
Automatic Program Repair (part 1)

1

We’ve spent a lot of time on
finding bugs.
• What about fixing them?
• Problem: Given a program and an indication

of a bug, find a patch for that program to fix
that bug.
– Both static and dynamic techniques have been

used to “indicate” bugs.
– The bulk of repair research is dynamic, or uses

tests.
– (We’ll talk about static briefly, and again later.)

2

Problem: source-level defect repair

bug-fixing patch

3

Bug fixing: the 30000-foot view
1. Localize the bug.
– And perform additional

analysis

2. Create/combine fix
possibilities into 1+
possible patches.

3. Validate candidate
patches.

Tests.

Fault
localization

4

printf
transformer

5

printf
transformer

Input
:

2

5 6

1

3 4

8

7

9

11

10

12

Likely faulty.
probability

Maybe faulty.
probability

Not faulty.

Spectrum-based fault localization
automatically ranks potentially
buggy program pieces based on
test case behavior.

6

Bug fixing: the 30000-foot view
1. Localize the bug.
– And perform additional

analysis

2. Create/combine fix
possibilities into 1+
possible patches.

3. Validate candidate
patch.

1. Heuristic: including
meta-heuristic,
“guess and check.”

2. Semantic: symbolic
execution + SMT
solvers, synthesis.

7

GenProg: meta-heuristic search.

1. Localize the bug.
– And perform additional

analysis

2. Create/combine fix
possibilities into 1+
possible patches.

3. Validate candidate
patch.

Localize to C
statements.

Use genetic
programming to search

for statement-level
patches, reusing code
from existing proram.

8

GenProg: automatic program repair
with evolutionary computation.

Biased, random
search for a AST-level
edits to a program
that fixes a given bug
without breaking any
previously-passing
tests.
https://upload.wikimedia.org/wikipedia/commons/a/a4/13-02-27-spielbank-wiesbaden-by-RalfR-093.jpg

9

Genetic programming: the application of
evolutionary or genetic algorithms to

program source code.

10

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 11

EVALUATE FITNESS

MUTATE

INPUT

OUTPUT

ACCEPT

DISCARD

12

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 13

MUTATE

DISCARD

INPUT EVALUATE FITNESS

ACCEPT

OUTPUT14

• A patch is a series of statement-level edits:
– delete X
– replace X with Y
– insert Y after X.

• Replace/insert: pick Y from somewhere else in the
program.

• To mutate an individual, add new random edits to a
given (possibly empty) patch.
– (Where? Right: fault localization!)

An individual is a candidate patch/set of
changes to the input program.

15

1 void gcd(int a, int b) {
2 if (a == 0) {
3 printf(“%d”, b);
4 }
5 while (b > 0) {
6 if (a > b)
7 a = a – b;
8 else
9 b = b – a;
10 }
11 printf(“%d”, a);
12 return;
13 }

>

16

1 void gcd(int a, int b) {
2 if (a == 0) {
3 printf(“%d”, b);
4 }
5 while (b > 0) {
6 if (a > b)
7 a = a – b;
8 else
9 b = b – a;
10 }
11 printf(“%d”, a);
12 return;
13 }

> gcd(4,2)

> 2

>
> gcd(1071,1029)

> 21

>
> gcd(0,55)

> 55

(looping forever)

!

17

printf(b)

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

18

printf(b)

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

Legend:

High change
probability.

Low change
probability.

Not changed.

19

printf(b)

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

An edit is:

• Insert statement X
after statement Y
• Replace statement X

with statement Y
• Delete statement X

20

printf(b)

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

An edit is:

• Insert statement X
after statement Y
• Replace statement X

with statement Y
• Delete statement X

21

printf(b)

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

An edit is:

• Insert statement X
after statement Y
• Replace statement X

with statement Y
• Delete statement X

22

{block}

while
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b

{block}{block}

printf(a) return

b = b – a

Input:

An edit is:

• Insert statement X
after statement Y
• Replace statement X

with statement Y
• Delete statement X return

printf(b)

23

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 24

0% 50% 100%
Energy reduction

0%

1%

2%

E
rr

or

Sitthi-amorn et al. "Genetic Programming for
Shader Simplification." ACM Transactions on
Graphics (Proc. SIGGRAPH Asia) 30(6): 152 (2011)

Dorn et al. “Automatically Exploring Tradeoffs
Between Software Output Fidelity and Energy Costs.”
IEEE Transactions on Software Engineering, vol. PP, no.
99, pp. 1–1, Nov. 2017.

25

Semantics-based repair
1. Localize the bug.
– And perform additional

analysis

2. Create/combine fix
possibilities into 1+
possible patches.

3. Validate candidate
patch.

Same idea, but
localizing to
expressions.

RHS of
assignments,
conditionals.

Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis26

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

(Tremendous gratitude to Abhik Roychoudhury for sharing slides with me.)

27

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 0 100 0 0 pass

1 11 110 0 1 fail

0 100 50 1 1 pass

1 -20 60 0 1 fail

0 0 10 0 0 pass

28

What about Angelix?
1. Localize the bug.
– And perform additional

analysis

2. Create/combine fix
possibilities into 1+
possible patches.

3. Validate candidate
patch.

Concolic execution
to find expression
values that would

make the test pass.

Program synthesis to
construct replacement

code that produces those
values.

29

An expression’s angelic value is the
value that would make a given test
case pass.
• This value is set “arbitrarily”, by which we mean

symbolically.
• You can solve for this value if you have:
– the test case’s expected input/output.
– the path condition controlling its execution.

• Concolic execution (remember me?):
– Start executing the test concretely, and then switch

to symbolic execution when the angelic value starts
to matter.

30

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 0 100 0 0 pass

1 11 110 0 1 fail

0 100 50 1 1 pass

1 -20 60 0 1 fail

0 0 10 0 0 pass

31

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = ®; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 11 110 0 1 fail

inhibit = 1, up_sep = 11, down_sep = 110
bias = ®, PC = true

Line 4

inhibit = 1, up_sep = 11, down_sep = 110
bias = ®, PC= ® > 110

Line 7

inhibit = 1, up_sep = 11, down_sep = 110
bias =®, PC= ® ≤ 110

Line 8

32

Collect all of the constraints!

• Accumulated constraints over all test cases:

• Use oracle guided component-based program
synthesis to construct satisfying f:
– How does this work again?

• Generated fix
– f(inhibit,up_sep,down_sep) = up_sep
+ 100

f(1,11,110) > 110 Ù f(1,0,100) ≤ 100
Ù f(1,-20,60) > 60

33

Trick to multi-expression repair:
“forests”

https://commons.wikimedia.org/wiki/File:Michael_Spiller_-_twisty_forest_paths_(by-sa).jpg 34

Angelic Forest

E1

E2

E3

Program Angelic Paths

35

Angelic Forest

E1

E2

E3

Program Angelic Paths

SAT

angelic1

angelic2

angelic3

36

Angelic Forest

E1

E2

E3

Program Angelic Paths

UNSAT

angelic1

angelic2

angelic3

37

Angelic Forest

E1

E2

E3

Program Angelic Paths

SAT

angelic1

angelic2

angelic3

angelic1

angelic3

38

Angelic Forest

E1

E2

E3

Program Angelic Paths

UNSAT

angelic1

angelic2

angelic3

angelic1

angelic3

39

Synthesis
• Number of test cases is finite, therefore angelic

forest is sufficient to specify expected behavior.
• Use repair synthesis as in DirectFix. For angelic

forest {𝛼!, 𝛼", … }, {𝛽!, 𝛽", … }…, oracle
constraints are:

(𝑒!= 𝛼! ∧ 𝑒" = 𝛼"…) ∨ (𝑒!= 𝛽! ∧ 𝑒" = 𝛽"…)…

• Size of angelic forest is independent of the size of
the program, and depends on the number of
suspicious locations

40

Repair via Soft Clause modification
L(>1

in) = L(x1out) Ù L(>2
in) = L(y1out) Ù L(>out) = L(v1in)

L(>=1
in) = L(x1out)Ù L(>=2

in) = L(y1out)Ù L(>=out) = L(v1in)

x1 y1 > v1>=

41

How does the modification
happen?
• Have a location variable for all components

– Including those which are not used e.g. L>=

• MaxSMT solver removes some soft clauses
– L(>1

in) = L(x1out) L(>2
in) = L(y1out) L(>out) = L(v1in)

– Remove L(>out) = L(v1in)

• Finds a model for the remaining formula
– Valuation of L variables in the formula
– Valuation of previously unconstrained variables L>=

• Model may show new connections L(>=out) = L(v1in)

42

Implementation

VCC,
Boogie

Buggy
C program

Repair
Condition

Generation

Program
Formula

Test Suite

Partial
MaxSMT

solver

Repair
Condition

L-Valuation ->
Program

Model

Repaired Program

Oracle

43

Example Program

if (x > y)
if (x > z)

out =10;
else

out = 20;
else

out = 30;
return out; if (x >= y)

if (x >= z)
out =10;

else
out = 20;

else
out = 30;

return out;

if (x > y)
if (x > z)

out =10;
else

out = 20;
else

out = 30;
return ((x==y)? ((x==z)?10: 20)): out);

SemFix

DirectFix

Test cases:
all possible
orderings of x,y,z

44

Heartbleed patch
if (hbtype == TLS1_HB_REQUEST

&& (payload + 18) < s->s3->rrec.length) {
…

} else if (hbtype == TLS1_HB_RESPONSE) {
…

}
return 0;

Generated patch

if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0;
…

if (hbtype == TLS1_HB_REQUEST) {
…

} else if (hbtype == TLS1_HB_RESPONSE) {
…

}
return 0; Developer patch

https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Heartbleed.svg/2000px-Heartbleed.svg.png
45

Open problem: What is a high
quality patch, anyway?
• Understandable?
– Well, I had no problem understanding the POST-deleting

patch…
– (non-functional properties are important and being

studied by others!)
• Doesn’t delete?
– But what about goto fail?

• Does the same thing the human did/would do?
– But humans are often wrong! And how close does it

have to be?
• Addresses the cause, not the symptom…

46

Proposal: measure quality based
on degree to which results
generalize.
• In machine learning, techniques are

trained and evaluated on disjoint
datasets to assess overfitting.
• In program repair:
– Tests used to build a repair are training

tests
– Tests used to assess correctness are

evaluation tests
47

PROBLEM: THE DESIRED STUDY IS
IMPOSSIBLE.

48

[Dataset + Tools]
• Student homework submissions from six UC

Davis Introduction to Programming assignments
• Two full-coverage test suites:
– White-box suite generated by Klee from reference

implementation.
– Black-box suite written by course instructor.
– Feature: Assess patch quality as distinct from test

suite quality.
• Goal: Compare two different heuristic

techniques to assess output quality.

49

Both tools produced patches that
overfit to the training set.

50

But: the tools do as well as the
students!

51

Overfitting is not unique to
heuristic techniques.

• Angelix: 120/233 of patches produced on
a subset to IntroClass overfit.
• ~40% of SPR patches studied in Angelix

paper delete functionality by generating
tautological if conditions.

52

Fast Forward to the
2019 ICSE SEIP Track….

“Results from repair
applied to 6 multi-

million line systems.”

“Facebook, Inc”

“one widely-studied
[repair] approach uses

software testing to guide
the repair process, as
typified by GenProg.”

53

GenProg can’t fix this, right?
• The checksum

program should:
– Take a single-line string

as input.
– Sum the integer codes

of the characters,
excluding the newline,
modulo 64, plus the
code for the space
character.

• Buggy student
assignment à

1. // …
2. while (next != ‘\n’)
3. {
4. scanf(“%c”, &next);
5. sum += next;
6. }
7. sum = sum % 64 + 22;
8. return sum;

Incorrectly
includes the
newline in
the sum.

Wrong value:
the ASCII value
of space is 32,

not 22.
54

Claire’s favorite patch, ever
• The checksum program

should:
– Take a single-line string

as input.
– Sum the integer codes of

the characters in the
string, modulo 64, plus
the code for the space
character.

• GenProg fix with new
representation à

1. // …
2. while (next != ‘\n’)
3. {
+ FIXME scanf(“%c”,

&next);
4. sum += next;
+ if (next == ‘\n’)
+ break;
4. }
5. sum = sum % 64 + 22;
+ sum += next;
8. return sum;

55

Cool!

56

