𝐵 = {𝑏!, 𝑏", … 𝑏%} be a set of bugs in the program (𝑛 ≥ 𝑚)

o Each bug 𝑏! is represented as a bucket of unique crashes {𝑐"!"…}

• Let 𝑇&: 𝑃 → 𝑃 be a transformation of program 𝑃 that fixes bug 𝑖.
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Approximate Fixes with Templates
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Null Dereferences

Buffer Overflows – reduce length

Use GDB to locate crash point
and work backwards to find a good 
place to apply template



The Big Picture
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PROJECTS DISCUSSION
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