Lecture 1: Introduction to
Program Analysis

17-355/17-655/17-819: Program Analysis
Rohan Padhye and Jonathan Aldrich
February 2, 2021

* Course materials developed with Claire Le Goues

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Introductions

Prof. Rohan Padhye Prof. Jonathan Aldrich TA Priya Varra

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Learning objectives

* Provide a high level definition of program analysis and give examples of why it is
useful.

» Sketch the explanation for why all analyses must approximate.
* Understand the course mechanics, and be motivated to read the syllabus.

* Describe the function of an AST and outline the principles behind AST walkers for
simple bug-finding analyses.

* Recognize the basic WHILE demonstration language and translate between WHILE
and While3Addr.

. . . L]
institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to determine its
properties.

* From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

* We will learn:
o How to unambiguously define the meaning of a program, and a programming language.
o How to prove theorems about the behavior of particular programs.
o Howto use, build, and extend tools that do the above, automatically.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Why might you care?

* Program analysis, and the skills that underlie it, have implications for:
o Automatic bug finding.
o Language design and implementation.
o Program synthesis.
o Program transformation (refactoring, optimization, repair).

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

public wvoid| foo() {
int a = computeSomething();

1f (g == "5")
doMoreStuff():

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

E public int foo() {
doStuftf({):

return 3:

doMoreStuff();

return 4:

institute for Carnegie Mellon University
mSImema .
School of Computer Science

RESEARCH

e

& c & github.com/marketplace?category=code-quality

Pull requests Issues Marketplace Explore

Marketplace Search results

Types Q

Apps .
Code quality

Actions

* O@HoHNo6PO @

https://github.com/i

marketplace?category=code-quality

Automate your code review with style, quality, security, and test-coverage checks when you need them.

245 results filtered by Code quality x

Categories
API management CodeScene &
CS The analysis tool to identify and prioritize
Chat technical debt and evaluate your
organizational efficiency
Code quality X
CodeFactor &
Code review Automated code review for GitHub

Continuous integration

DeepScan

Dependency management P Q :
Advanced static analysis for automatically
finding runtime errors in JavaScript code

Deployment

IDEs
Datree &

Learning Policy enforcement solution for confident
and compliant code

Localization

Mobile DeepSource &

o Discover bug risks, anti-patterns and
Monitoring security vulnerabilities before they end up

in production. For Python and Go
Project management

Publishing Codecov &

Group, merge and compare coverage
Recently added reports
Security Codacy &

Automated code reviews to help
Support developers ship better software, faster
Testing Code Climate &

oo Automated code review for technical debt

Utilities

and test coverage

Sider &
Automatically analyze pull request against
custom per-project rulesets and best

Filters ~

@000 » O 0

1£3 ractices
Verification P
) ~4 codelingo
Verified “ Your Code, Your Rules - Automate code
. reviews with your own best practices
Unverified

Your items ~

Purchases
Also recommended for you

https://github.com/marketplace?category=api-management

ic) ©

»*

© 0

TestQuality &
Modern, powerful, test plan management

Restyled.io &
Restyle Pull Requests as they're opened

LGTM &

Find and prevent zero-days and other
critical bugs, with customizable alerts and
automated code review

Lucidchart Connector &

Insert a public link to a Lucidchart diagram
s0 team members can quickly understand
an issue or pull request

Code Inspector &
Code Quality, Code Reviews and Technical
Debt evaluation made easy

codebeat &
Code review expert on demand.
Automated for mobile and web

Better Code Hub &
A Benchmarked Definition of Done for
Code Quality

Coveralls &

Ensure that new code is fully covered, and
see coverage trends emerge. Works with
any Cl service

Imgbot &
A GitHub app that optimizes your images

Check TODO
Checks for any added or modified TODO
items in a Pull Request

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

package com.google.devtools.staticanalysis;

public class Test {

~ Lint Missing a Javadoc comment.
Javs
1:02 AM, Aug 21
Please fix Not useful
public boolean foo() {
return getString() == "foo".toString():
~ ErrorProne String mmparisan uaing refarenne equ&ﬁty Instead nf unlue equalll'y
StringEquality (EEHB _ r 5 v
1:03 AM, Aug 21
Please fix
Suggested fix attached: show Not usef

}

public String getString() {
return new String("foo"):;
}
}

//depot/googleld/javaicomigoogie/aevioois/staticanalysis/ | est.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();

}

public String getString() {
return new String("foo");
}
}

ETE oo

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {

return Objects.equals(getString(), "foo".toString());

}

public String getString() {
return new String("foo");
}
}

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

facebook Engineering facebook Engineering

Open Source Platforms Infrastructure Systems Physical Infrastructure Video Engineerin; Open Source Platforms Infrastructure Systems Physical Infrastructure Video Engineering & AR/VR

POSTED ON SEP 13, 2018 TO Al RESEARCH, DEVELOPER TOOLS, OPEN SOURCE, PRODUCTION ENGINEERING
POSTED ON MAY 2, 2018 TO DEVELOPER TOOLS, OPEN SOURCE L . . .
Finding and fixing software bugs automatically with

Sapienz: Intelligent automated software testing at SapFixand Sapienz
scale

®

Workflow (Generation)

. o . - °
_— - . _ .
‘Saplenz

Trigger Patch Fix Patch Validated
4 Auto Triage Generator Generator Revision
\ | I I |
V =5 e =
Pt N /—\
EN a7
By YuelJia KeMao Mark Harman \) |) |)
y \\f// \"\!" ‘ \\Y.»’"

sapienz

Debugging code is drudgery. But SapFix, a new Al hybrid tool created by Facebook
engineers, can significantly reduce the amount of time engineers spend on debugging,
while also speeding up the process of rolling out new software, SapFix can automatically
generate fixes for specific bugs, and then propose them to engineers for approval and
deployment to production.

SapFix has been used to accelerate the process of shipping robust, stable code updates to
/ﬁ‘\\ / \ ’/’“" millions of devices using the Facebook Android app — the first such use of Al-powered
By Ke Mao *\f) '\,/J { Y testing and debugging tools in production at this scale. We intend to share SapFix with
—/ = — the engineering community, as it is the next step in the evolution of automating
debugging, with the potential to boost the production and stability of new code for a

Sapie nz tech n0|0gy leve rages automated test d ESign to wide range of companies and research organizations.

m ake the testl ng p rocess faSte r’ maore com p re h en S|Ve, an d SapFix is designed to operate as an independent tool, able to run either with or without

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye Sapienz, Facebook’s intelligent automated software testing tool, which was announced at 10
F8 and has already been deployed to production. In its current, proof-of-concept state,

more effective.

IS THERE A BUG IN THIS CODE?

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

1./* from Linux 2.3.99 drivers/block/raidb5.c */

2.static struct buffer head *

3.get free buffer (struct stripe head * sh,

4. int b size) {
5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer pQqg == NULL

10. return NULL;
11. sh->buffer pool = bh -> b next;

12. bh->b size = b size;

13. restore flags(flags); // re-enables

14. return bh;
15.}

ERROR: function returns with

interrupts disabled!

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

12

o I o oo w N

10.
11.
12.
13.

14
15

l6.
17.
18.
19.

sm check interrupts {
// variables; used in patterns
decl { unsigned } flags;

// patterns specify enable/disable functions

. pat enable = { sti() ; }

| { restore flags(flags); } ;

. pat disable = { cli() ; }

//states; first state is initial
is enabled : disable =» is disabled
| enable =2 { err (“double enable”); }

is disabled : enable =» is enabled
| disable =» { err (“double disable”); }

.//special pattern that matches when

.// end of path is reached in this state

| $end of path$ =»

{ err (“exiting with inter disabled!”);

}

enable =» err(double enable)

disable =» err(double disable)

is_disabled

end path = err(exiting with inter disabled)

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

13

1./* from Linux 2.3.99 drivers/block/raidb5.c */

2. static struct buffer head *

3.get free buffer (struct stripe head * sh,

4. int b size) {

5. struct buffer head *bh;

6. unsigned long flags;

7. save flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer pool) == NULL)
10. return NULL;

11. sh->buffer pool = bh -> b next;

12. Dbh->b size = b size;

13. restore flags(flags); // re-enables

14. return bh;
15.}

Initial state: is_enabled

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

14

1./* from Linux 2.3.99 drivers/block/raidb5.c */

2. static struct buffer head *

3.get free buffer (struct stripe head * sh,

4,

coO J o O

10.
11.
12.
13.
14.
15.}

int b size) {
struct buffer head *bh;

unsigned long flags; Transition to: is_disabled

save flags(flags);

cli(); // disables interrupts

if ((bh = sh->buffer pool) == NULL)
return NULL;

sh->buffer pool = bh -> b next;

bh->b size = b size;

restore flags(flags); // re—-enables interrupts
. Example from Engler et al., Checking system rules Using
re turn bh ’ System-Specific, Programmer-Written Compiler

Extensions, OSDI ‘000

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

15

1./* from Linux 2.3.99 drivers/block/raidb5.c */

2. static struct buffer head *

3.get free buffer (struct stripe head * sh,

4,

coO J o O

10.
11.
12.
13.
14.
15.}

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);
cli(); // disables interrupts
if ((bh = sh->buffer pog
return NULL;

= NULL)

sh->buffer pool = bh -> b next;
bh->b size = b size;
restore flags(flags); // re-enables

return bh;

Final state: is_disabled

interrupts

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

16

1./* from Linux 2.3.99 drivers/block/raidb5.c */

2.static struct buffer head *

3.get free buffer (struct stripe head * sh,

4.

coO J o O

10.
11.
12.
13.
14.
15.}

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags); Transition to: is_enabled

cli(); // disables interrupts

if ((bh = sh->buffer pool) == NULL)
return NULL;

sh->buffer pool = bh -> b pg¥;

bh->b size = b size;

restore flags(flags); // re-—-enables interrupts
. Example from Engler et al., Checking system rules Using
return Dh ’ System-Specific, Programmer-Written Compiler

Extensions, OSDI ‘000

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

17

1./* from Linux 2.3.99 drivers/block/raidb5.c */

2.static struct buffer head *

3.get free buffer (struct stripe head * sh,

4,

coO J o O

10.
11.
12.
13.
14.
15.}

int b size) {
struct buffer head *bh;
unsigned long flags;
save flags(flags);
cli(); // disables interrupts

Final state: is_enabled

if ((bh = sh->buffer pool) == NULL)

return NULL;
sh->buffer pool = bh -> b neg
bh->b size = b size;

restore flags(fle®s); // re-—-enables interrupts

. Example from Engler et al., Checking system rules Using
return bh ’ System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

18

Behavior of interest...

* [s on uncommon execution paths.
o Hard to exercise when testing.

* Executing (or analyzing) all paths is infeasible
* [Instead: (abstractly) check the entire possible state space of the program.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to determine its
properties.

* From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

* We will learn:
o How to unambiguously define the meaning of a program, and a programming language.
o How to prove theorems about the behavior of particular programs.
o Howto use, build, and extend tools that do the above, automatically.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Proof by contradiction (sketch)

Assume that you have a function that can determine if a program phas some nontrivial
property (like divides by zero).

int silly(program p, 1nput 1) {
p(1);
return 5/0;

}

bool halts (program p, input 1) {
return divides by zero(silly(p,1))

J

g o U w N

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Error Reported True positive False positive
(correct analysis result)

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

Sound Analysis

~

institute for Carnegie Mellon University
SOFTWARE :
RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to determine its
properties.

* From 30,000 feet, this requires:
o Precise program representations
o Tractable, systematic ways to reason over those representations.

* We will learn:
o How to unambiguously define the meaning of a program, and a programming language.
o How to prove theorems about the behavior of particular programs.
o Howto use, build, and extend tools that do the above, automatically.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

What is this course about?

* Program analysis is the systematic examination of a program to determine its
properties.

* Principal techniques:
o Dynamic:
= Testing: Direct execution of code on test data in a controlled environment.
= Analysis: Tools extracting data from test runs.

o Static:

= Analysis: Tools reasoning about the program without executing it.
o ...and their combination.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Course topics

* Program representation * Symbolic execution: test all possible executions
« Abstract interpretation: Use abstraction to paths simultaneously.

reason about possible program behavior. o Concolic execution

o Operational semantics. o Testgeneration

o Dataflow Analysis * SAT/SMT solvers

o Termination, complexity * Program synthesis

o Widening, collecting _]

o Interprocedural analysis * Dynamic analysis

o Datalog * Fuzzing

o Control flow analysis .

Program repair

* Model checking (briefly) : reason exhaustively
about possible program states.
o Take 15-414 if you want the full treatment!

* We will basically notcover types.

* Hoare-style verification: Make logical arguments
about program behavior.
o Axiomatic semantics
o Separation logic: modern bug finding.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Fundamental concepts

* Abstraction.
o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

The importance of semantics.
o We prove things about analyses with respect to the semantics of the underlying language.

Program proofs as inductive invariants.

Implementation
o You do not understand analysis until you have written several.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Course mechanics

29

When/what.

* Lectures 2x week (T,Th - hybrid in-person + virtual).
o Active learning exercise(s) in every class
o Lecture notes for review

Recitation 1x week (Fr - virtual).
o Lab-like, very helpful for homework.
o Bereadytowork

* Homework, midterm exams, project.
* There is an optional textbook.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Communication

 We have a website and a Canvas site, with Piazza enabled.
o Follow the link from the main Canvas page/syllabus to sign up for Piazza.

* Please:
o Use Piazza to communicate with us as much as possible, unless the matter is sensitive.
o Make your questions publicas much as possible, since that’s the literal point of Piazza.

* We have office hours! Or, by appointment.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

“How do | getan A?”

* 15% in-class participation and exercises

e 40% homework
o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) to be released by Friday!

25% midterm exam

20% final project
o There will be some options here.

No final exam; exam slot used for project presentations.
We have late days and a late day policy; read the syllabus.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

CMU can be a pretty intense place.

* A 12-credit course is expected to take ~12 hours a week.

* We aim to provide a rigorous but tractable course.
o More frequent assignments rather than big monoliths
o Midterm exam to cover core material from first half of course

* Please keep us apprised of how much time the class is actually taking and whether
it is interfacing badly with other courses.

o We have no way of knowing if you have three midterms in one week.
o Sometimes, we misjudge assignment difficulty.

* Ifit’s 2 am and you’re panicking...put the homework down, send us an email, and
go to bed.

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

33

What is this course about?

* Program analysis is the systematic examination of a program to determine its
properties.

* From 30,000 feet, this requires:

o Precise program representations
o Tractable, systematic ways to reason over those representations.

* We will learn:
o How to unambiguously define the meaning of a program, and a programming language.
o How to prove theorems about the behavior of particular programs.
o Howto use, build, and extend tools that do the above, automatically.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Our first representation: Abstract Syntax

* Atree representation of source code based on the language grammar.

* Concrete syntax: The rules by which programs can be expressed as strings of
characters.

o Use finite automata and context-free grammars, automatic lexer/parser generators

 Abstract syntax: a subset of the parse tree of the program.

* (The intuition is fine for this course; take compilers if you want to learn how to
parse for real.)

institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

WHILE abstract syntax

e (Categories: Concrete syntax is
o &S € Stmt statements similar, but adds things
o &€ Aexp arithmetic expressions like (parentheses) for
o X y€Var variables disambiguation during
o n €Num number literals parsing
o PeBExp boolean predicates
o | €labels statement addresses (line numbers)
e Syntax:
o S ::= x = a | skip | S; ;7 S,
| 1f P then S, else S, | while P do S
o a = x | n | a; op, a,
o op, :=+ | - | * | /|
o P ::= true | false | not P | P, op, P, | al op, az
O Op, ::= and | or |
o op, ::=< | = | =1]>] 2|

SOFTWARE
RESEARCH

|Sf institute for ‘ Carnegie Mellon University

School of Computer Science

Example WHILE program

Vv = X3

z = 1;

while v > 1 do
Z =z * vy

vy =y — 1

institute for Carnegie Mellon University
ISImWME .
RESEARCH School of Computer Science

Exercise: Building an AST

Vv = X3

z = 1;

while v > 1 do
Z =z * vy

vy =y — 1

institute for Carnegie Mellon University
ISImWME .
RESEARCH School of Computer Science

Practice: Building an AST for C code

void copy_bytes(char dest|[], char source]], int n) {
for (inti=0;i<n; ++i)
dest][i] = source][i];

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Our first static analysis: AST walking

* One way to find “bugs” is to walk the AST, looking for particular patterns.
o Walk the AST, look for nodes of a particular type
o Check the neighborhood of the node for the pattern in question.

 Various frameworks, some more language-specific than others.
o Tension between language agnosticism and semantic information available.
o Consider “grep”: very language agnostic, not very smart.

* One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X
o Default Visitor code just descends the AST, visiting each node
o Tofind a bug in AST element of type X, override visitX

e Other more recent approaches based on semantic search, declarative logic
programming, or query languages.

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

40

Example: shifting by more than 31 bits.

For each i1nstruction I 1n the program
1f I 1s a shift instruction
if (type of I's left operand is int
&& I's right operand is a constant
&& value of constant < 0 or > 31)

warn (“Shifting by less than 0 or more
than 31 is meaningless”)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

CodeQL queries 1.23
Dashboard / Java queries

Inefficient empty string test

Created by Documentation team, last modified on Mar 28, 2019

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

Name: Inefficient empty string test

Description: Checking a string for equality with an empty string is inefficient.
ID: java/inefficient-empty-string-test

Kind: problem

Severity: recommendation

Precision: high

...

Query: InefficientEmptyStringTest.ql > Expand source

When checking whether a string s is empty, perhaps the most obvious solution is to write something like s.equals("") (or
"" . equals(s)). However, this actually carries a fairly significant overhead, because String.equals performs a number of type
tests and conversions before starting to compare the content of the strings.

Recommendation

The preferred way of checking whether a string s is empty is to check if its length is equal to zero. Thus, the condition is s. length()
== @. The length method is implemented as a simple field access, and so should be noticeably faster than calling equals.

Note that in Java 6 and later, the String class has an isEmpty method that checks whether a string is empty. If the codebase does
not need to support Java 5, it may be better to use that method instead. () 2021 J. Aldrich, C. Le Goues, R. Padhye 42

O 00 N OY WUV b W N

e
= ®

12
13
14
15
16
17

// Inefficient version
class InefficientDBClient {
public void connect(String user, String pw) {
if (user.equals("") || "".equals(pw))
throw new RuntimeException();

// More efficient version
class EfficientDBClient {
public void connect(String user, String pw) {
if (user.length() == 0 || (pw != null && pw.length() == 0))
throw new RuntimeException();

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Hint: dout

43

Query: InefficientEmptyStringTest.ql v Collapse source

/**

* @name Inefficient empty string test

* @description Checking a string for equality with an empty string is inefficient.
* @kind problem

* @problem.severity recommendation

* @precision high

* @id java/inefficient-empty-string-test

* @tags efficiency

. maintainability

7
import java

from MethodAccess mc
where
mc.getQualifier().getType() instanceof TypeString and
mc .getMethod() .hasName(“equals"”) and
(
mc.getArgument(9).(StringLiteral).getRepresentedString() =
mc.getQualifier().(StringlLiteral).getRepresentedString() =
)

select mc, "Inefficient comparison to empty string, check for zero length instead.”

or

44
(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Practice: String concatenation in a loop

* Write pseudocode for a simple syntactic analysis that warns when string
concatenation occurs in a loop
o InJava and .NET it is more efficient to use a StringBuffer
o Assume any appropriate AST elements

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

WHILE abstract syntax

e (Categories:

o Se€ Stmt statements
o a€ Aexp arithmetic expressions
o X y€\Var variables
o n €Num number literals
o PeBExp boolean predicates
o | €labels statement addresses (line numbers)
e Syntax:
o S ::= x = a | skip | S; ;7 S,
| if P then S, else S, | while P do S
o a ::= x | n | a; op, a,
o op, :=+ | - | * |/ | .
o P = true | false | not P | P, op, P, | al op, aZ
O Op, ::= and | or |
o op, ::=< | = | =1]>] 2|

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

WHILE3ADDR:
An Intermediate Representation

* Simpler, more uniform than WHILE syntax

» (Categories:
o [€ Instruction instructions

o x ye\ar variables
o N €Num number literals
e Syntax:
o I 1= X = n | x =y | x :=y op z
| goto n | 1f x op, 0 goto n
o op, :=+ | = | * | /| .
o op, ::=< | < | =] > 2|

o P € Num—~>/

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

All together: if statement

PraCti Ce: Tra nSIating tO WHILE3ADDR Practice: while statement

» (Categories:
o [/ € Instruction instructions

o X ye \Var variables
o N €Num number literals
e Syntax:
o I = X :=n | x 1=y | x :=y op z
| goto n | 1f x op, 0 goto n
o op, :=+ | = | * | /| .
o op, 1:=< | < | =] >]| 2| :

o P € Num—~>/

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

While3Addr Extensions (more later)

e Syntax:

o I 1= X = n | x =y | x :=y op z
| goto n | 1f x op, 0 goto n

| x = f(y)
| return x

X = y.m(z)

|

| X = &p

| x = *p
| P =X
| X :=y.f
| X.f :=y

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

For next time

* (Geton Piazza and Canvas

* Answer the survey (location, time zone, in-person interest) we will send you!
* Read lecture notes and the course syllabus

 Homework 1 will be released later this week, and is due next Thursday.

* Discussion: what works well for remote/hybrid instruction?
o Suggestions for Lecture? Recitations? Homework?
o Feel free to forward suggestions after class too

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

