Model Checking and
Temporal Logics

Claire Le Goues

Incorporating slides developed by Jonathan Aldrich, which are based on slides
develc?fed by Natasha Sharygina and used and adapted by permission; as well
as slides developed by Wes Weimer, also used and adapted with permission.
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Model Checker: A program that checks if a
(transition) system satisfies a (temporal) property.



High level definition

* Model checking is an automated technique that exhaustively
explores the state space of a system, typically to see if an error
state is reachable. It produces concrete counter-examples.

o The state explosion problem refers to the large number of states in
the model.

o Temporal logic allows you to specifty properties with concepts like
“eventually” and “always”.
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[Clarke,Emerson 81][Queille,Sifakis 82]

Explicit-state Temporal Logic Model Checking

Domain: Continuously operating concurrent systems (e.g. operating
systems, hardware controllers and network protocols)

Ongoing, reactive semantics
o Non-terminating, infinite computations
o Manifest non-determinism

Systems are modeled by finite state machines
Properties are written in propositional temporal logic [Pneuli 77]

Verification procedure is an exhaustive search of the state space of
the design

Produces diagnostic counterexamples.
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Motivation: What can be Verified?

« Architecture
o Will these two components interact properly?
= Allen and Garlan: Wright system checks architectures for deadlock

« Code
o Am | using this component correctly?

= Microsoft's Static Driver Verifier ensures complex device driver rules are followed
Substantially reduced Windows blue screens

o Is my code safe
= Will it avoid error conditions?
= Will it be responsive, eventually accepting the next input?

« Security
o Isthe protocol I'm using secure
= Model checking has found defects in security protocols
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Temporal Properties

e Temporal Property: A property with time-related operators such as
“invariant” or “eventually”

e Invariant(p): is true in a state if property p is true in every state on
all execution paths starting at that state

- The Invariant operator has different names in different temporal logics:
e G, AG, 1 (“goal” or “box” or “forall”)

e Eventually(p): is true in a state if property p is true at some state
on every execution path starting from that state
e F, AF, & (“diamond” or “future” or “exists”)
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What is Model Checking?

Does model M satisfy a property P ?
(written M |=P)

What is “M"?
What is “P"?

What is “satisfy”?
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What is “M"?

Example Program:

State Transition Diagram

reserved = false;
while (true) {
getQuery();
if (numTickets >0 && !reserved)
reserved = true;
if (numTickets > 0 && reserved) {
reserved = false;
numTickets--;




What is “M"?

Example Program:

What is interesting about this?
Are tickets available?

reserved = false; .
Is a ticket reserved?

while (true) {
getQuery();
if (numTickets > 0 && !reserved)
reserved = true;
if (numTickets > 0 && reserved) {
reserved = false;
numTickets--;




What is “M"?

Abstracted Program: fewer states

reserved = false;
while (true) {
getQuery();
if (available && !reserved)
reserved = true;
if (available && reserved) {
reserved = false;
available =7;

State Transition Graph or Kripke Model

10




What is “M"?

Abstracted Program: fewer states

reserved = false;
while (true) {
getQuery();
if (available && !reserved)
reserved = true;
if (available && reserved) {
reserved = false;
available =7;

ar > !a!\r>

State Transition Graph or Kripke Model

11




What is “M"?
State: valuations to all variables
concrete state: (hnumTickets=5, reserved=false)

abstract state: (a=true, r=false)

Initial states: subset of states
Arcs: transitions between states

Atomic Propositions:
a: numTickets >0
r: reserved = true

ar > !a!\r>

State Transition Graph or Kripke Model
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An Example Concurrent Program

A simple concurrent mutual
exclusion program

Two processes execute
asynchronously

There is a shared variable
turn

Two processes use the
shared variable to ensure
that they are not in the
critical section at the same
time

Can be viewed as a
“fundamental” program:
any bigger concurrent one
would include this one

10: while True do

11: wait (turn = 0);
// critical section
12: work () ; turn := 1;

13: end while;

| | // concurrently with

20: while True do

21 : wait(turn = 1) ;
// critical section
22: work (); turn := 0;

23: end while



Reachable States
of the Example Program
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Each state is a valuation
of all the variables:

urn and the two program

ounters for two processes
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What is “M"? A Labelled Transition System

M= (S, Sy, R, L) Q

Kripke structure:

S — finite set of states Q O
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What is “M"? A Labelled Transition System

M= (S, S),R,L) 6)

Kripke structure:

S — finite set of states
Spc S — set of initial states Q O
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What is “M"? A Labelled Transition System

M= (S, S, R,L)
Kripke structure:
S — finite set of states
So< S - set of initial states Q>

R — S x S—setof arcs
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What is “M"? A Labelled Transition System

M= (S, S,R,L) @
Kripke structure:

S — finite set of states —

r » 1alr
Sy S —set of initial states i Q
R < S x S—setofarcs (e.2.. “x=5"CAP)

- AP i - Atomic propositions capture
L:S—2 mapping from states to a set of basic broperties

atomic propositions - For software, atomic props
depend on variable values
- The labeling function labels
each state with the set of
propositions true in that state
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Atomic Propositions

 We must decide in advance which facts are important.

e« We can have “x=5" or “x=6", but not “x”; similarly for relations (e.g.,
“X<y”).

« Example: “In all the reachable states (configurations) of the
system, the two processes are never in the critical section at the
same time”

o Equivalently, we can say that: Invariant(—(pc1=12 A pc2=22))
o Also: “Eventually the first process enters the critical section”
e Eventually(pc1=12)

o “pc1=12", “pc2=22" are atomic properties
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Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.
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Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.
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Model of Computation

State Transition Graph Infinite Computation Tree

Represent all traces with an infinite computation tree
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What is “P"?
Different kinds of temporal logics
Syntax: What are the formulas in the logic?

Semantics: What does it mean for model M to satisfy formula P?

Formulas:
- Atomic propositions: properties of states
- Temporal Logic Specifications: properties of traces.
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Computation Tree Logics

Examples: Safety (mutual exclusion): no two processes can be at a critical
section at the same time

Liveness (absence of starvation): every request will be
eventually granted

Temporal logics differ according to how they handle branching in the underlying
computation tree.

In a linear temporal logic (LTL), operators are provided for describing system
behavior along a single computation path.

In a branching-time logic (CTL), the temporal operators quantify over the paths
that are possible from a given state.
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Temporal Logics

e« There are four basic temporal operators:
« X p=Nextp, p holds in the next state
e G p = Globally p, p holds in every state, p is an invariant
e [ p=Future p, p will hold in a future state, p holds eventually
e pUaqg-=pUntil g, assertion p will hold until g holds

e Precise meaning of these temporal operators are defined on
execution paths
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Execution Paths

« Apathttin M is an infinite sequence of states (s0, s1, s2, ...), such that
V120.(s;, Si.1) € R
o T denotes the suffix of 1t starting at s;

« M, 1 = f means that f holds along path 1t in the Kripke structure M,
o “the path mtin the transition system makes the temporal logic predicate f true”
o Example: AT. TE G (=(pc1=12 A pc2=22))

* In some temporal logics one can quantify the paths starting from a
state using path quantifiers
o A for all paths
o E:there exists a path
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Summary: Formulas over States and Paths

 State formulas
o Describe a property of a state in a model M
o If peAP, then pis a state formula
o Iffand g are state formulas, then —f, f A g and f v g are state formulas
o Iffis a path formula, then E f and A f are state formulas

e Path formulas
o Describe a property of an infinite path through a model M
o Iffis a state formula, then fis also a path formula
o Iffand g are path formulas, then —f,fA g, fvg Xf, Ff, Gf andfU gare path formulas
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LTL logic operators wrt Paths

Linear Time Logic (LTL) [Pnueli 77]: logic of temporal sequences.

e LTL properties are constructed from atomic propositions in AP; logical operators

A, Vv, —; and temporal operators X, G, F, U.

e The semantics of LTL properties is defined on paths:

* a: o holds in the current state (atomic)

* Xa:: o holds in the next state (Next)

* Fz yholds eventually (Future)

* GA: A holds from now on (Globally)

* (U p): a holds until g holds (Until)

e —O—0O0—0—

a
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Satisfying Linear Time Logic

e Given a transition system T = (5, |, R, L) and
an LTL property p, T satisfies p if all paths
starting from all initial states | satisfy p

e Example LTL formulas:
- Invariant(—(pc1=12 A pc2=22)):
G(—(pc1=12 A pc2=22))
- Eventually(pc1=12):
F(pc1=12)
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- Invariant(—(pc1=12 A pc2=22)):
G(—(pc1=12 A pc2=22))
- Eventually(pc1=12):
F(pc1=12)

@ @

Each state is a valuation
of all the variables:
urn and the two program
institute For

Carnegie Mellon University
SOFTWARE : ounters for two processes
RESEARCH School of Computer Science




LTL Satisfiability Examples

( Hp does not hold @p holds

On this path: F p holds, G p does not hold, p does not hold,
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds
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Typical LTL Formulas

« G (Req = F Ack). whenever Request occurs, it will be eventually Acknowledged.
» G (DeviceEnabled): DeviceEnabled always holds on every computation path.

« G (F Restart): Fairness: from any state one will eventually get to a Restart state. l.e. Restart
states occur infinitely often.

* G (Reset = F Restart). whenever the reset button is pressed one will eventually get to the
Restart state.

« Pedantic note;
o Gissometimes written O
o Fissometimes written ¢
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Practice Writing Properties

 |f the door is locked, it will not open until someone unlocks it
o assume atomic predicates locked, unlocked, open

 |If you press ctrl-C, you will get a command line prompt

« The saw will not run unless the safety guard is engaged
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Practice Writing Properties

 |f the door is locked, it will not open until someone unlocks it
o assume atomic predicates locked, unlocked, open
o G (locked = (-open U unlocked))

 |If you press ctrl-C, you will get a command line prompt
o G (ctrlC = F prompt)

« The saw will not run unless the safety guard is engaged
o G (—safety = —running)
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LTL Model Checking Example

* Pressing Start will
eventually result in heat

« G(Start = F Heat)

Start
Close

~ Heat
o
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LTL Model Checking

f (primitive formula)
o Just check the properties of the current state

« Xf
o Verify f holds in all successors of the current state
« Gf

o Find all reachable states from the current state, and ensure f holds in all of them
= use depth-first or breadth-first search
- fUg

o Do a depth-first search from the current state. Stop when you get to a g or you loop back on an already
visited state. Signal an error if you hit a state where f is false before you stop.

. Ff

o Harder. Intuition: look for a path from the current state that loops back on itself, such that f is false on every
state in the path. If no such path is found, the formula is true.

= Reality: use Buchi automata

Carnegie Mellon University
School of Computer Science
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LTL Model Checking Example

* Pressing Start will
eventually result in heat

« G(Start = F Heat)

Start
Close

~ Heat
o
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LTL Model Checking Example

« The oven doesn't heat up
until the door is closed.

(—Heat) U Close
(—Heat) W Close
G ( not Closed => not Heat)

Start
Close
~ Heat

d Error
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Semantics of LTL Formulas

& —O—0O—0O— M, m=p

M,T[ |:—|g
M, =818
M, m=givEg:

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,
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Semantics of LTL Formulas

g—»o—»o—»oﬂ M, m=p
M, n=—g
Mr=g,n8
Mr=g,vE
7 MreXg

0

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

M =g
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Semantics of LTL Formulas

o —0O0—0O0—0—

® M, m=p
M,T[|:—|g
M, =g nE>
M,T[lzg7\/g2

O—@—0O0—0O—

g

MnreXg

O—0O0—@—0O—

g

Mnrn=Fg

0

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

M =g

Jk>0 | M, nk =g
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Semantics of LTL Formulas

e O—0O0—0—

® M, m=p
M,T[|:—|g
M,T[lzg7/\g2
M,T[lzg7\/g2

Oo—@®—0O0—0O—

g

MnreXg

O—O—@—0O—

g

Mnrn=Fg

o —0 00

Mnrn=Gg

0

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

M =g
Jk>0 | M, nk =g

vk>0 | M, nk= g
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Semantics of LTL Formulas

®&—0O——0O—O— M rep < w=S... AP e L(S)
p
M, tE—g & Mnwrg
M rneg, ng, & Ma=giAMrneg,
Mnreg,vg, & Ma=g,vM, neg,
O—@—0O—0O— M,neXg & Manaleg
g
O—0 '.g O M, an=Fg < Jk>0 | M, nkeg
*—0o 00 Mnrn=Gg <& VK0 | M, nkeg
g g g g
$—0—0—C Mnrne=g, U Jk>0 | M, nk =
9 o o tEg§1YE82 & | M, n*E g,

AVOSj<k M, W = g,
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Semantics of LTL Formulas

@ 0 0 M, e=p =
p
M, ntEe—g —
Mnrneg g <
Mnrneg, vg, <
SHE L MreXg =
g
Oo—0O0—@—0O— M rn=Fg —
g
e o 0 0 - MreGg N

n=S... A p € L(S)

Mnwrg
Mnrneg,AM,nEg,
Mnrn=eg,vM, n=g,

Mneg
Fk>0 | M, nk e g
vk>0 | M, nk=g

M =g Ug, @O | M,ﬁk@

g2 must eventually hold

semantics of “until” in English are potentially unclear—

that’'s why we have a formal definition

AVOS<KM, ™ = g,
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Semantics of Formulas

M,s=p < p e L(s) M, mte=f S n=s..AM,sef

M, s e —f SMsef M, nEe—-g SM g

M,sefinf, SMsefianMsef, M rEeEging SMrnegiAM g

M,sefivf, SMsefivM,sef Mnregivgs SMrnegivM, =g

M,s eE g, < an=s.. | M, neg; Mrn=Xg SMa'eg

M,seAg; & Vn=s.. M, n =gy M, rneFg < 3Ik>0 | M, nk=g
Mrn=Gg < Vk>0 | M, nkeg

Mrn=g/Ug, <3k=0| M, nkeg,
A VOSJ<k M, ) =&
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Model Checking Complexity

e Given a transition system T = (S, I, R, L) and an LTL formula f
- One can check if the transition system satisfies the temporal logic formula
fin O(2!"1 x (|S| + |R])) time
e Given a transition system T = (S5, |, R, L) and a CTL formula f
- One can check if a state of the transition system satisfies the temporal
logic formula f in O(|f] x (|S| + [R])) time

e Model checking procedures can generate counter-examples without
increasing the complexity of verification (= “for free”)

. L . .
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State Space Explosion

Problem:
Size of the state graph can be exponential in size of the
program (both in the number of the program variables and the
number of program components or processes) e

M=M,|| ... || M,

If each M, has just 2 local states, potentially 2" global states

Research Directions: State space reduction
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Explicit-State Model Checking

e One can show the complexity results using depth first
search algorithms
- The transition system is a directed graph

- CTL model checking is multiple depth first searches (one for
each temporal operator)

- LTL model checking is one nested depth first search (i.e., two
interleaved depth-first-searches)

- Such algorithms are called explicit-state model checking
algorithms.
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Temporal Properties = Fixpoints

o States that satisfy AG(p) are all the states which are not in EF(—p) (= the
states that can reach —p)

« Compute EF(—p) as the fixpoint of Func: 2° — 2°

e Given Z C S,
- Func(Z) = —p U reach-in-one-step(Z) This is called the
~ or Func(Z) = —p U EX(Z) / inverse image of Z
e Actually, EF(—p) is the least-fixpoint of Func

- smallest set Z such that Z = Func(Z)

- to compute the least fixpoint, start the iteration from Z=J, and apply the Func
until you reach a fixpoint

- This can be computed (unlike most other fixpoints)
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Pictoral Backward Fixpoint

Inverse Image of —p = EX(—p)

Initial ’
states \y

im:ti.a! states that viola’Fe AG(p) states that can reach —p = EF(—p)
= initial states that satisfy EF(—p) = states that violate AG(p)

This fixpoint computation can be used for:

e verification of EF(—p) ” -
- or falsification of AG(p) ﬂ’]’ ;;’;‘;”;fefgmgrl‘ccfafsl:foa




Symbolic Model Checking

o Symbolic Model Checking represent state sets and the transition
relation as Boolean logic formulas

- Fixpoint computations manipulate sets of states rather than individual
states

- Recall: we needed to compute EX(Z), but Z C S

e Forward and backward fixpoints can be computed by iteratively
manipulating these formulas
- Forward, inverse image: Existential variable elimination

- Conjunction (intersection), disjunction (union) and negation (set
difference), and equivalence check

e Use an efficient data structure for manipulation of Boolean logic
formulas: Binary Decision Diagrams (BDDs)
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To produce the explicit counter-example, use
the “onion-ring method”

A counter-example is a valid execution path

For each Image Ring (= set of states), find a state and
link it with the concrete transition relation R

Since each Ring is “reached in one step from previous
ring” (e.g., Ring#3 = EX(Ring#4)) this works

Each state z comes with L(z) so you know what is true at
each point (= what the values of variables are)

P@>
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Model Checking Performance/Examples

e Performance:

o ModebI|Checkers today can routinely handle systems with between 100 and 300 state
variables.

o Systems with 10120 reachable states have been checked.

o By using appropriate abstraction techniques, systems with an essentially unlimited
number of states can be checked.

« Notable examples:

o |EEE Scalable Coherent Interface - In 1992 Dill's group at Stanford used Murphi to find
several errors, ranging from uninitialized variables to subtle logical errors

o IEEE Futurebus - In 1992 Clarke’s group at CMU found previously undetected design errors

o PowerScale multiprocessor (processor, memory controller, and bus arbiter) was verified
by Verimag researchers using CAESAR toolbox

o Lucent telecom. protocols were verified by FormalCheck - errors leading to lost
transitions were identified

o PowerPC 620 Microprocessor was verified by Motorola’s Verdict model checker.
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Efficient Algorithms for
LTL Model Checking

« Use Buchi automata
o Beyond the scope of this course

« Canonical reference on Model Checking:

o Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.
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Computation Tree Logics

« Formulas are constructed from path quantifiers and temporal operators:

1. Path Quantifiers:
* A -"for every path”
* E -"there exists a path”

LTL: start with an A and then use only Temporal Operators

2. Temporal Operator:

« Xa - aholds next time

* Fa- aholds sometime in the future
* Ga- aholds globally in the future
* aUf - aholds until  holds
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The Logic CTL

In a branching-time logic (CTL), the temporal operators quantify over the paths that
are possible from a given state (sg). Requires each temporal operator (X, F, G, and
U) to be preceded by a path quantifier (A or E).

M,s, FAG ¢

N

M,s, F EF ¢ M,s, EEG ¢

60



Remember the Example
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oeminsaring e LINEAC VS, Branching Time

(turn—Op 1=10,pc2= 20)

A computation tree
View (turn=0,pc:1=10,pc2=20)

- GUEO-GU-GY-Eo-GGY



Example/Typical CTL Formulas

« EF (Started A —Read)y). it is possible to get to a state where Started holds
but RFeady does not hold.

« AG (Reqg = AF Ack). whenever Reqguest occurs, it will be eventually
Acknowledged.

» AG (DeviceEnabled): DeviceEnabled always holds on every
computation path.

* AG (EF Restart). from any state it is possible to get to the Restart state.
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() p does not hold
@ p holds

At state s:
EF p, EX (EX p),
AF (—lp), —p holds

AF p, AG p,
EG p, p does not hold

CTL Examples

S

At state s:

EF p, AF p,

EX (EX p),

EX p, EG p, p holds

AG p, AG (—p),
AF (—p) does not hold

S

At state s:

EF p, AF p,

AG p, EG p,

Ex p, AX p, p holds

EG (- p), EF (—p),
does not hold



Trivia

* AG(EF p) cannot be expressed in
LTL

o Reset property: from every state it is
possible to getto p

= But there might be paths where you
never gettop

o Different from A(GF p)

= Along each possible path, for each
state in the path, there is a future
state where p holds

= Counterexample: ababab...
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Trivia

« A(FG p) cannot be expressed in
CTL

o Alonﬁ all paths, one eventually
reaches a point where p always .
holds from then on y

= But at some points in some paths
where p always holds, there might
be a diverging path where p does

not hold
o Different from AF(AG p) > S2
= Along each possible path there b ’@
exist% a statg such th%t p always \>

holds from then on

= Counterexample: the path that
stays in sO
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Linear vs Branching-Time logics

e LTL is a linear time logic: when determining if a path satisfies an
LTL formula we are only concerned with a single path

e CTLis a branching time logic: when determining if a state
satisfies a CTL formula we are concerned with multiple paths

e The computation is viewed as a tree which contains all the paths
« The computation tree is obtained by unrolling the transition relation

e The expressive powers of CTL and LTL are incomparable (LTL C

CTL*, CTL C CTL¥%)
e Basic temporal properties can be expressed in both logics
e Not in this lecture, sorry! (Take a class on Modal Logics)

. L . .
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Linear vs Branching-Time logics

Some advantages of LTL

» LTL properties are preserved under
“abstraction”: i.e.,if M

“approximates” a more complex

model M’, by introducing more

paths, then
c MEy= MFEFy
» “counterexamples” for LTL are

simpler: single executions (not trees).

» The automata-theoretic approach to
LTL model checking is simpler (no
tree automata).

* most properties people are
|tnterested in are (anecdotally) linear-

ime.

Carnegie Mellon University
SOFTWARE

Some advantages of BT

BT allows expression of some useful
properties like ‘reset’.

CTL, a limited fragment of the more
complete BT logic CTL*, can be model
checked in time linear in the formula
size (as well as in the transition
system).

« But formulas are usually smaller than
models, so this isn't as important as it
may first seem.

Some BT logics, like y-calculus and

CTL, are well-suited for the kind of

fixed-point computation scheme

used in symbolic model checking.
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Software Model Checking?

Use a finite state programmin Ian%uage, like executable design
specifications (Statecharts, xUML, etc.).

Extract finite state machines from programs written in conventional
programming languages
Unroll the state machine obtained from the executable of the program.

Use a combination of the state space reduction techniques to avoid
generating too many states.

Verisoft (Bell Labs)

FormalCheck/xUML (UT Austin, Bell Labs)

ComFoRT (CMU/SEI)
Use static ana/)/sis to extract a finite state skeleton from a program, model
check the resuft.

Bandera - Kansas State

Java PathFinder - NASA Ames

SLAM/Bebop - Microsoft
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