
Homework 5 (Programming): Context-Sensitive
Interprocedural Analysis

17-355/17-665/17-819: Program Analysis
Jonathan Aldrich & Rohan Padhye

Checkpoint due: Tuesday, March 16, 2021 (11:59 PM) [50 points]
Final due: Thursday, March 25, 2021 (11:59 PM) [200 points]

Assignment Objectives:

• Implement a context-sensitive, interprocedural dataflow analysis.

• Handle the complexities of analyzing a real programming language.

• Make use of a real framework for analyzing Java code.

Handin Instructions. Submit your entire GITHUB repository for this assignment following the
instructions on GradeScope. Note that this is different from the last coding assignment, where we
asked you to submit a single file. Your grade will be based on a combination of the autograder
tests your code passes, and certain manual considerations, described at the end of this document.

Note that we do not plan to look directly at your GITHUB repository for this assignment. You
must submit your code via Gradescope. Gradescope does not automatically pull new versions of
your code, so you must resubmit whenever you have a new version that you would like graded.

1 Context-Sensitive Interprocedural Analysis Implementation

In this assignment, you will implement (and test!) a context-sensitive interprocedural integer
sign analysis for Java, using the simpler/less precise domain we implemented in homework 3.
Implement context-sensitivity using the call string approach with a maximum depth of 2.

We provide starter code for this assignment based on the Soot framework. We have provided
a bit less scaffolding than we did last time, but there are still clear TODOs in comments indicating
where you should begin your implementation. In particular, you need to implement:

• In Context, the getCtx method.

• In Sigma, the equals and hashCode methods(s).

• The majority of IntraSignAnalysis, which implements the intra-procedural part of the
analysis. Note that you do not need to explicitly implement Kildall’s, because Soot provides
it at the backend; familiarize yourself with the framework, and look over the starter code to
see what you do need to implement (e.g., flow functions, join, etc). Unlike in homework 3, you
do need to implement a reportWarnings method, see below.

1



• The majority of InterSignAnalysis.

For the checkpoint, all you will need to implement is Sigma and IntraSignAnalysis

On language. In Java, integer variables are separate from variables that hold references, booleans,
floating point values, etc. Your implementation need only track information for variables corre-
sponding to type int, for local variables and method parameters. Your analysis should cover
variable copies, integer constants, addition, subtraction, multiplication, and division as precisely
as possible. You are not required to correctly analyze other operations, though your analysis
should not crash on code that includes them. Your analysis should reason about local variables
and method parameters; you may assume that globals, fields, or array accesses, are unknown.

Expected analysis output. At a high level, we expect the analysis to issue warnings when it
identifies an array access that may involve a negative array index. This is the primary output we
expect from your analysis implementation: a set of warnings for the code. We provide a stan-
dard method Util.reportWarning for reporting warnings, and there are example usages in
IntraSignAnalysis.java that show how to call it. To see an example of how we will test this,
you may look at the sample tests we provide in the starter code. The src/test/inputs/ direc-
tory contains test inputs to test both intra- and interprocedural analyses; these also are commented
where errors should be reported. The files IntraAnalysisTest.java and InterAnalysisTest.java
show how we test the analysis results, and will be informative when you are writing your own.

Tests. We do provide sample tests. For the checkpoint, the tests provided in IntraAnalysisTest.java
are the same as the autograder tests. For the final submission, we have a set of held-out autograder
tests. For full credit on the final submission, you must also implement additional tests for your
analysis, covering the key implementation considerations you are tackling. One or more test cases
should require context sensitivity—i.e., the test case would fail if your analysis were interproce-
dural not context-sensitive. Your tests should use JUnit and be automatically run with gradlew
test. We will download your Gradescope submission and run your tests.

2 Setup and Tool Information

Go to https://classroom.github.com/a/MvegywdO to clone the starter code into your own
private GITHUB account. Ensure you have installed the Java Development Kit version 8 or later.

This assignment uses the Gradle build automation system. Gradle generates wrapper scripts
that automatically download any dependencies that are needed to run a project, including Gradle
itself. To build the source code, you just need to run ./gradlew build on *nix systems, or
gradlew.bat build on Windows.

We have provided test cases, which you can run with gradlew test; passing the test cases
is an indication that you are on the right track, though earning credit for the assignment requires
implementing your own analysis in a general way so that it will also work correctly with other
test programs.

For getting started with Soot’s dataflow framework, have a look at the Github wiki page, here:
https://github.com/Sable/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot

Additionally, the notes from recitation on 3/05/21 may be helpful for getting started with Soot.

2

https://classroom.github.com/a/MvegywdO
https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
https://github.com/Sable/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot


3 Grading

This assignment is worth 250 points in total. The checkpoint is worth 50 points, and the final is
worth 200 points. Grading will involve both testing, and some manual assessment. The rough
expected distribution of maximum available points for the automatically graded components is:

Checkpoint

• Correct implementation of IntraSignAnalysis: 50 pts

Final

• Correct implementation of getCtx: 20 pts

• Correct implementation of Sigma: 10 pts

• Correct implementation of IntraSignAnalysis: 60 pts

• Correct implementation of InterSignAnalysis: 80 pts

The rough expected distribution of points for the manually graded components is:

• Original tests that roughly cover the implemented functionality and run with gradlew
test: 20 pts

• Good coding practices, including code structure and commenting: 10 pts

Partial credit will of course be available as well, for all of the above.

3


	Context-Sensitive Interprocedural Analysis Implementation
	Setup and Tool Information
	Grading

