
Model Checking and
Temporal Logics

Claire Le Goues

Incorporating slides developed by Jonathan Aldrich, which are based on slides
developed by Natasha Sharygina and used and adapted by permission; as well
as slides developed by Wes Weimer, also used and adapted with permission.

Model Checker: A program that checks if a
(transition) system satisfies a (temporal) property.

High level definition
• Model checking is an automated technique that exhaustively

explores the state space of a system, typically to see if an error
state is reachable. It produces concrete counter-examples.
o The state explosion problem refers to the large number of states in

the model.
o Temporal logic allows you to specify properties with concepts like

“eventually” and “always”.

Explicit-state Temporal Logic Model Checking
• Domain: Continuously operating concurrent systems (e.g. operating

systems, hardware controllers and network protocols)
• Ongoing, reactive semantics

o Non-terminating, infinite computations
o Manifest non-determinism

• Systems are modeled by finite state machines
• Properties are written in propositional temporal logic [Pneuli 77]
• Verification procedure is an exhaustive search of the state space of

the design
• Produces diagnostic counterexamples.

[Clarke,Emerson 81][Queille,Sifakis 82]

Motivation: What can be Verified?
• Architecture

o Will these two components interact properly?
§ Allen and Garlan: Wright system checks architectures for deadlock

• Code
o Am I using this component correctly?

§ Microsoft’s Static Driver Verifier ensures complex device driver rules are followed
• Substantially reduced Windows blue screens

o Is my code safe
§ Will it avoid error conditions?
§ Will it be responsive, eventually accepting the next input?

• Security
o Is the protocol I’m using secure

§ Model checking has found defects in security protocols

5

Temporal Properties
• Temporal Property: A property with time-related operators such as

“invariant” or “eventually”
• Invariant(p): is true in a state if property p is true in every state on

all execution paths starting at that state
– The Invariant operator has different names in different temporal logics:

• G, AG, ¤ (“goal” or “box” or “forall”)

• Eventually(p): is true in a state if property p is true at some state
on every execution path starting from that state

• F, AF, } (“diamond” or “future” or “exists”)

What is Model Checking?

Does model M satisfy a property P ?
(written M |= P)

What is “M”?

What is “P”?

What is “satisfy”?

7

What is “M”?

Example Program:

precondition: numTickets > 0
reserved = false;
while (true) {

getQuery();
if (numTickets > 0 && !reserved)

reserved = true;
if (numTickets > 0 && reserved) {

reserved = false;
numTickets--;

}
}

8

State Transition Diagram

nT=3,
r=false

nT=3,
r=true

nT=2,
r=false

nT=2,
r=true

nT=1,
r=false

nT=1,
r=true

nT=0,
r=false

What is “M”?

Example Program:

precondition: numTickets > 0
reserved = false;
while (true) {

getQuery();
if (numTickets > 0 && !reserved)

reserved = true;
if (numTickets > 0 && reserved) {

reserved = false;
numTickets--;

}
}

9

What is interesting about this?
Are tickets available? a
Is a ticket reserved? r

nT=2,
r=false

nT=2,
r=true

nT=1,
r=false

nT=1,
r=true

nT=0,
r=false

a !r a r

a !r a r

!a !r

What is “M”?

Abstracted Program: fewer states

precondition: available == true
reserved = false;
while (true) {

getQuery();
if (available && !reserved)

reserved = true;
if (available && reserved) {

reserved = false;
available = ?;

}
}

10

State Transition Graph or Kripke Model

a !r

a r !a !r

!a r

What is “M”?

Abstracted Program: fewer states

precondition: available == true
reserved = false;
while (true) {

getQuery();
if (available && !reserved)

reserved = true;
if (available && reserved) {

reserved = false;
available = ?;

}
}

11

State Transition Graph or Kripke Model

a !r

a r !a !r

What is “M”?

State: valuations to all variables
concrete state: (numTickets=5, reserved=false)
abstract state: (a=true, r=false)

Initial states: subset of states

Arcs: transitions between states

Atomic Propositions:
a: numTickets > 0
r: reserved = true

12

State Transition Graph or Kripke Model

a !r

a r !a !r

An Example Concurrent Program
• A simple concurrent mutual

exclusion program
• Two processes execute

asynchronously
• There is a shared variable
turn

• Two processes use the
shared variable to ensure
that they are not in the
critical section at the same
time

• Can be viewed as a
“fundamental” program:
any bigger concurrent one
would include this one

10: while True do
11: wait(turn = 0);

// critical section
12: work(); turn := 1;
13: end while;

|| // concurrently with

20: while True do
21: wait(turn = 1);

// critical section
22: work(); turn := 0;
23: end while

Reachable States
of the Example Program

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

Each state is a valuation
of all the variables:

turn and the two program
counters for two processes

Next: formalize
this intuition …

What is “M”? A Labelled Transition System

15

M = á S, S0, R, L ñ

Kripke structure:
S – finite set of states

What is “M”? A Labelled Transition System

16

M = á S, S0, R, L ñ

Kripke structure:
S – finite set of states
S0 Í S – set of initial states

What is “M”? A Labelled Transition System

17

M = á S, S0, R, L ñ

Kripke structure:
S – finite set of states
S0 Í S – set of initial states
R Í S ´ S – set of arcs

What is “M”? A Labelled Transition System

18

M = á S, S0, R, L ñ

Kripke structure:
S – finite set of states
S0 Í S – set of initial states
R Í S ´ S – set of arcs
L : S ® 2AP – mapping from states to a set of

atomic propositions

a !r

a r !a !r

(e.g., “x=5”2AP)
– Atomic propositions capture

basic properties
– For software, atomic props

depend on variable values
– The labeling function labels

each state with the set of
propositions true in that state

Atomic Propositions
• We must decide in advance which facts are important.

• We can have “x=5” or “x=6”, but not “x”; similarly for relations (e.g.,
“x<y”).

• Example: “In all the reachable states (configurations) of the
system, the two processes are never in the critical section at the
same time”
• Equivalently, we can say that: Invariant(¬(pc1=12 Ù pc2=22))

• Also: “Eventually the first process enters the critical section”
• Eventually(pc1=12)

• “pc1=12”, “pc2=22” are atomic properties

Model of Computation

20

Computation Traces

a
b

b
c c

State Transition Graph

Unwind State Graph to obtain traces. A trace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

Model of Computation

21

Computation Traces

a
b

b
c c

State Transition Graph

Unwind State Graph to obtain traces. A trace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

a b

Model of Computation

22

Computation Traces

b
c

a
b

b
c c

State Transition Graph

Unwind State Graph to obtain traces. A trace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

a b

Model of Computation

23

Computation Traces

b
c

a
b

a
b

b
c c

State Transition Graph

Unwind State Graph to obtain traces. A trace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

a b

Model of Computation

24

Computation Traces

a b

b
c

a
b

a
b

b
c c

State Transition Graph

Unwind State Graph to obtain traces. A trace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

b
c

a b

c

Model of Computation

25

Computation Traces

a b

b
c c

a
b c

a
b

b
c c

State Transition Graph

Unwind State Graph to obtain traces. A trace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

b
c

a ba b

c

Model of Computation

26

Infinite Computation Tree

a b

b
c

c

c

a
b c

a
b

b
c c

State Transition Graph

Represent all traces with an infinite computation tree

What is “P”?

Different kinds of temporal logics

Syntax: What are the formulas in the logic?

Semantics: What does it mean for model M to satisfy formula P?

Formulas:
- Atomic propositions: properties of states
- Temporal Logic Specifications: properties of traces.

27

Computation Tree Logics

28

Examples: Safety (mutual exclusion): no two processes can be at a critical
section at the same time

Liveness (absence of starvation): every request will be
eventually granted

Temporal logics differ according to how they handle branching in the underlying
computation tree.

In a linear temporal logic (LTL), operators are provided for describing system
behavior along a single computation path.

In a branching-time logic (CTL), the temporal operators quantify over the paths
that are possible from a given state.

Temporal Logics
• There are four basic temporal operators:

• X p = Next p, p holds in the next state
• G p = Globally p, p holds in every state, p is an invariant
• F p = Future p, p will hold in a future state, p holds eventually
• p U q = p Until q, assertion p will hold until q holds

• Precise meaning of these temporal operators are defined on
execution paths

Execution Paths
• A path π in M is an infinite sequence of states (s0, s1, s2, ...), such that
8 i ³0. (si, si+1) Î R
o πi denotes the suffix of π starting at si

• M, π ⊨ f means that f holds along path π in the Kripke structure M,
o “the path π in the transition system makes the temporal logic predicate f true”
o Example: A π. π ² G (¬(pc1=12 Ù pc2=22))

• In some temporal logics one can quantify the paths starting from a
state using path quantifiers
o A : for all paths
o E : there exists a path

Summary: Formulas over States and Paths
• State formulas

o Describe a property of a state in a model M
o If p ∈ AP, then p is a state formula
o If f and g are state formulas, then ¬f, f Ù g and f Ú g are state formulas
o If f is a path formula, then E f and A f are state formulas

• Path formulas
o Describe a property of an infinite path through a model M
o If f is a state formula, then f is also a path formula
o If f and g are path formulas, then ¬f, f Ù g, f Ú g, X f, F f, G f, and f U g are path formulas

31

LTL logic operators wrt Paths

32

Linear Time Logic (LTL) [Pnueli 77]: logic of temporal sequences.

• LTL properties are constructed from atomic propositions in AP; logical operators
Ù, Ú, ¬; and temporal operators X, G, F, U.

• The semantics of LTL properties is defined on paths:

• a: a holds in the current state (atomic)

• Xa: a holds in the next state (Next)

• Fg: g holds eventually (Future)

• Gl: l holds from now on (Globally)

• (a U b): a holds until b holds (Until)

g

ll

a

l l

a a b

a

Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) and
an LTL property p, T satisfies p if all paths
starting from all initial states I satisfy p

• Example LTL formulas:
– Invariant(¬(pc1=12 Ù pc2=22)):

G(¬(pc1=12 Ù pc2=22))
– Eventually(pc1=12):

F(pc1=12)

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

Each state is a valuation
of all the variables:

turn and the two program
counters for two processes

– Invariant(¬(pc1=12 Ù pc2=22)):
G(¬(pc1=12 Ù pc2=22))

– Eventually(pc1=12):
F(pc1=12)

LTL Satisfiability Examples

p does not hold p holds

On this path: F p holds, G p does not hold, p does not hold,
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds

. . .

. . .

Typical LTL Formulas
• G (Req Þ F Ack): whenever Request occurs, it will be eventually Acknowledged.

• G (DeviceEnabled): DeviceEnabled always holds on every computation path.

• G (F Restart): Fairness: from any state one will eventually get to a Restart state. I.e. Restart
states occur infinitely often.

• G (Reset Þ F Restart): whenever the reset button is pressed one will eventually get to the
Restart state.

• Pedantic note:
o G is sometimes written ⎕
o F is sometimes written ♢

36

Practice Writing Properties
• If the door is locked, it will not open until someone unlocks it

o assume atomic predicates locked, unlocked, open

• If you press ctrl-C, you will get a command line prompt

• The saw will not run unless the safety guard is engaged

37

Practice Writing Properties
• If the door is locked, it will not open until someone unlocks it

o assume atomic predicates locked, unlocked, open
o G (locked Þ (¬open U unlocked))

• If you press ctrl-C, you will get a command line prompt
o G (ctrlC Þ F prompt)

• The saw will not run unless the safety guard is engaged
o G (¬safety Þ ¬running)

38

LTL Model Checking Example
• Pressing Start will

eventually result in heat
• G(Start Þ F Heat)

39

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

LTL Model Checking
• f (primitive formula)

o Just check the properties of the current state
• X f

o Verify f holds in all successors of the current state
• G f

o Find all reachable states from the current state, and ensure f holds in all of them
§ use depth-first or breadth-first search

• f U g
o Do a depth-first search from the current state. Stop when you get to a g or you loop back on an already

visited state. Signal an error if you hit a state where f is false before you stop.
• F f

o Harder. Intuition: look for a path from the current state that loops back on itself, such that f is false on every
state in the path. If no such path is found, the formula is true.
§ Reality: use Büchi automata

40

LTL Model Checking Example
• Pressing Start will

eventually result in heat
• G(Start Þ F Heat)

41

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

LTL Model Checking Example
• The oven doesn’t heat up

until the door is closed.
(¬Heat) U Close
(¬Heat) W Close
G (not Closed => not Heat)

42

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Semantics of LTL Formulas

43

M, π ⊨ p Û π=s… Ù p Î L(s)

M, π ⊨ ¬g Û M, π ⊭ g
M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

p

Semantics of LTL Formulas

44

M, π ⊨ p Û π=s… Ù p Î L(s)

M, π ⊨ ¬g Û M, π ⊭ g
M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

M, π ⊨ X g Û M, π1 ⊨ gg

p

Semantics of LTL Formulas

45

M, π ⊨ p Û π=s… Ù p Î L(s)

M, π ⊨ ¬g Û M, π ⊭ g
M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

M, π ⊨ X g Û M, π1 ⊨ g

M, π ⊨ F g Û $k³0 | M, πk ⊨ g
g

g

p

Semantics of LTL Formulas

46

M, π ⊨ p Û π=s… Ù p Î L(s)

M, π ⊨ ¬g Û M, π ⊭ g
M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

M, π ⊨ X g Û M, π1 ⊨ g

M, π ⊨ F g Û $k³0 | M, πk ⊨ g

M, π ⊨ G g Û "k³0 | M, πk ⊨ g

g

gg

g

g g

p

Semantics of LTL Formulas

47

M, π ⊨ p Û π=s… Ù p Î L(s)

M, π ⊨ ¬g Û M, π ⊭ g
M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

M, π ⊨ X g Û M, π1 ⊨ g

M, π ⊨ F g Û $k³0 | M, πk ⊨ g

M, π ⊨ G g Û "k³0 | M, πk ⊨ g

M, π ⊨ g1 U g2 Û $k³0 | M, πk ⊨ g2

Ù "0£j<k M, πj ⊨ g1

g

gg

g

g g

g1 g1 g2

p

Semantics of LTL Formulas

48

M, π ⊨ p Û π=s… Ù p Î L(s)

M, π ⊨ ¬g Û M, π ⊭ g
M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

M, π ⊨ X g Û M, π1 ⊨ g

M, π ⊨ F g Û $k³0 | M, πk ⊨ g

M, π ⊨ G g Û "k³0 | M, πk ⊨ g

M, π ⊨ g1 U g2 Û $k³0 | M, πk ⊨ g2

Ù "0£j<k M, πj ⊨ g1

g

gg

g

g g

g1 g1 g2

p

g2 must eventually hold
semantics of “until” in English are potentially unclear—
that’s why we have a formal definition

Semantics of Formulas

M, s ⊨ p Û p Î L(s)

M, s ⊨ ¬f Û M, s ⊭ f

M, s ⊨ f1 Ù f2 Û M, s ⊨ f1 ÙM, s ⊨ f2

M, s ⊨ f1 Ú f2 Û M, s ⊨ f1 ÚM, s ⊨ f2

M, s ⊨ E g1 Û $π=s… | M, π ⊨ g1

M, s ⊨ A g1 Û"π=s… M, π ⊨ g1

M, π ⊨ f Û π=s… Ù M, s ⊨ f

M, π ⊨ ¬g Û M, π ⊭ g

M, π ⊨ g1 Ù g2 Û M, π ⊨ g1 ÙM, π ⊨ g2

M, π ⊨ g1 Ú g2 Û M, π ⊨ g1 ÚM, π ⊨ g2

M, π ⊨ X g Û M, π1 ⊨ g

M, π ⊨ F g Û $k³0 | M, πk ⊨ g

M, π ⊨ G g Û"k³0 | M, πk ⊨ g

M, π ⊨ g1 U g2 Û $k³0 | M, πk ⊨ g2

Ù "0£j<k M, πj ⊨ g1

49

Model Checking Complexity
• Given a transition system T = (S, I, R, L) and an LTL formula f

– One can check if the transition system satisfies the temporal logic formula
f in O(2|f| ´ (|S| + |R|)) time

• Given a transition system T = (S, I, R, L) and a CTL formula f
– One can check if a state of the transition system satisfies the temporal

logic formula f in O(|f| ´ (|S| + |R|)) time

• Model checking procedures can generate counter-examples without
increasing the complexity of verification (= “for free”)

State Space Explosion

51

Problem:
Size of the state graph can be exponential in size of the
program (both in the number of the program variables and the
number of program components or processes)

M = M1 || … || Mn

If each Mi has just 2 local states, potentially 2n global states

Research Directions: State space reduction

Explicit-State Model Checking
• One can show the complexity results using depth first

search algorithms
– The transition system is a directed graph
– CTL model checking is multiple depth first searches (one for

each temporal operator)
– LTL model checking is one nested depth first search (i.e., two

interleaved depth-first-searches)

– Such algorithms are called explicit-state model checking
algorithms.

Temporal Properties º Fixpoints
• States that satisfy AG(p) are all the states which are not in EF(¬p) (= the

states that can reach ¬p)
• Compute EF(¬p) as the fixpoint of Func: 2S ® 2S

• Given Z µ S,
– Func(Z) = ¬p È reach-in-one-step(Z)
– or Func(Z) = ¬p È EX(Z)

• Actually, EF(¬p) is the least-fixpoint of Func
– smallest set Z such that Z = Func(Z)
– to compute the least fixpoint, start the iteration from Z=Æ, and apply the Func

until you reach a fixpoint
– This can be computed (unlike most other fixpoints)

This is called the
inverse image of Z

Pictoral Backward Fixpoint

• • • ¬pInitial
states

initial states that violate AG(p)
= initial states that satisfy EF(¬p)

states that can reach ¬p = EF(¬p)
= states that violate AG(p)

Inverse Image of ¬p = EX(¬p)

This fixpoint computation can be used for:
• verification of EF(¬p)
• or falsification of AG(p) … and a similar forward fixpoint

handles the other cases

• Symbolic Model Checking represent state sets and the transition
relation as Boolean logic formulas
– Fixpoint computations manipulate sets of states rather than individual

states
– Recall: we needed to compute EX(Z), but Z µ S

• Forward and backward fixpoints can be computed by iteratively
manipulating these formulas
– Forward, inverse image: Existential variable elimination
– Conjunction (intersection), disjunction (union) and negation (set

difference), and equivalence check
• Use an efficient data structure for manipulation of Boolean logic

formulas: Binary Decision Diagrams (BDDs)

Symbolic Model Checking

– A counter-example is a valid execution path
– For each Image Ring (= set of states), find a state and

link it with the concrete transition relation R
– Since each Ring is “reached in one step from previous

ring” (e.g., Ring#3 = EX(Ring#4)) this works
– Each state z comes with L(z) so you know what is true at

each point (= what the values of variables are)

• • • ¬pInitial
states

1
2

3 4

To produce the explicit counter-example, use
the “onion-ring method”

Model Checking Performance/Examples
• Performance:

o Model Checkers today can routinely handle systems with between 100 and 300 state
variables.

o Systems with 10120 reachable states have been checked.
o By using appropriate abstraction techniques, systems with an essentially unlimited

number of states can be checked.
• Notable examples:

o IEEE Scalable Coherent Interface – In 1992 Dill’s group at Stanford used Murphi to find
several errors, ranging from uninitialized variables to subtle logical errors

o IEEE Futurebus – In 1992 Clarke’s group at CMU found previously undetected design errors
o PowerScale multiprocessor (processor, memory controller, and bus arbiter) was verified

by Verimag researchers using CAESAR toolbox
o Lucent telecom. protocols were verified by FormalCheck – errors leading to lost

transitions were identified
o PowerPC 620 Microprocessor was verified by Motorola’s Verdict model checker.

Efficient Algorithms for
LTL Model Checking

• Use Büchi automata
o Beyond the scope of this course

• Canonical reference on Model Checking:
o Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

MIT Press, 1999.

58

Computation Tree Logics
• Formulas are constructed from path quantifiers and temporal operators:

1. Path Quantifiers:
• A – ‘’for every path’’
• E – ‘’there exists a path’’

2. Temporal Operator:

• Xa - a holds next time
• Fa - a holds sometime in the future
• Ga - a holds globally in the future
• a Uβ - a holds until β holds

59

LTL: start with an A and then use only Temporal Operators

60

The Logic CTL
In a branching-time logic (CTL), the temporal operators quantify over the paths that
are possible from a given state (s0). Requires each temporal operator (X, F, G, and
U) to be preceded by a path quantifier (A or E).

M, s0 ⊨ EG c

M, s0 ⊨AF c

M, s0 ⊨ EF c

M, s0 ⊨AG c
c

c
c

c

c

c

c

c c

c

cc

c

Remember the Example

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

Linear vs. Branching Time

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

One path starting at state
(turn=0,pc1=10,pc2=20)

t=0
10,20

t=0
10,21

t=0
11,21

t=0
12,21

t=0
10,21

t=0
11,21

t=1
10,21

.

.

.

t=0
10,21

t=0
11,21

.

.

.

.

.

.

.

.

.

A computation tree
starting at state
(turn=0,pc1=10,pc2=20)

t=1
10,20

t=0
12,21

.

.

.

.

.

.

Branching Time
View

Linear Time
View

Example/Typical CTL Formulas
• EF (Started Ù ¬Ready): it is possible to get to a state where Started holds

but Ready does not hold.

• AG (Req Þ AF Ack): whenever Request occurs, it will be eventually
Acknowledged.

• AG (DeviceEnabled): DeviceEnabled always holds on every
computation path.

• AG (EF Restart): from any state it is possible to get to the Restart state.

p does not hold

p holds

.

.

.

.

.

.

.

.

.

.

.

.

At state s:
EF p, EX (EX p),
AF (¬p), ¬p holds

AF p, AG p,
AG (¬p), EX p,
EG p, p does not hold

s

.

.

.

.

.

.

.

.

.

s

At state s:
EF p, AF p,
EX (EX p),
EX p, EG p, p holds

AG p, AG (¬p),
AF (¬p) does not hold

.

.

.

.

.

.

.

.

.

s

At state s:
EF p, AF p,
AG p, EG p,
Ex p, AX p, p holds

EG (¬ p), EF (¬p),
does not hold

.

.

.

.

.

.

CTL Examples

Trivia
• AG(EF p) cannot be expressed in

LTL
o Reset property: from every state it is

possible to get to p
§ But there might be paths where you

never get to p
o Different from A(GF p)

§ Along each possible path, for each
state in the path, there is a future
state where p holds

§ Counterexample: ababab…

65

a

b p

Trivia
• A(FG p) cannot be expressed in

CTL
o Along all paths, one eventually

reaches a point where p always
holds from then on
§ But at some points in some paths

where p always holds, there might
be a diverging path where p does
not hold

o Different from AF(AG p)
§ Along each possible path there

exists a state such that p always
holds from then on

§ Counterexample: the path that
stays in s0

66

p

b p

s0

s1 s2

Linear vs Branching-Time logics
• LTL is a linear time logic: when determining if a path satisfies an

LTL formula we are only concerned with a single path
• CTL is a branching time logic: when determining if a state

satisfies a CTL formula we are concerned with multiple paths
• The computation is viewed as a tree which contains all the paths
• The computation tree is obtained by unrolling the transition relation

• The expressive powers of CTL and LTL are incomparable (LTL µ
CTL*, CTL µ CTL*)
• Basic temporal properties can be expressed in both logics
• Not in this lecture, sorry! (Take a class on Modal Logics)

Some advantages of LTL

Linear vs Branching-Time logics

• LTL properties are preserved under
“abstraction”: i.e., if M
“approximates” a more complex
model M’, by introducing more
paths, then

• M ² y) M’ ² y
• “counterexamples” for LTL are

simpler: single executions (not trees).
• The automata-theoretic approach to

LTL model checking is simpler (no
tree automata).

• most properties people are
interested in are (anecdotally) linear-
time.

• BT allows expression of some useful
properties like ‘reset’.

• CTL, a limited fragment of the more
complete BT logic CTL*, can be model
checked in time linear in the formula
size (as well as in the transition
system).
• But formulas are usually smaller than

models, so this isn’t as important as it
may first seem.

• Some BT logics, like µ-calculus and
CTL, are well-suited for the kind of
fixed-point computation scheme
used in symbolic model checking.

Some advantages of BT

Software Model Checking?
• Use a finite state programming language, like executable design

specifications (Statecharts, xUML, etc.).
• Extract finite state machines from programs written in conventional

programming languages
• Unroll the state machine obtained from the executable of the program.
• Use a combination of the state space reduction techniques to avoid

generating too many states.
• Verisoft (Bell Labs)
• FormalCheck/xUML (UT Austin, Bell Labs)
• ComFoRT (CMU/SEI)

• Use static analysis to extract a finite state skeleton from a program, model
check the result.
• Bandera – Kansas State
• Java PathFinder – NASA Ames
• SLAM/Bebop - Microsoft

