Lecture 21: Program Repalr

17-355/17-655/17-819: Program Analysis
Rohan Padhye and Jonathan Aldrich
(material heavily borrowed from Claire Le Goues)

April 20, 2021

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

We've spent a lot of time on finding bugs

« What about fixing them?

* Problem: Given a program and an indication of a bug, find
a patch for that program to fix that bug.

o Both static and dynamic techniques have been used to “indicate”
bugs.

o The bulk of repair research is dynamic, or uses tests.

o (We'll talk about static briefly, and again later))

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Automatic Program Repair

AUTOMATICHE .
REPARIUGIc L

bug-fixing patch

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Bug fixing: the 30000-foot view

1. Localize the bug. Fault
o And perform additional analysis localization

2. Create/combine fix possibilities
Into 1+ possible patches.

3. Validate candidate patches.

. L . .
institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

Fault Localization

e Given: set of test cases, some of which fail

 To find: part of the code that's causing the failure
o (which needs to be fixed)

* How is this done manually?
o Printf("here”)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Spectrum-Based Fault Localization

Automatically ranks potentially buggy program
pieces based on test case behavior.

Input: - VVVR

rintf(“here”
P () o Likely faulty.
@ Maybe faulty.
| L.
|
[Not faulty.
[]

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

GenProg: Repair with EvolutionaryCamputation

1. Localize the bug. Localize to C
o And perform additional analysis statements

2. Create/combine fix possibilities

Into 1+ possible patches.

3. Validate candidate patches. 7 a

Genetic

"GenProg: A generic method for automatic software repair” programm | ng
by Le Goues et al. IEEE TSE (2011)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

GenProg: Repair with Evolutionary Computation

Biased, random search for AST-
level edits to a program that fixes
a given bug without breaking any
previously-passing tests.

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

Genetic Programming

The application of evolutionary or genetic algorithms
to program source code.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

EVALUATE FITNESS

N

DISCARD

ACCEPT

-

. AN

MUTATE

@r ~ims arw o

\/ VVV

OUTPUT

10

INPUT

C

v V[

EVALUATE FITNESS

DISCARD

3
(S

C

o

ACCEPT

MUTATE

C

vVVV

OUTPUT

11

EVALUATE FITNESS

N

DISCARD

ACCEPT

-

. AN

MUTATE

@r ~ims arw o

\/ VVV

OUTPUT

12

INPUT EVALUATE FITNESS

ok

0C DISCARD ‘
=7
.C [_-:7 S

L4} ACCEPT

C

vV

MUTATE OUTPUT v

An individual is a candidate patch/set of changes to the
Input program.

A patch is a series of statement-level edits:

o delete X
o replace X with'Y
o insertY after X.

* Replace/insert: pick Y from somewhere else in
the program.
* To mutate an individual, add new random edits

to a given (possibly empty) patch.
o (Where? Right: fault localization!)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

> 1 void gcd(int a, int b) {
2 if (a == 0) {

3 printf (“%d”, b);
4}

5 while (b > 0) {

6 if (a > b)

7 a = a — b;

8 else

9 b =Db — a;

10 }

11 printf(“%d”, a);

12 return;

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

> gcd(4,2)
2

gcd (1071,1029)
21

gcd (0,55)
55

vV V V. V V V V

(looping forever)

1 void gcd(int a, int b) {

if (a == 0) {
printf (“%d”, b);
}
while (b > 0) {
if (a > b)
a = a — bj;
else
b =Db— a;
}
printf (“%d”, a);

return;

16

printf(b)

17

printf (b)

Legend:

High change
probability.

Low change
probability.

Not changed.

18

An edit is:
* [nsert statement X
after statement Y

* Replace statement X
with statement Y

e Delete statement X

19

An edit is:
* Insert statement X
after statement Y

* Replace statement X
with statement Y

e Delete statement X

20

, Vv | ”—\L-N\
) w{llle printi(a) { \
(=00 . \
\-r—/
\ I
(block} {block} An edit is: :

* Insert statement X |
: after statement Y :
if(a>b)

* Replace statement A

e Delete statement X

21

Input: iy VvV

T
1
An edit is: :
* Insert statement X |

after statement Y :

* Replace statement X
—— e A ithastat e al X

e Delete statement X

22

Wait.. Isnt this expensive?

A Systematic Study of Automated Program Repair:
Fixing 55 out of 105 Bugs for $8 Each

Claire Le Goues Michael Dewey-Vogt Stephanie Forrest Westley Weimer
Computer Science Department Computer Science Department Computer Science Department
University of Virginia University of New Mexico University of Virginia
Charlottesville, VA Albuguerque, NM Charlottesville, VA
{legoues,mkd5m} @cs.virginia.edu forrest@cs.unm.edu weimer@cs.virginia.edu

Abstract—There are more bugs in real-world programs than
human programmers can realistically address. This paper
evaluates two research questions: “What fraction of bugs
can be repaired automatically?” and “How much does it
cost to repair a bug automatically?” In previous work, we
presented GenProg, which uses genetic programming to repair
defects in off-the-shelf C programs. To answer these questions,
we: (1) propose novel algorithmic improvements to GenProg
that allow it to scale to large programs and find repairs
68% more often, (2) exploit GenProg’s inherent parallelism
using cloud computing resources to provide grounded, human-
competitive cost measurements, and (3) generate a large,
indicative benchmark set to use for systematic evaluations. We
evaluate GenProg on 105 defects from 8 open-source programs
totaling 5.1 million lines of code and involving 10,193 test cases.
GenProg automatically repairs 55 of those 105 defects. To our
knowledge, this evaluation is the largest available of its kind,
and is often two orders of magnitude larger than previous
work in terms of code or test suite size or defect count. Public
cloud computing prices allow our 105 runs to be reproduced
for $403; a successful repair completes in 96 minutes and costs
$7.32, on average.

Keywords-genetic programming; automated program repair;
cloud computing

patch overflow and illegal control-flow transfer vulnera-
bilities; AutoFix-E [9], which can repair programs anno-
tated with design-by-contract pre- and post-conditions; and
AFix [10], which can repair single-variable atomicity viola-
tions. In previous work, we introduced GenProg [11], [12],
[13], [14], a general method that uses genetic programming
(GP) to repair a wide range of defect types in legacy soft-
ware (e.g., infinite loops, buffer overruns, segfaults, integer
overflows, incorrect output, format string attacks) without
requiring a priori knowledge, specialization, or specifica-
tions. GenProg searches for a repair that retains required
functionality by constructing variant programs through com-
putational analogs of biological processes.

The goal of this paper is to evaluate dual research ques-
tions: “What fraction of bugs can GenProg repair?” and
“How much does it cost to repair a bug with GenProg?” We
combine three important insights to answer these questions.
Our key algorithmic insight is to represent candidate repairs
as patches [15], rather than as abstract syntax trees. These
changes were critical to GenProg’s scalability to millions

of lines of code, an essential component of our evaluation. _____

23

"Real world" applications

“Facebook, Inc’

“one widely-studied
[repair] approach uses

software testing to guide
the repair process, as
typified by GenProg.”

“Results from repair
applied to 6 multi-
million line systems.”

SapFix: Automated End-to-End Repair at Scale

Abstract—We report our experience with SAPFIX: the first
ploy of d end-t d fault fixing, from test case
design through to deployed repairs in production code'. We have
used SAPFIX at Facebook to repair 6 production systems, each
consisting of tens of millions of lines of code, and which are
collectively used by hundreds of millions of people worldwide.

Automated program repair seeks to find small changes to
software systems that patch known bugs [1], [2]. One widely

studied approach uses software testing to guide the repair

program repair [-|.
Recently, the automated test case design system, Sapienz
[4], has been deployed at scale [5], [©]. The deployment of
Sapienz allows us to find hundreds of crashes per month,
before they even reach our internal human testers. Our software
engineers have found fixes for approximately 75% of Sapienz-
reported crashes [0], indicating a high signal-to-noise ratio [5]
for Sapienz bug reports. Nevertheless, developers’ time and
expertise could undoubtedly be better spent on more creative
programming lasks if we could automate some or all of the
comparatively tedious and time-consuming repair process.
The deployment of Sapienz automated test design means that
automated repair can now also take advantage of automated

ja, K. Mao, A. Mols, A. Scott

In order to deploy such a fully automated end-to-end detect-
and-fix process we naturally needed to combine a number of
different techniques. Nevertheless the SAPFIX core algorithm
is a simple one. Specifically, it combines straightforward
approaches (o mutation testing [%], [7], search-based software
testing [6], [10], [1 1], and fault localisation [12] as well as
isting developer-designed test cases. We also needed to
eploy many practical engineering techniques and develop
bw engineering solutions in order to ensure scalability.
SAPFIX bines a mutation-based technique, aug) 1 by
tterns inferred from previous human fixes, with a reversion-as-
st resort strategy for high-firing crashes (that would otherwise
block further testing, if not fixed or removed). This core fixing
technology is combined with Sapienz automated test design,
Infer’s static analysis and the localisation infrastructure built
specifically for Sapienz [6]. SAPFIX is deployed on top of
the Facebook FBLearner Machine Learning infrastructure [!7]
into the Phabricator code review system, which supports the
interactions with developers.

Because of its focus on deployment in a continuous in-
tegration environment, SAPFIX makes deliberate choices to
sidestep some of the difficulties pointed out in the existing
literature on automated program repair (see Related Work
section). Since SAPFIX focuses on null-dereference faults

led by Sapicnz test cases as code is submitted for review

software test design to ically re-test lidate patches.
Therefore, we have started to deploy automated repair, in a
tool called SAPFIX, to tackle some of these crashes. SAPFIX
automates the entire repair life cycle end-to-end with the
help of Sapienz: from designing the test cases that detect
the crash, through to fixing and re-testing, the process is fully
automated and deployed into Facebook’s i i ion
and deployment system.

The Sapienz deployment at Facebook, with which SapFix
integrates, tests Facebook’s apps using automated scarch over
the space of test input sequences [7]. This paper focuses on the
gployment of SapFix, which has been used to suggest fixes
six key Android apps in the Facebook App Family, for
ich the Sapienz test input generation infrastructure has also
n deployed. These are Facebook, Messenger, Instagram,
_ite, Workplace and Workchat. These six Android apps
ectively consist of tens of millions of lines of code and
used daily by hundreds of millions of users worldwide to

Rignication, social media and community building

lementation work. The remaining authors contributed to the design,

it can re-use the Sapienz fault localisation step [©]. The focus
on null-dereference errors also means that a limited number of |
fix patterns suffice. Moreover, these particular patterns do not
require additional fix ingredients (sometimes known as donor
code), and can be applied without expensive exploration.

We report our experience, focusing on the techniques
required to deploy repair at scale into continuous integration
and deployment. We also report on developers’ reactions and
the socio-technical issues raised by automated program repair.
We believe that this experience may inform and guide future
research in automated repair.

The SAPFIX project is a small, but nevertheless distinct
advance, along the path to the realisation of the FiFiVerify
vision [10] of fully automated and verified code improvement,|
The primary contributions of the present paper, which reports
on this deployment of SAPFIX are:

1) The first end-to-end deployment of industrial repair;
2) The first combination of automated repair with static and
dynamic analysis for crash identification, localisation and:

l) Results from repair applied to 6 multi-million line systems;

loyment and development of SAPFIX; remaining author order is
and not intended to denote any information about the relative contribution.

back on proposed repairs.

24

Can GenProg fix this?

* The checksum

program should: InEoIeEsy o
o Take a single-line IneluElzs Ehe i (next 1= ‘An’)

string as input. newline in
o Sum the integer the sum.

codes of the

characters, 5. sum += next;

excluding the 6.)

newline, modulo 64,

plus the code for

the space character.

scanf (“%c”, &next);

Wrong value:
* Buggy student the ASCII value

assignment - of space is 32,
not 22.

Voila!

* The checksum 1. // .

program should: 2. while (next != ‘\n")

o Take a single-line 3. {
string as input. + TFIXME scanf(“%c”,

o Sum the integer &next);
codes of the 4. sum += next;
characters in the + if (next == ‘\n’)
string, modulo 64, + break;
plus the code for the 4. 3

space character. 5. sum = sum % 64 + 22;

* GenProg fix with new + sum += next;
representation - 8. return sum;

Semantics-based repair g m

localizing to

1. Localize the bug. _
expressions.

o And perform additional analysis

2. Create/combine fix possibilities
Into 1+ possible patches.

3. Validate candidate patch.

RHS of

assignments,
conditionals.

”SemFix: Program Repair via Semantic Analysis” by Nguyen et al. ICSE 2013

“Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis” by Mechtaev et al. ICSE 2016 .

int i1s upward(int inhibit,
int bias;
1f (inhibit)
bias = down sep;
1f (bias > down sep)

return 1;
else return 0O;

600\10\01&@01\)}

else Dbilas = up sep ;

int up sep, 1int down_sep)z\\

(Slides by Abhik Roychoudhury)
NUS

National University
of Singapore

28

/oo oo e o)

int 1s upward(i1nt inhibit,

int
if

els
if

els

bias;

(inhibit)

bias = down sep;

e bilas = up sep ;

(bias > down sep)
return 1;

e return O;

int up sep, 1int down_sep)z\\

/

inhibit up_sep down_sep | Observed Expected
output Output
100 0 0

O R O k= BB

0

11 110 0 1
100 50 1 1
-20 60 0 1
0 10 0 0

pass
fail
pass
fail

pass

29

[a oo e o

int
if

els
if

els

bias;
(inhibit)

int 1s upward(1nt inhibit, 1int up sep, int down_sep)z\\

bias = down_sep;

[

e Dblas = up_sep ;

(bias > down_ sep)
return 1;

e return 0O;

/

inhibit up_sep down_sep | Observed Expected
output Output
100 0 0

O R O k= BB

0

11 110 0 1
100 50 1 1
-20 60 0 1
0 10 0 0

pass
fail
pass
fail

pass

30

[a oo e o

int bias;
if (inhibit)
<:::::::§Eas = down_sep; // bias= up_sepE:zggi::>
else Dias = up sep 5
if (bias > down_ sep)

els

int 1s upward(1nt inhibit, 1int up sep, int down_sep)z\\

return 1;
e return 0;

/

inhibit up_sep down_sep | Observed Expected
output Output
100 0 0

O R O k= BB

0 pass
11 110 0 1 fail
100 50 1 1 pass
-20 60 0 1 fail
0 10 0 0 pass

31

Angelix
Concolic execution
to find expression

values that would
make the test pass.

1. Localize the bug.
o And perform additions

2. Create/combine fix possibiliti
Into 1+ possible patches.

3. Validate candidate 3 Program synthesis to

construct replacement
code that produces those

values.

32

An expression’s angelic value is the value that
would make a given test case pass.

* This value is set “arbitrarily”, by which we mean
symbolically.

* You can solve for this value if you have:
o the test case’s expected input/output.
o the path condition controlling its execution.

* Concolic execution (remember me?):

o Start executing the test concretely, and then switch
to symbolic execution when the angelic value starts
to matter.

33

[a oo e o

int
if

els
if

els

bilas;

(inhibit)

bias = down_sep;

e Dbilas = up_sep ;

(bias > down_ sep)
return 1;

e return 0O;

int 1s upward(1nt inhibit, 1int up sep, int down_sep)z\\

/

inhibit up_sep down_sep | Observed Expected
output Output
100 0 0

O R O k= BB

0

11 110 0 1
100 50 1 1
-20 60 0 1
0 10 0 0

pass
fail
pass
fail

pass

34

int 1s upward(i1nt inhibit,
int bias;
if (inhibit)

‘ bias = a;

else Dbias =

1f (bias > down sep)
return 1;

else return 0O;

OO\IO\U‘Ilhu)l\)}

N©)

K }

inhibit up_sep down_sep | Observed Expected
output Output
1 11 110 0 1

up sep ;

int up sep, 1int down_sep);\\

_
-

fail

inhibit =1, up_sep =11, down_sep =110 Line 4
bias=a, PC = true

Line 7

inhibit =1, up_sep =11, down_sep =110
bias=a, PC=a > 110

inhibit =1, up_sep =11,
bias = a, PC=

35

int 1s upward(i1nt inhibit,
int bias;
if (inhibit)
bias = a;
else Dbias
1f (bias > down sep)
return 1;
else return 0O;

//:;cn < o U b ugro‘:T\

= up sep ;

int up sep, 1int down_sep)z\\

/

Exercise: Generate constraints for all other test cases

inhibit up_sep down_sep | Observed Expected Constraint
output Output
100 0 0

1 0

1 11 110
0 100 50
1 -20 60
0 0 10

© © » O

pass

1 fail f(1,11,110) > 110
1 pass
1 fail
0 pass

36

Collect all of the constraints!

« Accumulated constraints over all test cases:

f(1,11,110) > 110 A f(1,0,100) < 100
A (1,-20,60) > 60

* Use oracle guided component-based program synthesis to
construct satisfying f-

o How does this work again?
* Generated fix

o f(inhibit,up sep,down sep) = up sep + 100 /

37

Heartbleed patch

if (hbtype == TLS1 _HB_REQUEST
&& (payload + 18) < s->s3->rrec.length) {

} else if (hbtype == TLS1_HB_RESPONSE) {

}

return O;

if (1 + 2 + payload + 16 > s->s3->rrec.length)
return O;

if (hbtype == TLS1 _HB_REQUEST) {
} else if (hbtype == TLS1_HB_RESPONSE) {

}

return O;

https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Heartbleed.svg/2000px-Heartbleed.svg.png

Generated patch

Developer patch

Challenges & Trade-Offs

1. Scalability
2. Expressibility of Repair

3. Patch Quality

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

39

Open problem: What is a high quality patch?

Understandable?

Doesn’t delete stuff?

o Think: assert(p) ---> assert{p)

Addresses the cause, not the symptom...
o Think: ++a[i] ---> try{++a[i]}catch(Exception e){}

Does the same thing the human did/would do?
o But humans are often wrong! And how close does it have to be?

40

