
Automatic Program Repair (part 1)
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We’ve spent a lot of time on 
finding bugs.
• What about fixing them?
• Problem: Given a program and an indication 

of a bug, find a patch for that program to fix 
that bug.
– Both static and dynamic techniques have been 

used to “indicate” bugs.
– The bulk of repair research is dynamic, or uses 

tests.
– (We’ll talk about static briefly, and again later.)
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Problem: source-level defect repair

bug-fixing patch
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Bug fixing: the 30000-foot view
1. Localize the bug.
– And perform additional 

analysis

2. Create/combine fix 
possibilities into 1+ 
possible patches.

3. Validate candidate 
patches.

Tests.

Fault 
localization
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printf
transformer
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printf
transformer

Input
:

2

5 6

1

3 4

8

7

9

11

10

12

Likely faulty. 
probability

Maybe faulty. 
probability

Not faulty.

Spectrum-based fault localization 
automatically ranks potentially 
buggy program pieces based on 
test case behavior.
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Bug fixing: the 30000-foot view
1. Localize the bug.
– And perform additional 

analysis

2. Create/combine fix 
possibilities into 1+ 
possible patches.

3. Validate candidate 
patch.

1. Heuristic: including 
meta-heuristic, 
“guess and check.” 

2. Semantic: symbolic 
execution + SMT 
solvers, synthesis.
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GenProg: meta-heuristic search.

1. Localize the bug.
– And perform additional 

analysis

2. Create/combine fix 
possibilities into 1+ 
possible patches.

3. Validate candidate 
patch.

Localize to C 
statements.

Use genetic 
programming to search 

for statement-level 
patches, reusing code 
from existing proram. 
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GenProg: automatic program repair 
with evolutionary computation.

Biased, random 
search for a AST-level 
edits to a program 
that fixes a given bug 
without breaking any 
previously-passing 
tests.
https://upload.wikimedia.org/wikipedia/commons/a/a4/13-02-27-spielbank-wiesbaden-by-RalfR-093.jpg
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Genetic programming: the application of 
evolutionary or genetic algorithms to 

program source code.
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MUTATE

DISCARD
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• A patch is a series of statement-level edits:
– delete X
– replace X with Y
– insert Y after X.

• Replace/insert: pick Y from somewhere else in the 
program.

• To mutate an individual, add new random edits to a 
given (possibly empty) patch.
– (Where? Right: fault localization!)

An individual is a candidate patch/set of 
changes to the input program.
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1 void gcd(int a, int b) {
2 if (a == 0) {
3 printf(“%d”, b);
4 }
5 while (b > 0) {
6 if (a > b) 
7 a = a – b;
8 else
9 b = b – a;
10 }
11 printf(“%d”, a);
12 return;
13 }

>
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1 void gcd(int a, int b) {
2 if (a == 0) {
3 printf(“%d”, b);
4 }
5 while (b > 0) {
6 if (a > b) 
7 a = a – b;
8 else
9 b = b – a;
10 }
11 printf(“%d”, a);
12 return;
13 }

> gcd(4,2)

> 2

>
> gcd(1071,1029)

> 21

>
> gcd(0,55)

> 55

(looping forever)

!

17



printf(b)

{block}

while         
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b 

{block}{block}

printf(a) return

b = b – a 

Input:
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printf(b)

{block}

while         
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b 

{block}{block}

printf(a) return

b = b – a 

Input:

Legend:

High change 
probability.

Low change 
probability.

Not changed.
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printf(b)

{block}

while         
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b 

{block}{block}

printf(a) return

b = b – a 

Input:

An edit is: 

• Insert statement X 
after statement Y 
• Replace statement X 

with statement Y 
• Delete statement X 

20



printf(b)

{block}

while         
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b 

{block}{block}

printf(a) return

b = b – a 

Input:

An edit is: 

• Insert statement X 
after statement Y 
• Replace statement X 

with statement Y 
• Delete statement X 
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printf(b)

{block}

while         
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b 

{block}{block}

printf(a) return

b = b – a 

Input:

An edit is: 

• Insert statement X 
after statement Y 
• Replace statement X 

with statement Y 
• Delete statement X 
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{block}

while         
(b>0)

{block}{block} {block}

if(a==0)

if(a>b)

a = a – b 

{block}{block}

printf(a) return

b = b – a 

Input:

An edit is: 

• Insert statement X 
after statement Y 
• Replace statement X 

with statement Y 
• Delete statement X return

printf(b)
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0% 50% 100%
Energy reduction

0%

1%

2%

E
rr

or

Sitthi-amorn et al. "Genetic Programming for 
Shader Simplification." ACM Transactions on 
Graphics (Proc. SIGGRAPH Asia) 30(6): 152 (2011)

Dorn et al. “Automatically Exploring Tradeoffs 
Between Software Output Fidelity and Energy Costs.” 
IEEE Transactions on Software Engineering, vol. PP, no. 
99, pp. 1–1, Nov. 2017.
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Semantics-based repair
1. Localize the bug.
– And perform additional 

analysis

2. Create/combine fix 
possibilities into 1+ 
possible patches.

3. Validate candidate 
patch.

Same idea, but 
localizing to 
expressions.

RHS of 
assignments, 
conditionals.

Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis26



1 int is_upward( int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else  bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }  

(Tremendous gratitude to Abhik Roychoudhury for sharing slides with me.)
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1 int is_upward( int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else  bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }  

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 0 100 0 0 pass

1 11 110 0 1 fail

0 100 50 1 1 pass

1 -20 60 0 1 fail

0 0 10 0 0 pass
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What about Angelix?
1. Localize the bug.
– And perform additional 

analysis

2. Create/combine fix 
possibilities into 1+ 
possible patches.

3. Validate candidate 
patch.

Concolic execution 
to find expression 
values that would 

make the test pass. 

Program synthesis to 
construct replacement 

code that produces those 
values. 
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An expression’s angelic value is the 
value that would make a given test 
case pass. 
• This value is set “arbitrarily”, by which we mean 

symbolically.
• You can solve for this value if you have:
– the test case’s expected input/output.
– the path condition controlling its execution. 

• Concolic execution (remember me?):
– Start executing the test concretely, and then switch 

to symbolic execution when the angelic value starts 
to matter.
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1 int is_upward( int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else  bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }  

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 0 100 0 0 pass

1 11 110 0 1 fail

0 100 50 1 1 pass

1 -20 60 0 1 fail

0 0 10 0 0 pass
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1 int is_upward( int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = ®; // bias= up_sep + 100
5 else  bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }  

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 11 110 0 1 fail

inhibit = 1, up_sep = 11, down_sep = 110
bias = ®,  PC = true 

Line 4

inhibit = 1, up_sep = 11, down_sep = 110
bias = ®, PC= ®  > 110 

Line 7

inhibit = 1, up_sep = 11, down_sep = 110
bias =®, PC= ® ≤ 110 

Line 8
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Collect all of the constraints!

• Accumulated constraints over all test cases:

• Use oracle guided component-based program 
synthesis to construct satisfying f: 
– How does this work again?

• Generated fix
– f(inhibit,up_sep,down_sep) = up_sep
+ 100

f(1,11,110) > 110 Ù f(1,0,100) ≤ 100 
Ù f(1,-20,60) > 60
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Trick to multi-expression repair: 
“forests”

https://commons.wikimedia.org/wiki/File:Michael_Spiller_-_twisty_forest_paths_(by-sa).jpg 34



Angelic Forest

E1

E2

E3

Program Angelic Paths
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Angelic Forest

E1

E2

E3

Program Angelic Paths

SAT

angelic1

angelic2

angelic3
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Angelic Forest

E1

E2

E3

Program Angelic Paths

UNSAT

angelic1

angelic2

angelic3
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Angelic Forest

E1

E2

E3

Program Angelic Paths

SAT

angelic1
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Angelic Forest

E1

E2

E3

Program Angelic Paths

UNSAT

angelic1

angelic2

angelic3

angelic1

angelic3
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Synthesis
• Number of test cases is finite, therefore angelic 

forest is sufficient to specify expected behavior.
• Use repair synthesis as in DirectFix. For angelic 

forest {𝛼!, 𝛼", … }, {𝛽!, 𝛽", … }…, oracle 
constraints are:

(𝑒!= 𝛼! ∧ 𝑒" = 𝛼"…) ∨ (𝑒!= 𝛽! ∧ 𝑒" = 𝛽"…)…

• Size of angelic forest is independent of the size of 
the program, and depends on the number of 
suspicious locations
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Repair via Soft Clause modification
L(>1

in) = L(x1out)  Ù L(>2
in) = L(y1out) Ù L(>out) = L(v1in)

L(>=1
in) = L(x1out)Ù L(>=2

in) = L(y1out)Ù L(>=out) = L(v1in)

x1 y1 > v1>=
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How does the modification 
happen?
• Have a location variable for all components

– Including those which are not used  e.g. L>=

• MaxSMT solver removes some soft clauses
– L(>1

in) = L(x1out)  L(>2
in) = L(y1out) L(>out) = L(v1in)

– Remove L(>out) = L(v1in)

• Finds a model for the remaining formula
– Valuation of L variables in the formula
– Valuation of previously unconstrained variables L>=

• Model may show new connections L(>=out) = L(v1in)
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Implementation

VCC,
Boogie

Buggy
C program

Repair 
Condition 

Generation

Program
Formula

Test Suite

Partial 
MaxSMT

solver

Repair
Condition

L-Valuation -> 
Program

Model

Repaired Program

Oracle
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Example Program

if (x > y)
if (x > z)

out  =10;
else

out = 20;
else

out = 30;
return out; if (x >= y)

if (x >= z)
out  =10;

else
out = 20;

else
out = 30;

return out; 

if (x > y)
if (x > z)

out  =10;
else

out = 20;
else

out = 30;
return ((x==y)? ((x==z)?10: 20)): out);  

SemFix

DirectFix

Test cases:
all possible
orderings of x,y,z
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Heartbleed patch
if (hbtype == TLS1_HB_REQUEST 

&& (payload + 18) < s->s3->rrec.length) {
…

} else if (hbtype == TLS1_HB_RESPONSE) {
…

} 
return 0;

Generated patch

if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0;
…

if (hbtype == TLS1_HB_REQUEST) {
…

} else if (hbtype == TLS1_HB_RESPONSE) {
…

} 
return 0; Developer patch

https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Heartbleed.svg/2000px-Heartbleed.svg.png
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Open problem: What is a high 
quality patch, anyway?
• Understandable?
– Well, I had no problem understanding the POST-deleting 

patch…
– (non-functional properties are important and being 

studied by others!)
• Doesn’t delete?
– But what about goto fail?

• Does the same thing the human did/would do?
– But humans are often wrong!  And how close does it 

have to be?
• Addresses the cause, not the symptom…
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Proposal: measure quality based 
on degree to which results 
generalize.
• In machine learning, techniques are 

trained and evaluated on disjoint 
datasets to assess overfitting.
• In program repair:
– Tests used to build a repair are training

tests
– Tests used to assess correctness are 

evaluation tests
47



PROBLEM: THE DESIRED STUDY IS 
IMPOSSIBLE.
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[Dataset + Tools]
• Student homework submissions from six UC 

Davis Introduction to Programming assignments
• Two full-coverage test suites:
– White-box suite generated by Klee from reference 

implementation.
– Black-box suite written by course instructor.
– Feature: Assess patch quality as distinct from test 

suite quality.
• Goal: Compare two different heuristic 

techniques to assess output quality.
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Both tools produced patches that 
overfit to the training set.
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But: the tools do as well as the 
students!
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Overfitting is not unique to 
heuristic techniques.

• Angelix: 120/233 of patches produced on 
a subset to IntroClass overfit. 
• ~40% of SPR patches studied in Angelix

paper delete functionality by generating 
tautological if conditions.
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Fast Forward to the 
2019 ICSE SEIP Track….

“Results from repair 
applied to 6 multi-

million line systems.”

“Facebook, Inc”

“one widely-studied 
[repair] approach uses 

software testing to guide 
the repair process, as 
typified by GenProg.”
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GenProg can’t fix this, right?
• The checksum 

program should: 
– Take a single-line string 

as input.
– Sum the integer codes 

of the characters, 
excluding the newline, 
modulo 64, plus the 
code for the space 
character. 

• Buggy student 
assignment à

1. // …
2. while (next != ‘\n’) 
3. {
4. scanf(“%c”, &next);
5. sum += next;
6. }
7. sum = sum % 64 + 22;
8. return sum; 

Incorrectly 
includes the 
newline in 
the sum.

Wrong value: 
the ASCII value 
of space is 32, 

not 22.
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Claire’s favorite patch, ever
• The checksum program 

should: 
– Take a single-line string 

as input.
– Sum the integer codes of 

the characters in the 
string, modulo 64, plus 
the code for the space 
character. 

• GenProg fix with new 
representation à

1. // …
2. while (next != ‘\n’) 
3. {
+ FIXME scanf(“%c”, 

&next);
4. sum += next;
+ if (next == ‘\n’)    
+ break;
4. }
5. sum = sum % 64 + 22;
+ sum += next;
8. return sum; 
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Cool!
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