
Lecture 20:
Oracle Guided Program Synthesis

17-355/17-655/17-819: Program Analysis

Rohan Padhye and Jonathan Aldrich

April 13, 2021

* Course materials developed with Claire Le Goues

1(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Synthesis Approaches We’ve Seen So Far

• Deductive Synthesis
o Explore the space of programs equivalent to some spec, choose the best one

o E.g. Denali for superoptimization

• Inductive Synthesis with Sketching
o User specifies a “sketch” – a program with holes

o Alternates generating a program from inputs, and generating counterexample inputs to force
a better program, until convergence on a correct program

• What if we want to do inductive synthesis, but don’t have a sketch idea?

2(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Today: Oracle-Guided Inductive Synthesis

1. Generalize CEGIS (counterexample-guided inductive synthesis)
o From sketches to arbitrary programs

2. Synthesize programs from components

3(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

CEGIS: A Mathematical View

• Let’s formalize Counterexample-Guided Inductive Synthesis (CEGIS)

• Consider a formalization of synthesizing a max function for lists

• CEGIS iterates between synthesis from examples and counterexample generation

• How do we generate a counterexample?

4(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Counterexample generation, formalized

• Let’s say we have a candidate program Pmax. Does it meet the spec?
o Here’s how that can be formalized:

• By De Morgan’s Law, this is equivalent to disproving the negation:

• This finds a list l and a corresponding incorrect output m

• Let’s tweak this to generate the correct output, m*:

• We can use this to help generate the next version of Pmax
5(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Oracle-Guided Component-Based Program Synthesis

• Goal: given a set of N components f1…fN and a set of n input/output pairs
, synthesize a function f such that =

• We search for programs of a particular form:

6(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Put inputs in variables

Compute N functions,
each of which has

arguments

Choices: fill in the ?s
• What order are the functions in?
• What variables are passed to each function?
• What variable is returned?

The program is defined by a set of variables

• Program input variables

• Input to each component

• Output of each component

• Output of the program

7(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Program variables are specified by location variables

• Location variable lx specifies where x is defined

• L is the set of location variables

(again: component inputs, component results, program
inputs, and program result)

8(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Example of Location Variables

• Imagine we have one input and one component, +

• Here’s a sample program:

• This can be specified by the location variables

9(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Practice with Location Variable Encodings

Assume two components, * and <<, each of which takes two inputs and produces a
single output. Provide a map which assigns values to location variables that describe
the following straight-line code. For your reference, the variables are:

z0 = input0

z1 = input1

z2 = z0 << z1 // component <<

z3 = z2 * z2 // component *

return z2

10(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Well-formedness constraints on the generated program

• Component inputs come from locations 0…M
o M = number of inputs + number of functions N

• Component outputs defined after program inputs

• One component per line

• Component inputs are defined before use

11(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Functionality constraints

• Variables defined at the same location are the same (have the same value)
o Basically: define value flow from definition to use

• The program inputs and outputs match a test case pair
o We repeat this for all test cases

• Functional components obey their specification

12(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Component-Based Synthesis, Overall

• We conjoin the well-formedness and functionality constraints into one big formula

• We have an SMT solver solve that formula

• The result is a witness, assigning integer values to each location variable
o We can then convert the witness into a program

o Line i of the program:

• We can then put this into a CEGIS loop:

13(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

