Automatic Program Repair (part 1)

o
institute for
1 I S SOFTWARE
RESEARCH

We’ve spent a lot of time on
finding bugs.
 What about fixing them?

* Problem: Given a program and an indication
of a bug, find a patch for that program to fix
that bug.

— Both static and dynamic techniques have been
used to “indicate” bugs.

— The bulk of repair research is dynamic, or uses
tests.

— (We'll talk about static briefly, and again later.)

]
institute for
2 I S SOFTWARE
RESEARCH

Problem: source-level defect repair

[]
institute for
3 I S SOFTWARE
RESEARCH

Bug fixing: the 30000-foot view

1. Localize the bug Fault

— And perform additiona

. localization
analysis

2. Create/combine fix
possibilities into 1+
possible patches.

3. Validate candidate
patches.

[]
institute for
4 I S SOFTWARE
RESEARCH

printf

transformer

Spectrum-based fault localization

automatically ranks potentially
buggy program pieces based on

test case behavior.

transformer Likely faulty.
Maybe faulty.
Not faulty.

nstitute
r SOFTWARE
RESEARCH

Bug fixing: the 30000-foot view

1. Localize the bug.
— And perform additional
analysis
2. Create/combipe fix
possibilities into
possible patches. meta-heuristic,
“guess and check.”

3. Validate candidate G syiele
patch. execution + SMT
solvers, synthesis.

1. Heuristic: including

. . .
institute For
7 I S SOFTWARE
RESEARCH

GenProg: meta-he

Localize to C
1. Localize the . statements.

— And perform additional
analysis

2. Create/combine fix
possibilitie g Use genetic
possible patch programming to search

3. Validate candi for statement-level

patch. patches, reusing code

from existing proram.

institute for
8 I S SOFTWARE
RESEARCH

GenProg: automatic program repair
with evolutionary computation.

Biased, random
search for a AST-level
edits to a program |
that fixes a given bug &
without breaking any [
previously-passing
tests.

o

institute for

9 I S SOFTWARE
RESEARCH

https://upload .wikimedia.org/wikipedia/commons /a/a4/13-02-27-spielbank -wiesbaden -by-RalfR -093.jpg

Genetic programming: the application of
evolutionary or genetic algorithms to
program source code.

W e

°
institute for
10 I S SOFTWARE
RESEARCH

EVALUATE FITNESS

N

DISCARD

ACCEPT

MUTATE

11

INPUT

C

v V[

EVALUATE FITNESS

R
DISCARD
g
/ ACCEPT
; | L 4
£

C

MUTATE

- ﬁiﬁmﬁf

EVALUATE FITNESS

N

DISCARD

ACCEPT

MUTATE

13

INPUT

C

EVALUATE FITNESS

Vi iVIX

DISCARD

MUTATE

ACCEPT

14

C

=

“RESLAREH

An individual is a candidate patch/set of
changes to the input program.

* A patchis a series of statement-level edits:

— delete X
— replace X with Y
— insert Y after X.

* Replace/insert: pick Y from somewhere else in the
program.

 To mutate an individual, add new random edits to a
given (possibly empty) patch.
— (Where? Right: fault localization!)

©
institute for
15 I S SOFTWARE
RESEARCH

1 void gcd(int a, int b)
2 if (a == 0) {

3 printf (“%d”, b);
4}

5 while (b > 0) {

6 if (a > b)

7 a = a — b;

8 else

9 b =Db — a;

10 }

11 printf(“%d”, a);
12 return;

13 }

institute for
16 I S SOFTWARE
RESEARCH

> gcd(4,2)
2

gcd (1071,1029)
21

gcd (0,55)
55

VvV V. V. V V V V

(looping forever)

1 void gcd(int a, int b) {

2 if (a == 0) {

3 printf(“%d”, b);
¢}

5 while (b > 0) {

6 if (a > b)

7 a=a— b; '
8 else ®
9 b =Db — a;

10 }

11 printf(“%d”, a);

12 return;

institute for
17 I S SOFTWARE
RESEARCH

printf(b)

institute for
SOFTWARE
RESEARCH

Input: ViV %

mmm

Legend:

High change

printf(b) probability.

Low change
probability.

Not changed.

institute for
19 I S SOFTWARE
RESEARCH

Input:y ViV [

mmm

An edit is:

* [nsert statement X
after statement Y

* Replace statement X
with statement Y

* Delete statement X

institute for
20 I S SOFTWARE
RESEARCH

Input:y ViV [

mmm

An edit is:

* Insert statement X
after statement Y

* Replace statement X
with statement Y

* Delete statement X

institute for
21 I S SOFTWARE
RESEARCH

Input:y ViV [

r
1
An edit is: :
* Insert statement X |

after statement Y :

* Replace statement)}
8 e w2 QT2 B o el

* Delete statement X

institute for
22 I S SOFTWARE
RESEARCH

Input:y ViV [

r
1
An edit is: :
* Insert statement X |

after statement Y :

* Replace statement)}
8 e w2 QT2 B o el

* Delete statement X

institute for
23 I S SOFTWARE
RESEARCH

EVALUATE FITNESS

N

DISCARD

ACCEPT

MUTATE

24

Error

2% -

Dorn et al. “Automatically Exploring Tradeoffs

1% - Between Software Output Fidelity and Energy Costs.”
IEEE Transactions on Software Engineering, vol. PP, no.
99, pp. 1-1, Nov. 2017.

0% -

0% 50% 100%
Energy reduction

GBo GEo 50

Marble Shader
160 FPS--

Sitthi-amorn et al. "Genetic Programming for
Shader Simplification." ACM Transactions on
Graphics (Proc. SIGGRAPH Asia) 30(6): 152 (2011)

Institute for
25 I S SOFTWARE
RESEARCH

Semantics-based

Same idea, but
localizing to

1. Localize _
expressions.

— And perfor

analysis |

2. CreaFe/F(?mt?lne fix RHS of

possibilities into 1+
possible patches.

3. Validate candidate
patch.

assignments,
conditionals.

institute for

Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis SOFTWARE

RESEARCH

int is upward(int inhibit, int up sep, int down_sep)?\\
int bias;
if (inhibit)
bias = down sep; // bias= up sep + 100
else bias = up sep ;
if (bias > down sep)
return 1;
else return O;

600\10\()7»-&(0&)3

(Tremendous gratitude to Abhik Roychoudhury for sharing slides with me.)

institute for
27 I S SOFTWARE
RESEARCH

600\10\(.)7»-&-00&)3

int bias;
if (inhibit)

int is upward(int inhibit, int up sep, int down_sep)?\\

sl

bias = down_sep; // bias= up sep + 100 >

else
if (bias > down_sep)
return 1;
else return 0O;

blas = up_sep

/

inhibit up_sep down_sep | Observed Expected
output Output
100 0 0

O R~ O kW B

0
11
100
-20
0

110
50
60
10

© © » O

1
1
1
0

pass
fail

pass
fail

pass

institute for
28 I S SOFTWARE
RESEARCH

What about Angelix?

Concolic execution
to find expression
values that would
make the test pass.

1. Localize the bug.

— And perf®
analysis

2. Create/combine fix

possibilifgs into 1+
possible pa Program synthesis to

3. Validate cane construct replacement
patch. code that produces those

values.

©
institute for
29 I S SOFTWARE
RESEARCH

An expression’s angelic value is the

value that would make a given test
case pass.

* This value is set “arbitrarily”, by which we mean
symbolically.

* You can solve for this value if you have:
— the test case’s expected input/output.
— the path condition controlling its execution.
* Concolic execution (remember me?):

— Start executing the test concretely, and then switch

to symbolic execution when the angelic value starts
to matter.

institute for
30 I S SOFTWARE
RESEARCH

600\10\(.)7»-&-00&)3

int is upward(int inhibit, int up sep, int down_sep)?\\

int bias;
if (inhibit)
bias = down _sep; // bias= up sep + 100
else bias = up_sep ;
if (bias > down_sep)
return 1;
else return O;

/

inhibit up_sep down_sep | Observed Expected
output Output
100 0 0

O R~ O kW B

0 pass
11 110 0 1 fail
100 50 1 1 pass
-20 60 0 1 fail
0 10 0 0 pass

31 SOFTWARE

institute for

RESEARCH

ﬂ int is upward(int inhibit, int up sep, int down_sep)h

2 int bias;

3 if (inhibit)

4 ‘ bias = «a; // bias= up sep + 100
5 else bias = up sep ;

0 if (bias > down sep)

7 return 1;

8 else return 0O;

N
inhibit up_sep down_sep | Observed Expected
output Output

fail

inhibit =1, up_sep =11, down_sep =110 Line 4
bias = a, PC = true

Line 7

inhibit = 1, up_sep = 11, down_sep = 110 inhibit = 1, up_sep =11,
bias = a;, PC= a> 110 bias =a;, PC= ¢
32 X | SOFTWARE

RESEARCH

Collect all of the constraints!

e Accumulated constraints over all test cases:

p
f(1,11,110) > 110 A f(1,0,100) < 100
A f(1,-20,60) > 60

_

* Use oracle guided component-based program
synthesis to construct satisfying f:

— How does this work again?
* Generated fix

— f(inhibit,up sep,down sep) = up_s
+ 100

©
institute for
33 I S SOFTWARE
RESEARCH

Trick to multi-expression repair:
“forests”

institute for
https://commons.wikimedia.org/wiki/File:Michael_Spiller_-_twisty_forest_paths_(by-sa).jpg 34 SOFTWARE

RESEARCH

Angelic Forest

Program Angelic Paths

institute for
35 I S SOFTWARE
RESEARCH

Angelic Forest

Program Angelic Paths

SAT

institute for
36 I S SOFTWARE
RESEARCH

Angelic Forest

Program Angelic Paths

UNSAT

institute for
37 I S SOFTWARE
RESEARCH

Angelic Forest

Program

SAT

Angelic Paths

angelic2

angelic3

angeics

institute for
38 I S SOFTWARE
RESEARCH

Angelic Forest

Program Angelic Paths

angelic2

angelic3

angeics

UNSAT

institute for
39 I S SOFTWARE
RESEARCH

Synthesis

* Number of test cases is finite, therefore angelic
forest is sufficient to specify expected behavior.

* Use repair synthesis as in DirectFix. For angelic

forest {_al, a,, ... L, {P1, P>, ... } ..., oracle
constraints are:

(e1=a; Ne; =a,...)V(eg=p1Ne, =05 ...) ..

e Size of angelic forest is independent of the size of
the program, and depends on the number of
suspicious locations

institute for
40 I S SOFTWARE
RESEARCH

Repair via Soft Clause modification

L(>,") = L(x1°%%) A L(>,")=L(y1°) A L(>°") =L(v1™)

T e

L(>=,7) = L(X1%) A L(>=,") = L({y1%9) A L(>=0t) = L(v1/")

©
institute for
41 I S SOFTWARE
RESEARCH

How does the modification
happen?

Have a location variable for all components
— Including those which are not used e.g. L._

e MaxSMT solver removes some soft clauses
— L(>1in) — L(Xlout) L(>2in) - L(ylout) L(>out) — L(Vlin)
— Remove L(>) = [(v1")

* Finds a model for the remaining formula
— Valuation of L variables in the formula

— Valuation of previously unconstrained variables L. _

* Model may show new connections L(>=°"t) = [(v1"")

institute F
42 I S SOFTWARE
RESEARCH

Implementation

Oracle

Repair
Condition
Generation

Test Suite

Buggy VCC, Program

C program Boogie Formula
Repair
Condition

Partial Model

MaxSMT

solver

L-Valuation ->
Program

Repaired Program

institute for
I S SOFTWARE
RESEARCH

Example Program

if ()
if ()
out =10;
else

out = 20;
else

out = 30;
return out;

SemFix

Test cases:
all possible
orderings of x,y,z

DirectFix

if ()
if ()
out =10;
else

out = 20;
else

out = 30;
return out;

institute for
SOFTWARE
RESEARCH

Heartbleed patch

if (hbtype == TLS1_HB_REQUEST Generated patch
&& (payload + 18) < s->s3->rrec.length) {

} else if (hbtype == TLS1_HB_RESPONSE) {

}

return O;

if (1 + 2 + payload + 16 > s->s3->rrec.length)
return O;

if (hbtype == TLS1_HB_REQUEST) {

} else if (hbtype == TLS1_HB_RESPONSE) {

}
return O; Developer patch

institute for
https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Heartbleed.svg/2000px-Heartbleed.svg.png 45 I S EEOSFJ'X/;\CR}E

Open problem: What is a high
quality patch, anyway?

e Understandable?

— Well, | had no problem understanding the POST-deleting
patch...

— (non-functional properties are important and being
studied by others!)

e Doesn’t delete?
— But what about goto fail?
* Does the same thing the human did/would do?

— But humans are often wrong! And how close does it
have to be?

* Addresses the cause, not the symptom...

©
institute for
46 I S SOFTWARE
RESEARCH

Proposal: measure quality based
on degree to which results
generalize.

* |n machine learning, techniques are
trained and evaluated on disjoint
datasets to assess overfitting.

* In program repair:

— Tests used to build a repair are training
tests

— Tests used to assess correctness are

evaluation tests .
. nitor
RESEARCH

PROBLEM THE DESIRED STUDY IS

IMPOSSIBLE.
L sorton

[Dataset + Tools]

e Student homework submissions from six UC
Davis Introduction to Programming assignments

* Two full-coverage test suites:

— White-box suite generated by Klee from reference
implementation.

— Black-box suite written by course instructor.
— Feature: Assess patch quality as distinct from test
suite quality.
* Goal: Compare two different heuristic
techniques to assess output quality.

©

institute for

49 I S SOFTWARE
RESEARCH

Both tools produced patches that
overfit to the training set.

©100%-

Qo
3
o>
®
e

60%-

40%-

20%-

% of white—box tests passe

0%-

A
P‘\)\OQ\GQ
2\

Oe(\? (Og

o

institute for

50 I S SOFTWARE
RESEARCH

But: the tools do as well as the
students!

—
o O
QS 2
S

60%:-

40%-

20%:-

% of white—box tests passed

0%-

, . ‘ ‘
e (\? ‘Og " \)((\6(\ \)\0 ?\696\

QP‘ . in(s)titute for
SOFTWARE
"‘ RESEARCH

Overfitting is not unique to
heuristic techniques.

* Angelix: 120/233 of patches produced on
a subset to IntroClass overfit.

* ~“40% of SPR patches studied in Angelix
paper delete functionality by generating
tautological if conditions.

©
institute for
52 I S SOFTWARE
RESEARCH

Fast Forward to the
2019 ICSE SEIP Track....

A. Marginean, J. Bader, S. Ch

APFIX: the first
fault fixing, from test case
€0 repairs in production code'. We have
Facebook to repair 6 production systems, each
ens of millions of lines of code, and which are
d by hundreds of millions of people worldwide.

INTRODUCTION

studied approach uses software tcslig to guide the repair
process, as typified by the GenProg approach to search-based
program repair [3].

], has been deployed at scale [5], [6]. The deployment of
Sapienz allows us to find hundreds of crashes per month,
before they even reach our internal human testers. Our software
engineers have found fixes for approximately 75% of Sapienz-
reported crashes [0], indicating a high signal-to-noise ratio [5]
for Sapienz bug reports. Nevertheless, developers’ time and
expertise could undoubtedly be better spent on more creative
programming tasks il we could automate some or all of the
comparatively tedious and time-consuming repair process.
The deployment of Sapienz automated test design means that
automated repair can now also take advantage of automated

“one widely-studied
[repair] approach uses
software testing to guide

SapFix: Automated End-to-End Repair at Scale

Jia, K. Mao, A. Mols, A. Scott

In order to deploy such a fully automated end-to-end detect-
and-fix process we naturally needed to combine a number of
different techniques. Nevertheless the SAPFIX core algorithm
is a simple one. Specifically, it combines straightforward
approaches (o mutation testing [%], [7], search-based software
testing [6], [10], [11], and fault localisation [12] as well as
existing developer-designed test cases. We also needed to
deploy many practical engineering techniques and develop
w engineering solutions in order to ensure scalability.
SAPFIX bines a mutation-based techni 1 by
htterns inferred from previous human fixes, with a reversion-as-
st resort strategy for high-firing crashes (that would otherwise
lock further testing, if not fixed or removed). This core fixing
echnology is combined with Sapienz automated test design,
Infer’s static analysis and the localisation infrastructure built
specifically for Sapienz [6]. SAPFIX is deployed on top of
the Facebook FBLearner Machine Learning inf [13]
into the Phabricator code review system, which supports the
interactions with developers.

Because of its focus on deployment in a continuous in-
tegration environment, SAPFIX makes deliberate choices to
sidestep some of the difficulties pointed out in the existing
li on d prog repair (see Related Work
section). Since SAPFIX focuses on null-dereference faults

led by Sapienz test cases as code is submitted for review

software test design to Ily re-test lidate patches.
Therefore, we have started to deploy automated repair, in a
tool called SAPFIX, to tackle some of these crashes. SAPFIX
automates the entire repair life cycle end-to-end with the
help of Sapienz: from designing the test cases that detect
the crash, through to fixing and re-testing, the process is fully
and deployed into Facebook’s i i i
and deployment system.

The Sapienz deployment at Facebook, with which SapFix
integrates, tests Facebook’s apps using automated search over
the space of test input sequences [7]. This paper focuses on the
deployment of SapFix, which has been used to suggest fixes
for six key Android apps in the Facebook App Family, for
hich the Sapienz test input generation infrastructure has also
been deployed. These are Facebook, Messenger, Instagram,
BLite, Workplace and Workchat. These six Android apps
collectively consist of tens of millions of lines of code and
used daily by hundreds of millions of users worldwide to

gieation. social media and community building

the repair process, as
typified by GenProg.”

“Results from repair
applied to 6 multi-
million line systems.’

)

work. The i to the design,
and of SAPFIX; author order is alphabetical
and not intended to denote any information about the relative contribution.

authors

it can re-use the Sapienz fault localisation step [6]. The focus
on null-dereference errors also means that a limited number of
fix patterns suffice. Moreover, these particular patterns do not
require additional fix ingredi (known as donor
code), and can be applied without expensive exploration.

We report our experience, focusing on the techniques
required to deploy repair at scale into continuous integration
and deployment. We also report on developers’ reactions and
the socio-technical issues raised by automated program repair.
We believe that this experience may inform and guide future
research in automated repair.

The SAPFIX project is a small, but nevertheless distinct
advance, along the path to the realisation of the FiFiVerify
vision [10] of fully automated and verified code improvement.
The primary contributions of the present paper, which reports
on this deployment of SAPFIX are:

1) The first end-to-end deployment of industrial repair;

2) The first combination of automated repair with static and
dynamic analysis for crash identification, localisation and

institute for
SOFTWARE
RESEARCH

53

GenProg can’t fix this, right?

* The checksum
program should:

— Take a single-line string

as input.

— Sum the integer codes
of the characters,
excluding the newline,
modulo 64, plus the
code for the space
character.

* Buggy student
assignment =2

I includes the
newline in

00 J o U

Incorrectly

l\nl)

RN 5C", &next);
=~ next;
. Sum = sum % 64 + 22;
. return sum;

Wrong value:

the ASCII value

of space is 32,
not 22.

titute for
OFTWARE
I D I RESEARCH

Claire’s favorite patch, ever

* The checksum program . ,, _
should: 2. while (next != ‘\n"’)
— Take a single-line string 3. {
as mput.. + FIXME scanf(”“%c”,
— Sum the integer codes of snext) ;

the characters in the

. sum += next;
string, modulo 64, plus !

the code for the space if (next == ‘\n’)
character. break;
* GenProg fix with new }

representation = sum = sum % 64 + 22;

sum += next;

oo + U1 b + + b

return sum;

institute for
55 I S SOFTWARE
RESEARCH

Cool!

institute for
56 I S SOFTWARE
RESEARCH

