
17-355/17-665/17-819: Program Analysis
Fall 2020 Midterm Exam # 1

Claire Le Goues and Jeremy Lacomis

Name:

Andrew ID:

Study Guide Instructions: This study guide is intended to help you prepare for the first midterm.
It consists of several types of material:

1. Material providing content or context that will actually be on the test, especially the back-
ground on regular expressions (Question 1, Operational Semantics) and the background on
alias pairs analysis (Question 2). This material is provided so you can familiarize yourself
with it ahead of time, and not have to wade through background material and wrap your
head around it in a limited timespan.

2. Question templates that specify a type of question that may or may not be asked, but without
particulars. Questions 1(a) and 1(b) are good examples. You can practice answering those
kinds of questions by filling in reasonable examples for the blanks, or otherwise making sure
you understand how to answer this kind of question.

3. Concrete questions, which may or may not be on the exam, or may be similar to those that
will be on the exam.

We cannot promise to have full coverage of all material in the course so far, or all of the ques-
tions that may ultimately be on the exam. However, we have attempted to be thorough, and
have tried to give you a sample of the types of questions we will be asking about the material in
the course. We expact that if you carefully study this material and the lecture notes, you will be
well-prepared for the exam.

Question Points Score

Operational Semantics 0

Analysis Specification 0

Soundness 0

Interprocedural Analysis 0

Total: 0

17-355/17-665/17-819: Fall 2020, Exam 1 Page 1 of 5

Question 1: Operational Semantics (0 points)
Note: the exam will contain questions based on this idea of specifying inference rules for regular ex-
pressions, and so we include this material in the guide so you can wrap your head around how regular
expressions work and could be precisely specified in advance.

Consider the following abstract grammar for regular expressions:

e ::“ “x” singleton — matches the character x
| empty skip — matches the empty string
| e1e2 concatenation — matches e1 followed by e2
| e1 | e2 or — matches e1 or e2
| e˚ Kleene star —matches 0 or more occurrences of e

We also give an abstract grammar for strings (modeled as lists of characters; we write “bye”
as shorthand for “b” :: “y” :: “e” :: nil):

s ::“ nil empty string
| “x” :: s string with first character x, and other characters s

We introduce a new judgement to give large-step operational semantics rules of inference for
regular expressions matching strings:

$ e matches s leaving s1

A regular expression e applied to string s means that e matches some prefix of s, leaving
the suffix s1 unmatched. If s1 “ nil, then e matched s exactly; if s1 “ s, then e does not
match any part of s. For example: $ “h” matches“hello” leaving “ello”; the concatenation
construct means that $ “he” matches“hello” leaving “llo”.Note that this semantics may be
non-deterministic, because we can derive all of the following:

$ p“h”|“e”q ˚ matches “hello” leaving “ello”
$ p“h”|“e”q ˚ matches“hello” leaving “hello”
$ p“h”|“e”q ˚ matches“hello” leaving “llo”

Here are two of the simpler rules of inference for regular expressions:
s “ “x” :: s1

$ “x” matches s leaving s1
singleton

$ empty matches s leaving s
skip

(a) Precisely specify the BLANK construct(s) via one or more large-step operational seman-
tics inference rules.

(b) Consider these potential rules of inference for the BLANK construct:

premises´ 1

conclusion´ 1
rule-1

premises´ 2

conclusion´ 2
rule-2-WRONG

i. Recall that a logical system is complete if every true statement is provable; it is sound if
every provable statement is true. Assuming the other rules are correct, the rule-2-WRONG
rule makes our overall system:

© Unsound
© Incomplete

{ 0 Question 1 continues. . .

17-355/17-665/17-819: Fall 2020, Exam 1 Page 2 of 5

ii. Prove it, by giving either an example of a true statement that cannot be proven with
this rule, or a provable judgement that is untrue.

iii. Write a correct rule for BLANK.

(c) The non-determinism in the above rules is sub-optimal; we would instead prefer opera-
tional semantics for a judgement that returns the set of all possible suffices. If S is a set
of strings s, we could change our previous judgement accordingly, to: $ e matches s
leaving S, and then use rules of inference like the following:

$ “x” matches s leaving ts1|s “ “x” :: s‘u
singleton1

$ empty matches s leaving tsu
empty1

$ e1 matches s leaving S $ e2 matches s leaving S
1

$ e1|e2 matches s leaving S Y S
1

or

Do one of the following:
• either give operational semantics rules of inference for one of CONSTRUCT or CON-

STRUCT You may not place a derivation inside a set constructor, as in tx|Dy. $
e matches x leaving yu. Each inference rules must have a finite and fixed set of
hypotheses.

• or argue in two–five sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of in-
ference, and demonstrate that each one is incorrect—either unsound or incomplete—
with respect to our intuitive notion of regular expression matching.

(d) Your roommate looks over your shoulder as you are reviewing for this exam, and sees
the following inference rule for small-step semantics for WHILE3ADDR copy:

P rns “ x :“ y

P $ xE,ny; xErx ÞÑ Eryss, n` 1y
step-copy

They ask “Hey why do you need that premise in that rule? You wouldn’t need it in the
WHILE equivalent small-step rules...”

(e) Induction on the structure of expressions is sufficient to prove many properties about
them (like the one we did in class, showing that the number of literals and variable occur-
rences in some expressions is L(a) = O(a) + 1). Why, in one sentence, can’t we induct on
statement structure to prove most other interesting properties about WHILE (and have to
induct on the structure of the derivation, instead)?

{ 0 Exam continues. . .

17-355/17-665/17-819: Fall 2020, Exam 1 Page 3 of 5

Question 2: Analysis Specification (0 points)
Note: the exam will contain questions based on this idea of alias pairs analysis, but note that, as in these
sample questions, the analysis will not be constraint based (as in, it will be similar to the fixpoint-based
approach we started with).

An alternative to points-to analysis is alias pairs analysis, which computes, at each program
point, a set of pairs of expressions that may alias one another. An expression is either a variable
such as x, or a single dereference of a pointer variable such as *x. We do not track aliased pairs
including more dereferences—that is, nothing like ***x. To illustrate, the pair (*x, y) means
that x may point to y, whereas the pair (*x, *y) means that x and y may point to the same
memory location.1

For example, consider the following program:

1 : s :“ 2
2 : x :“ &y
3 : y :“ &z
4 : t :“ &s
5 : w :“ t

This analysis would compute the following pair sets immediately after each program location:

location alias pairs
1 H

2 { (*x, y) }
3 { (*x, y) (*y, z) }
4 { (*x, y) (*y, z) (*t, s) }
5 { (*x, y) (*y, z) (*t, s) (*w, s) (*w, *t) }

(a) Define a lattice L and analysis information σ for this analysis.
(b) What do top and bottom correspond to in this lattice? (the answer J is incorrect). 2.
(c) Define the ordering relation between lattice elements. i.e., when is σ1 Ď σ2?
(d) Define the join operation on lattice elements. i.e.,. what is σ1 \ σ2?
(e) Assume we have the alias information σ = FOO, and consider analyzing the statement

BAR.
i. Which alias pairs in the state should be killed by the statement?

ii. Which alias pairs should be generated by the statement?
(f) Consider the statement FOO. If the alias information before the statement is σ = EXAM-

PLE1, what is the alias information after the statement?
(g) Assuming monotonic flow functions, will the analysis on the alias pair lattice defined

above terminate? Why or why not? Your answer should be precise in terms of bounding
the height of the lattice.

(h) Imagine we relax the assumption about the number of dereferences tracked. E.g., con-
sider an alternative lattice that allows a pair (****x,y) (whereas the original analysis only
allows pairs like (*x, y). Is the analysis guaranteed to terminate on this new lattice? Why
or why not?

1We assume for simplicity that the pair (x,y) cannot occur, which is true in C and Java, but not C++.
2cf. constant propagation: J “ Z

{ 0 Exam continues. . .

17-355/17-665/17-819: Fall 2020, Exam 1 Page 4 of 5

Question 3: Soundness (0 points)
Imagine we want to extend X analysis to a language with Y. Consider the following incorrect
flow function:

fFOOvCODEwpσq “ σr...update...s

This function is incorrect because it does X; to see this, consider code that does Y.

(a) Prove that this flow function is not locally sound.

(b) Specify a correct flow function.

(c) Prove that your new flow function is monotonic.

(d) Why is it a good idea to apply a widening operator only at loop heads in the control flow
graph?

(e) Why don’t we need a widening operator for zero or sign analysis?

(f) Why can’t we use the basic operational semantics to reason about the correctness of a
reaching definitions analysis?

(g) At a high level, how must we change either the worklist algorithm or the control flow
graph to implement a backwards analysis, like in live variables analysis?

{ 0 Exam continues. . .

17-355/17-665/17-819: Fall 2020, Exam 1 Page 5 of 5

Question 4: Interprocedural Analysis (0 points)
Imagine you are would like to implement an interprocedural X analysis. Consider the follow-
ing simple test code:

...example omitted...

(a) Imagine you wanted to use default assumptions around function calls.
i. Provide an example of default assumptions that produces sound but imprecise re-

sults for the example.
ii. Provide an example of default assumptions that produces more precise output on

this example.
iii. Provide an example for which the more precise assumptions produces incorrect dataflow

output.

(b) Would porting an intraprocedural analysis and applying it to the interprocedural control
flow graph produce satisfactory analysis output on this example? Why or why not?

(c) Provide an example program that demonstrates a case where function inlining is a bad
solution to the interprocedural control flow problem, and explain why it shows that.

(d) What is one reason that dynamic dispatch poses a challenge to interprocedural dataflow
analysis?

(e) Assuming a context-sensitivity limit of X, which context-sensitivity-limiting approach
would provide more precise results for the following example function:
...example omitted...

© Call strings
© Contexts

...possibly: justify your answer...

(f) Consider the following example program written in the functional language we used for
CFA:
...example omitted...
Consider the following dataflow analysis information generated according to constraints
generated by a (potentially buggy) implementation of 0-CFA analysis with constant prop-
agation:
...example omitted...
Is this dataflow analysis information acceptable? Why or why not?

(g) Why do we concern ourselves with termination of the iterative, fixpoint-based dataflow
analyses, but not the CFA-style analyses?

{ 0 End of exam.

