Software Model Checking
and Counter-example
Guided Abstraction
Refinement

Claire Le Goues

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Motivation: How should we analyze this?

* * means something we

2: do { can't analyze (user input,
lock(); random value)
3 ?id:)?e“; e Line 5: the lock is held if
. 1 * . B
L. anlock(): and only if old = new
new++;
5: } while (new !'= old);
6: unlock();
return;

S r institute for | ~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Motivation: How should we analyze this?

Example() { * * means something we
1: if (%) can't analyze (user input,
7: do { C lock < o random value)

g fj;_’ E*c;?{ ~ '+ Line 10: the lock is held if
9: lock(); and only if got_lock = 1
got_lock++;
10: if (got_lock){
11: unlock();
12: } while (%)
¥

S r institute for | ~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Dataflow analysis requires fixed

abstractions, e.g., zero/non-zero,
TradEOffS locked/unlocked
Example() {
1: if (x){ 2: do
7: do { lock();
got_lock = 0; old = new;
8: if (*){ 3: if (*){
9: lock(); 4 - unlock();
got_lock++; new++:;
10: if (got-lock){ 5. } while (new !'= old);
11: unlock(); 6: unlock();
return;

12: } while (%)

} Explicit-state Model Checking needs

programs to be represented as a
finite state model...state explosion??

Symbolic execution shows need to
eliminate infeasible paths, see

lock/unlock on correlated branches
(more complicated logic!).

Enter: Abstraction Refinement

« Can we get both soundness and the precision to
eliminate infeasible paths?
o In general: of course not! That's undecidable.
o Butin many situations we can solve it with abstraction
refinement.
e ...what will we lose?
o Answer: Termination guarantees. OH WELL.

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

CEGAR: Counterexample Guided Abstraction Refinement

Check for
property

violation.

Program, Abstract Abstract Model \
Property s » Program » Checker [—o—» Property
sing Error Holds
Spec Predicates
New Error
Predicates Found
Begin with a y
coarse G
: enerate . Path
abstraction Infeasible o Feasible
New < Feasibility [~ Report
Predicates Checker Bug

Is the error path
actually feasible?
Hint: weakest
preconditions!

Refine abstraction to
exclude infeasible
“error” path

(Carnegie Mellon University
School of Computer Science

SOFTWARE
RESEARCH

M|

institute for |

Property 1: Double Locking

lock

unlock

unlock lock

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Property 2: Drop Root Privilege
@ setuid(1) @ setuid(1)

setuid(0) setuid(0)
4
R=0,E=1 ,s= setuid(1) @

R=0,E=0,S=1
setuid(0) setuid

setuid(0)

setuid(1)

setuid(1)
[Chen-Dean-Wagner ’02]
“User applications must not run with root

privilege”
When execy is called, must have suid = 0

Property 3 : IRP Handler

ot Pend

completion
IRP accessible ———

sert? Mark [Pending skipq SAIPIVEr o ip2

Ski
‘ Ca IDrlver

MPR3 — svach , > \
ge-r' NP ——ﬂfeu{nver_> i

/ M g
: ending
M / MPR Complete

MPR2 QallDriver qop - completion
no prop
completion
N/A CallDriver

[Fahndrich]

Example SLAM Input

Example () {
1: do{

lock () ; lock

old = new;

2: 1f (g !'= NULL) {
3: g->data = new;
ol el () . unlock lock

new ++;

}
4: } while(new != o0ld);
5: unlock ()

X/ A

i | School of Computer Science

Incorporating Specs

Example () {
1: dof{
lock() ;
old = new;
g = g—->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4: } while(new != old);
5: unlock ()
return;
}
lock
unlock
unlock lock

Example () {
1: dof{
if L=1 goto ERR;
else L=1;
old = new;
q = g->next;
2: 1f (g !'= NULL) {
3: g->data = new;

if L=0 goto ERR;
else L=0;
new ++;
}
4: } while(new != o0ld);
5: 1f L=0 gotogriginal program
else L=0; | yjolates spec iff
return;

new program

ERR: abort(); reaches ERR
}

Program As
Labeled Transition System

o— o _ o _;._l State ransition
IITLIT e—— @

l o— 0 9 o o 9 I pc >3 . L pc 4
T T lock — @ 3: Hg%, $];<() 7 | lock -
Y ° o o| old —5 SEN old —
T ; I I new — 5 new — 6
‘T—/ T T T — w»| q —0x133a q > 0x133a
— ° o—»
Example () {
T T 1: do {
° Q ° lock () ;
old = new;
I q = g->next

XC;
2: if (g !'= NULL) {
\\\\ 3} g->data = new;
—9 ® o ® unlock () ;
new ++;

}
4: } while(new != old);
5: unlock ();
return; }

The Safety Verification Problem

Error

(e.g., states with
PC = Err)

Safe States

(never reach
Error)

Initial

Is there a path from an initial to an error state ?
Problem: Infinite state graph (old=1, old=2, old=...)
Solution : Set of states ~ logical formula

Representing
[Sets of States] as Formulas

[F]

states satisfying F {s | s F F}
[Fd N [F2]

[F] U LF2]

[A]

[F7] € [F2]

F

FO fmla over prog. vars
F, N F,

F,V F,

- F

F,=F,

i.e. F,/A—= F, unsatisfiable

ldea 1: Predicate Abstraction

e Predicates on program state:
lock (i.e., lock=true)
old = new

AN

S A S P

—»

<

I
/I ¢ o

@ o——

o States satisfying same predicates

- Merged into one abstract state

L]
T
i i
oA

]

o fHabstract states is finite
- Thus model-checking the
abstraction will be feasible!

i
.
7 :
are equivalent
I\
.
e

—

Bl

— & —9

1 \L.;.E_?
I®
I

e

I
l

Abstract States and Transitions

State
@ - @

E ‘ Z }gg%’ggl;{() | :

>
Theorem Prover

lock = lock
old=new - old=new

Abstraction

R 2 SR SR B
T e B e e ey B)
s e
f f 1 | 3: unlock
I I I l 4: }n?w++,
—— ——
MRS BB ENE 4\G:
! I I I I
T I A A
1 2
| v | ——*I / v Theorem Prover>
—_— —> 1 —T
lock = lock
EXIStentlaI Liftin old=new - old=new

(i.e., A=A, iff dc,

% 3C2€A2. C1—C3)

Abstraction

1, State
| |
1 o - @
i 5 BEgeek ()
N

I

|
| / ¥ >
o

lock = lock

old=new - old=new

Analyze Abstraction

Analyze finite graph

t
| Over Approximate:
t Safe = System Safe
| No false negatives
| NI
| _\},' AN Problem
t 1 / | Spurious counterexamples
] ¥
— T

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction!

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
states across cut
2. Build refined abstraction

Imprecision due to merge

21

lterative Abstraction-Refinement

Solution
Use spurious counterexamples
to refine abstraction

; S
) 1. Add predicates to distinguish
" states across cut
1\. 2. Build refined abstraction
/::’,:». -eliminates counterexample
/ 3. Repeat search
Untill real counterexample

or system proved safe
[Kurshan et al 93] [Clarke et al 00]

[Ball-Rajamani 01]

22

Problem: Abstraction is Expensive

Problem

#abstract states = 27predicates
Exponential Thm. Prover queries

|/

—

Reachable

Observe

Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100 |
#Reach ~ 1000’s

23

Solution1: Only Abstract Reachable States

|/

—

Safe

Problem Solution

#abstract states = 2#predicates Build abstraction during search
Exponential Thm. Prover queries

Solution2: Don’t Refine Error-Free Regions

Problem Solution

#abstract states = 2#predicates Don’t refine error-free regions
Exponential Thm. Prover queries

Build reachability tree.

« Generate Abstract Reachability Tree
o Contains all reachable nodes

o Annotates each node with state
= |nitially LOCK =0 or LOCK =1

= Cross product of CFA and data flow abstraction
 Algorithm: depth-first search
o Generate nodes one by one

o If you come to a node that's already in the tree, stop

= This state has already been explored through a different
control flow path

o If you come to an error node, stop

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Less abstractly: build reachability tree

2: do {
lock();
old = new;
3: if (x){
4: unlock(); [new != old]
new++;
5: } while (mew !'= 0ld);
6: unlock();
return;

unlock();

S r institute for | ~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Key Idea: Reachability Tree

Initial

Unroll Abstraction
T 1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Key Idea: Reachability Tree

Initial .
Unroll Abstraction
T 1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

3
j-/ \5 Find min infeasible suffix
- Learn new predicates
3 . 3 - Rebuild subtree with new preds.
Error Free

institute for |~ Carnegie Mellon University

SOFTWARE .
|Sr ResearcH | School of Computer Science

Key Idea: Reachability Tree

Initial
Unroll
T 1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

3

ﬁ-/ \5 Find min spurious suffix
:I\ \ - Learn new predicates
3 3 1] - Rebuild subtree with new preds.
Error Free

S1: Only Abstract Reachable States
SAFE S2: Don’t refine error-free regions

30

Less abstractly: build reachability tree

2: do {
lock();
old = new;
3: if (x){
4: unlock(); [new != old]
new++;
5: } while (mew !'= 0ld);
6: unlock();
return;

unlock();

S r institute for | ~ Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Build-and-Search

Example () {
l: do{
lock () ;

old = new;
g = g->next;
2: if (g != NULL) {

3: g->data = new;

unlock () ;
new ++;

}

4:}while (new != old);

5: unlock ()
h

1

Predicates: Lock

1| - LOCK

Reachability Tree

32

Build-and-Search

Example () {
=ttt
lock () ;
old = new; lock () 1 - LOCK
d = g ~onexc; old = new " o
2: if (g !'= NULL){ q=g->next
3: g->data = new; 2 LOCK
unlock () ;
new ++;

}

4:}while (new != old);

5: unlock ()
h

1——2

Reachability Tree

Predicates: Lock 33

Build-and-Search

Example () {
1: dof{
lock () ;
old = new; 1| - LOCK
g = g—->next; '
[2: if (g != NULL) { - ®
3: g->data = new; 2 LOCK

unlock () ; [g!=NULL]
new ++;
? 3 LOCK
4:}while (new !'= old);

5: unlock ()
h

1—4—-2—1-3

Reachability Tree

Predicates: Lock 34

Build-and-Search

Example () {
1: dof{
lock () ;
old = new; 1 - LOCK
g = g->next; '
2: if (g != NULL) { _‘l'_ ‘
3: g->data = new; 2 LOCK
unlock () ;
new t1to
} 3 LOCK
4:}while (new !'= old); g->data = new
5: unlock (); unlock () O
) new++
4| -Lock

12—

3
3

Predicates: Lock

Reachability Tree

35

Build-and-Search

Example () {
1: dof{
lock() ;
old = new; 1| - LOCK
g = g—->next; '
2: if (q != NULL){ 4+ o
BE g->data = new; 2 LOCK
unlock () ;
new ++;
? 3 LOCK
4:}while(new != old);
~5: unlock (), O
h
4 -rock
. [new==01d]
5 - LOCK
5
t
4
1
1213

Reachability Tree

Predicates: Lock 36

Build-and-Search

Example () {
1: dof
lock () ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock (),

T

W— D=1 U1

12—

Predicates: Lock

1
.

2
3 LOCK
4 - LOCK
5 - LOCK

unlock () O

- LOCK

- LOCK

LOCK

Reachability Tree

37

Depth First Search Example
"
[T] - [T]

(N /s
2 L7
/’\ \ _

[T]§ 3) [/]/\g
O [
&/\
[new != old] 1 k()
llnlc.)ck() 5 ;{;: lock++ \
new-++ K _1 0]
[new = old] [get 10Ck—

I —

Npiiy
J

@ LOCK=0

38

Is the Error Real?

» Use weakest preconditions to finc

out the

weakest precondition that leads to the error

o If the weakest precondition is false, t

nere is no initial

program condition that can lead to the error

o Therefore the error is spurious

» Blast uses a variant of weakest preconditions
o Creates a new variable for each assignment before

using weakest preconditions

o Instead of substituting on assignmen
constraint

t, adds new

o Helps isolate the reason for the spurious error more

effectively

SOFTWARE

S r institute for (Carnegie Mellon University

ResearcH | ochool of Computer Science

Is the Error Real?

M|

assume True;
lock();

old = new;
assume True;
unlock();

new++;

assume new==old
error (lock==0)

(Carnegie Mellon University
School of Computer Science

institute for
SOFTWARE
RESEARCH

[T]

lock()
old=new

LOCK=1

LOCK=1
unlock()
new-++

LOCK=0

[new = old]
LOCK=0

unlock()
LOCK=0

Model Locking as Assignment

e assume True;

« lock =1;

e old = new;

e assume True;

* lock =0;

* new =new + 1;

e assume new==old
* error (lock==0)

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Index the Variables

e assume True;

e lock1 =1

« old1 = newl;

e assume True;

* lock2=0

e new2 =newl + 1

e assume new2==o0ld1
« error (lock2==0)

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Generate Weakest Preconditions

e assume True;

e lockl =1 A True
- old1 = new1; A lockT==
 assume True; A old1==new
= A True
oce =" A lock2==0 Contradictory!

e new2 =newl + 1
e assume new2==o0ld1
« error (lock2==0)

A hew2==new1+]
A hew2==0ld1
lock2==0

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Relevant Sidebar: Craig Interpolation

« Given an unsatisfiable e AnTrue
formula A A B, the Craig

Interpolant | is a formula A 10CK1==
such that: * Aold1==new1
© P Bis unsatisfiabl " lrue

N ISTI e
o I A DISuUuNnsatistia . A |OCk2==O

o lonly refers to variables
mentioned in both Aand B e A New2==new1+1

e |tis guaranteed to exist,

oroot elided. A new2==0ld1

lock2==0

44

Why is the Error Spurious?

« More precisely, what predicate .
could I\[/)ve trac%that would A True
eIiminate7the spurious error e A lockl==
message: L Interpolant:
« Consider, for each node, the * AoldT==new? old == new
constraints generated before that e A True
node (c1) and after that node (c2) N\
 Find a condition | such that e Alock2==0

o Ccl=>|
= |istrue atthe node
o | only contains variables
mentioned in both c1 and c2

= | mentions only variables in
scope (not old or future copies)

o | Ac2-="false

= |is enough to show that the rest
of the path is infeasible

o |is guaranteed to exist
= See Craig Interpolation

A hew2==new1+1
A new2==0ld1
lock2==0

45

Analyze Counterexample

Example () {
1: dof
lock () ;

old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock ()
b

W— D=1 U1

12—

Predicates: Lock

1
.
2
3 LOCK
4 - LOCK
5 - LOCK

ﬁo
- LOCK

- LOCK

LOCK

lock ()

old = new
g=g->next

[q!=NULL]

g->data = new
unlock ()
new++

[new==01d]

unlock ()

Reachability Tree

46

Analyze Counterexample

Example ()

1l: dof

{

lock () ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}

4:}while (new != old);

5: unlock ()

}

1—

2 —

—

W— D=1 U1

Predicates: Lock

1
.
2
3 LOCK
4 - LOCK
5 - LOCK

ﬁo
- LOCK

- LOCK

® old = new
LOCK

new++

[new==01d]

Inconsistent

new == old

Reachability Tree

47

Reanalyzing the Program

« Explore a subtree again
o Start where new predicates were discovered
o This time, track the new predicates

o If the conjunction of the predicates on a node is false, stop exploring—
this node is unreachable

institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Reanalysis Example
o)

0

LOCK=0 & !new=old LOCK=1 & new=old
[new !=old [new = old]
LOCK=0 LOCK=0 False False unlock()

& new=ol

T zOCK=O & new=old

Already Covered Unreachable

49

Analyzing the Right Hand Side

7\
7 .
N o Exercise: run weakest
(got_lock=0) preconditions from the
[9\8 1 unlock() at the end of the
O l 1] path 1-7-8-10-11-12.
9
v 1= old] lock() /%, Recall that we model locking
got_lock+=) [10 B with a variable lock, so
[got lock !=0] . i
\/— unlock() is an error if lock==0
11

50

Reanalysis

ELXfi::\ - Example() {

_ 1: if (*){

/7\4 T: do {

- [got_lock={ﬂ l gOt—IOCk = 0;

8: if (*){
A 9: lock();
CE\ lﬁ] got_lock++;

v 1=old] Emmjﬁ>f

ollocke) (10)=o) 10: if (got_-lock){
N 11: unlock();

unlock() 12: } while (*)

}

Generate Weakest Preconditions

e assume True;
got_lock = 0;

assume True;
assume got_lock != 0;
error (lock==0)

. . . .
institute for |~ Carnegie Mellon University
| S r SOFTWARE

ResearcH | ochool of Computer Science

Why is the Error Spurious?

« More precisely, what predicate .
could we trac[z/that would A True
eliminate the spurious error « A got_lock==0
message? -

« Consider, for each node, the * A True

constraints generated before that
node (c1) and after that node (c2)
* Find a condition | such that
o c1=>|
» |istrue at the node

o | only contains variables Exercise: now find the
mentioned in both c1 and c2 Craig interpolant
= | mentions only variables in

scope (not old or future copies)
o | Ac2="false

= |is enough to show that the rest
of the path is infeasible

o |is guaranteed to exist
= See Craig Interpolation

A got_lock!=0
lock==0

53

Repeat Build-and-Search

Example () {
1: dof{
lock () ;

old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);
5: unlock ()
.

1

Predicates: rLock, new==old

1| - LOCK

...but only at the minimum suffix!

Reachability Tree

54

Repeat Build-and-Search

Example () {
1: dof
lock () ;
old = new; 1 - LOCK
g = g->next;
2: if (g !'= NULL) { ®
3: g->data = new; LOCK , new==old 2
unlock () ;
new ++;
? LOCK , new==old | 3
4:}while (new != old);
~5: unlock (); O
"
- LOCK , = new = old 4
. /~/[new==old]
4AL
1——»2 453

Reachability Tree

Predicates: rLock, new==old

Repeat Build-and-Search

Example () {

1: do{
lock () ;
old = new; 1 - LOCK
g = g->next;

2: if (g !'= NULL) { .

3: g->data = new; LOCK , new==old 2

unlock () ;
new ++;

) LOCK , new==old | 3

4:}while (new != old);
5: unlock () O

- LOCK , = new = old 4

. % [new!=o0ld]

1

- LOCK,
(4, - new == old
1<_—I

2 13

Reachability Tree

Predicates: rLock, new==old 56

Repeat Build-and-Search

Example () {
1: dof
lock() ;
old = new;

g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != old);

5: unlock ()

5

4, 1,4,
y |
1———»2-——»3

Predicates: rLock, new==old

LOCK , new==old

-

LOCK , new==old | 3

O

- LOCK , = new = old 4

1

- LOCK,
- new == old

O

- LOCK

SAFE

LOCK , new=old

- LOCK , new==old

Reachability Tree

57

Key Idea: Reachability Tree

Initial
Unroll
T 1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

3

ﬁ-/ \5 Find min spurious suffix
:I\ \ - Learn new predicates
3 3 1] - Rebuild subtree with new preds.
Error Free

S1: Only Abstract Reachable States
SAFE S2: Don’t refine error-free regions

58

Blast Techniques, Graphically

Explores reachable state, not all paths Lazy Abstraction

o Stops when state already seen on
another path

o Uses predicates on demand

o Only applies predicate to
relevant part of tree

7
i
Z (\)
new pred new pred
lock=0 & ... new=old got lock=0

COVERED ! —L o

Experimental Results

Program [|Postprocessed| Predicates [BLAST Time|Ctrex analysis|Proof Size
LOC Total|Active (sec) (sec) (bytes)
gpmouse.c 23539 2 2 0.50 0.00 175
ide.c 18131 5 5 4.59 0.01 253
ahal52x.c 17736 2 2 20.93 0.00
tlan.c 16506 5 4 428.63 403.33 405
cdaudio.c 17798 85 45 1398.62 540.96 156787
floppy.c 17386 62 37 2086.35 1565.34
[fixed| 93 44 395.97 17.46 60129
kbfiltr.c 12131 54 40 64.16 5.89
48 35 256.92 165.25
fixed] 37 34 10.00 0.38 7619
mouclass.c 17372 b7 46 H4.46 3.34
parport.c 61781 193 [50 1980.09 519.69 102967

institute for
SOFTWARE
RESEARCH

M|

(Carnegie Mellon University
School of Computer Science

Termination

- Not guaranteed
o The system could go on generating predicates forever

« Can guarantee termination

o Restrict the set of possible predicates to a finite subset
= Finite height lattices in data flow analysis!
o Those predicates are enough to predict observable behavior of
program
= E.g. the ordering of lock and unlock statements

= Predicates are restricted in practice
« E.g. likely can't handle arbitrary quantification as in Dafny
« Model checking is hard if properties depend on heap data, for example

o Can't prove arbitrary properties in this case

* |In practice
o Terminate abstraction refinement after a time bound

| S r institute for | Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Key Points of CEGAR

« TO prove a property, may need to strengthen it
o Just like strengthening induction hypothesis

« CEGAR figures out strengthening automatically
o From analyzing why errors are spurious

» Blast uses lazy abstraction

o Only uses an abstraction in the parts of the program
where it is needed

o Only builds the part of the abstract state that is
reached

o Explored state space is much smaller than potential
state space

S r institute for (Carnegie Mellon University

SOFTWARE .
ResearcH | ochool of Computer Science

Blast in Practice

« Has scaled past 100,000 lines of code
o Realistically starts producing worse results after a few
10K lines

« Sound up to certain limitations

o Assumes restricted (“safe”) use of C
= No aliases of different types; how realistic?

o No recursion, no function pointers
o Need models for library functions

« Has also been used to find memory safety
errors, race conditions, generate test cases

(Carnegie Mellon University

15[R
ResearcH | ochool of Computer Science

