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Motivation: How should we analyze this?

• * means something we 
can’t analyze (user input, 
random value)

• Line 5: the lock is held if 
and only if old = new
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Motivation: How should we analyze this?

• * means something we 
can’t analyze (user input, 
random value)

• Line 10: the lock is held if 
and only if got_lock = 1
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Tradeoffs…
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Dataflow analysis requires fixed 
abstractions, e.g., zero/non-zero, 
locked/unlocked

Symbolic execution shows need to 
eliminate infeasible paths, see 
lock/unlock on correlated branches 
(more complicated logic!). 

Explicit-state Model Checking needs 
programs to be represented as a 
finite state model…state explosion??



Enter: Abstraction Refinement

• Can we get both soundness and the precision to 
eliminate infeasible paths?
o In general: of course not!  That’s undecidable.
o But in many situations we can solve it with abstraction 

refinement.
• …what will we lose? 
o Answer: Termination guarantees.  OH WELL.
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CEGAR: Counterexample Guided Abstraction Refinement
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Program
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Path 
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Checker
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Holds

No
Error

Error
Found

Feasible Report
Bug

Infeasible

New
Predicates

Abstract
Using
Predicates

Begin with a 
coarse 
abstraction

Check for 
property 
violation.

Is the error path 
actually feasible?  
Hint: weakest 
preconditions!

Refine abstraction to 
exclude infeasible 
“error” path



Property 1: Double Locking

“An attempt to re-acquire an acquired lock or 
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

lock

lock

unlock

unlock



Property 2: Drop Root Privilege

“User applications must not run with root 
privilege” 
When execv is called, must have suid ¹ 0

[Chen-Dean-Wagner ’02]
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Property 3 : IRP Handler

[Fahndrich]

MPR3

CallDriver
MPR

completion

synch

not pending returned

SKIP2

IPCCallDriver
Skip return

child status

DC

Complete
request return

not Pend

PPC
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completion
CallDriver

N/A

no prop
completion CallDriver

start NP

return
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NP

MPR1

MPR
completion

SKIP2

IPCCallDriver

CallDriver

DC

Complete
request
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completion
CallDriver
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synch

SKIP1
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SKIP1
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MPR3

CallDrivernot pending returned
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synch
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Example SLAM Input

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return;
}

lock

lock

unlock

unlock



Incorporating Specs
Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return;
}

0 1

lock

lock
unlock

ERR
unlock

Example ( ) {
1: do{

if L=1 goto ERR;
else L=1; 
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

if L=0 goto ERR;
else L=0;
new ++;

}
4: } while(new != old);
5:  if L=0 goto ERR;

else L=0; 
return;

ERR: abort(); 
}   

Original program 
violates spec iff

new program 
reaches ERR
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Program As 
Labeled Transition System

State
Transition

3: unlock();new++;4:} …

pc
lock
old
new
q

! 3
!

! 5
! 5
! 0x133a

pc
lock
old
new
q

! 4
!

! 5
! 6
! 0x133a

Example ( ) {
1: do {

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5:  unlock ();

return; }
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The Safety Verification Problem

Initial

Error
(e.g., states with
PC = Err)

Is there a path from an initial to an error state ?
Problem: Infinite state graph (old=1, old=2, old=…)
Solution : Set of states ' logical formula

Safe States
(never reach 

Error)
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Representing
[Sets of States] as Formulas

[F]
states satisfying F  {s | s ² F }

F
FO fmla over prog. vars

[F1] \ [F2] F1 ^ F2

[F1] [ [F2] F1 _ F2

[F] ¬ F 

[F1] µ [F2] F1 ) F2

i.e. F1^¬ F2  unsatisfiable 
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Idea 1: Predicate Abstraction

• Predicates on program state:
lock                 (i.e., lock=true)
old = new

• States satisfying same predicates
are equivalent
– Merged into one abstract state

• #abstract states is finite
– Thus model-checking the 

abstraction will be feasible!
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Abstract States and Transitions

State

3: unlock();new++;4:} …

pc
lock
old
new
q

! 3
!

! 5
! 5
! 0x133a

pc
lock
old
new
q

! 4
!

! 5
! 6
! 0x133a

lock 
old=new

¬ lock 
¬ old=new

Theorem Prover 
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Abstraction

State

3: unlock();new++;4:} …

pc
lock
old
new
q

! 3
!

! 5
! 5
! 0x133a

c2

pc
lock
old
new
q

! 4
!

! 5
! 6
! 0x133a

A1 A2

lock 
old=new

¬ lock 
¬ old=new

Theorem Prover 

Existential Lifting 
(i.e., A1!A2 iff 9c12A1. 9c22A2. c1!c2)

c1
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Abstraction

State

3: unlock();new++;4:} …

pc
lock
old
new
q

! 3
!

! 5
! 5
! 0x133a

pc
lock
old
new
q

! 4
!

! 5
! 6
! 0x133a

lock 
old=new

¬ lock 
¬ old=new
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Analyze Abstraction

Analyze finite graph 

Over Approximate: 
Safe ) System Safe
No false negatives

Problem
Spurious counterexamples
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Idea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
to refine abstraction!
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1. Add predicates to distinguish
states across cut

2. Build refined abstraction

Solution
Use spurious counterexamples
to refine abstraction

Idea 2: Counterex.-Guided Refinement

Imprecision due to merge
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Iterative Abstraction-Refinement

1. Add predicates to distinguish
states across cut

2. Build refined abstraction
-eliminates counterexample

3. Repeat search
Untill real counterexample
or system proved safe

Solution
Use spurious counterexamples
to refine abstraction

[Kurshan et al 93] [Clarke et al 00]
[Ball-Rajamani 01]
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Problem: Abstraction is Expensive

Reachable

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Observe
Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100 ,
#Reach ~ 1000’s 
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Safe

Solution
Build abstraction during search

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Solution1: Only Abstract Reachable States
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Solution
Don’t refine error-free regions

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Solution2: Don’t Refine Error-Free Regions

Error Free
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Build reachability tree. 

• Generate Abstract Reachability Tree
o Contains all reachable nodes
o Annotates each node with state

§ Initially LOCK = 0 or LOCK = 1
§ Cross product of CFA and data flow abstraction

• Algorithm: depth-first search
o Generate nodes one by one
o If you come to a node that’s already in the tree, stop

§ This state has already been explored through a different 
control flow path

o If you come to an error node, stop
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Less abstractly: build reachability tree
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2

3

4

5

6

ret

lock();
old=new;

[T]

[T]
[new != old]

unlock();
new++;

unlock();

[new = old]



Key Idea: Reachability Tree
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1

2

3

4

3

Unroll Abstraction
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Initial



Key Idea: Reachability Tree

3

1

2

3

4 5

3

7

6

Error Free

Unroll Abstraction
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Initial



Key Idea: Reachability Tree
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1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAFE

Unroll
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates
- Rebuild subtree with new preds.

S1: Only Abstract Reachable States
S2: Don’t refine error-free regions

Initial
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Less abstractly: build reachability tree
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2

3

4

5

6

ret

lock();
old=new;

[T]

[T]
[new != old]

unlock();
new++;

unlock();

[new = old]



Build-and-Search 

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1
Reachability Tree

32



Build-and-Search 

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

lock()
old = new
q=q->next

LOCK2

2

Reachability Tree
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Build-and-Search 

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK

[q!=NULL]

3

3

Reachability Tree
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Build-and-Search 

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

q->data = new
unlock()
new++

4

4

¬ LOCK

Reachability Tree
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Build-and-Search 

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK
[new==old]

5
5

Reachability Tree
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Build-and-Search 

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK5
5

unlock()

¬ LOCK

Reachability Tree
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Depth First Search Example
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Is the Error Real?

• Use weakest preconditions to find out the 
weakest precondition that leads to the error
o If the weakest precondition is false, there is no initial 

program condition that can lead to the error
o Therefore the error is spurious

• Blast uses a variant of weakest preconditions
o creates a new variable for each assignment before 

using weakest preconditions
o Instead of substituting on assignment, adds new 

constraint
o Helps isolate the reason for the spurious error more 

effectively
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Is the Error Real?
• assume True;
• lock();
• old = new;
• assume True;
• unlock();
• new++;
• assume new==old
• error (lock==0)
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Model Locking as Assignment
• assume True;
• lock = 1;
• old = new;
• assume True;
• lock = 0;
• new = new + 1;
• assume new==old
• error (lock==0)
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Index the Variables
• assume True;
• lock1 = 1
• old1 = new1;
• assume True;
• lock2 = 0
• new2 = new1 + 1
• assume new2==old1
• error (lock2==0)
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Generate Weakest Preconditions
• assume True;
• lock1 = 1
• old1 = new1;
• assume True;
• lock2 = 0
• new2 = new1 + 1
• assume new2==old1
• error (lock2==0)

Ù True
Ù lock1==1
Ù old1==new1
Ù True
Ù lock2==0
Ù new2==new1+1
Ù new2==old1
lock2==0

43

Contradictory!



Relevant Sidebar: Craig Interpolation

• Given an unsatisfiable 
formula A Ù B, the Craig 
Interpolant I  is a formula 
such that:
o A à I
o I Ù B is unsatisfiable
o I only refers to variables 

mentioned in both A and B
• It is guaranteed to exist, 

proof elided. 

• Ù True
• Ù lock1==1
• Ù old1==new1
• Ù True
• Ù lock2==0
• Ù new2==new1+1
• Ù new2==old1
• lock2==0
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Why is the Error Spurious?
• More precisely, what predicate 

could we track that would 
eliminate the spurious error 
message?

• Consider, for each node, the 
constraints generated before that 
node (c1) and after that node (c2)

• Find a condition I such that
o c1 => I

§ I is true at the node
o I only contains variables 

mentioned in both c1 and c2
§ I mentions only variables in 

scope (not old or future copies)
o I Ù c2 = false

§ I is enough to show that the rest 
of the path is infeasible

o I is guaranteed to exist
§ See Craig Interpolation

• Ù True
• Ù lock1==1
• Ù old1==new1
• Ù True
• Ù lock2==0
• Ù new2==new1+1
• Ù new2==old1
• lock2==0

45

Interpolant:
old == new



Analyze Counterexample

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK5
5

¬ LOCK

Reachability Tree

lock()
old = new
q=q->next

[q!=NULL]

q->data = new
unlock()
new++

[new==old]

unlock()
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Analyze Counterexample

Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK5
5

¬ LOCK

[new==old]

new++

old = new

Inconsistent

new == old
Reachability Tree
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Reanalyzing the Program

• Explore a subtree again
o Start where new predicates were discovered
o This time, track the new predicates
o If the conjunction of the predicates on a node is false, stop exploring—

this node is unreachable
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Reanalysis Example
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UnreachableAlready Covered



Analyzing the Right Hand Side

50

Exercise: run weakest 
preconditions from the 
unlock() at the end of the 
path 1-7-8-10-11-12.

Recall that we model locking 
with a variable lock, so 
unlock() is an error if lock==0



Reanalysis
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Key: L = locked=1

Z = got_lock=0



Generate Weakest Preconditions
• assume True;
• got_lock = 0;
• assume True;
• assume got_lock != 0;
• error (lock==0)
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Why is the Error Spurious?
• More precisely, what predicate 

could we track that would 
eliminate the spurious error 
message?

• Consider, for each node, the 
constraints generated before that 
node (c1) and after that node (c2)

• Find a condition I such that
o c1 => I

§ I is true at the node
o I only contains variables 

mentioned in both c1 and c2
§ I mentions only variables in 

scope (not old or future copies)
o I Ù c2 = false

§ I is enough to show that the rest 
of the path is infeasible

o I is guaranteed to exist
§ See Craig Interpolation

• Ù True
• Ù got_lock==0
• Ù True
• Ù got_lock!=0
• lock==0
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Exercise: now find the 
Craig interpolant



Repeat Build-and-Search 

Predicates: LOCK, new==old 

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1
Reachability Tree
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…but only at the minimum suffix!



Repeat Build-and-Search 

Predicates: LOCK, new==old 

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

¬ LOCK , ¬ new = old

[new==old]

Reachability Tree
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Repeat Build-and-Search 

Predicates: LOCK, new==old 

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

¬ LOCK , ¬ new = old

¬ LOCK,  
¬ new == old

1

[new!=old]

4

Reachability Tree
56



Repeat Build-and-Search 

Predicates: LOCK, new==old 

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5: unlock ();
}

1

1

2

2

3

3

4

4

1

4

LOCK , new=old4

4

¬ LOCK , new==old

5
5

SAFE

Reachability Tree

LOCK , new==old

LOCK , new==old

¬ LOCK , ¬ new = old

¬ LOCK,  
¬ new == old
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Key Idea: Reachability Tree

3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAFE

Unroll
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates
- Rebuild subtree with new preds.

S1: Only Abstract Reachable States
S2: Don’t refine error-free regions

Initial
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Blast Techniques, Graphically
• Explores reachable state, not all paths

o Stops when state already seen on 
another path

• Lazy Abstraction
o Uses predicates on demand
o Only applies predicate to 

relevant part of tree

59Program Analysis - Spring 2019



Experimental Results
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Termination

• Not guaranteed
o The system could go on generating predicates forever

• Can guarantee termination
o Restrict the set of possible predicates to a finite subset

§ Finite height lattices in data flow analysis!
o Those predicates are enough to predict observable behavior of 

program
§ E.g. the ordering of lock and unlock statements
§ Predicates are restricted in practice

• E.g. likely can’t handle arbitrary quantification as in Dafny
• Model checking is hard if properties depend on heap data, for example

o Can’t prove arbitrary properties in this case
• In practice
o Terminate abstraction refinement after a time bound
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Key Points of CEGAR

• To prove a property, may need to strengthen it
o Just like strengthening induction hypothesis

• CEGAR figures out strengthening automatically
o From analyzing why errors are spurious

• Blast uses lazy abstraction
o Only uses an abstraction in the parts of the program 

where it is needed
o Only builds the part of the abstract state that is 

reached
o Explored state space is much smaller than potential 

state space
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Blast in Practice

• Has scaled past 100,000 lines of code
o Realistically starts producing worse results after a few 

10K lines
• Sound up to certain limitations
o Assumes restricted (“safe”) use of C

§ No aliases of different types; how realistic?
o No recursion, no function pointers
o Need models for library functions

• Has also been used to find memory safety 
errors, race conditions, generate test cases
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