Model Checking and
Temporal Logics

Claire Le Goues

Incorporating slides developed by Jonathan Aldrich, which are based on slides
develc?fed by Natasha Sharygina and used and adapted by permission; as well
as slides developed by Wes Weimer, also used and adapted with permission.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Model Checker: A program that checks if a
(transition) system satisfies a (temporal) property.

High level definition

* Model checking is an automated technique that exhaustively
explores the state space of a system, typically to see if an error
state is reachable. It produces concrete counter-examples.

o The state explosion problem refers to the large number of states in
the model.

o Temporal logic allows you to specifty properties with concepts like
“eventually” and “always”.

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

[Clarke,Emerson 81][Queille,Sifakis 82]

Explicit-state Temporal Logic Model Checking

Domain: Continuously operating concurrent systems (e.g. operating
systems, hardware controllers and network protocols)

Ongoing, reactive semantics
o Non-terminating, infinite computations
o Manifest non-determinism

Systems are modeled by finite state machines
Properties are written in propositional temporal logic [Pneuli 77]

Verification procedure is an exhaustive search of the state space of
the design

Produces diagnostic counterexamples.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Motivation: What can be Verified?

« Architecture
o Will these two components interact properly?
= Allen and Garlan: Wright system checks architectures for deadlock

« Code
o Am | using this component correctly?

= Microsoft's Static Driver Verifier ensures complex device driver rules are followed
Substantially reduced Windows blue screens

o Is my code safe
= Will it avoid error conditions?
= Will it be responsive, eventually accepting the next input?

« Security
o Isthe protocol I'm using secure
= Model checking has found defects in security protocols

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Temporal Properties

e Temporal Property: A property with time-related operators such as
“invariant” or “eventually”

e Invariant(p): is true in a state if property p is true in every state on
all execution paths starting at that state

- The Invariant operator has different names in different temporal logics:
e G, AG, 1 (“goal” or “box” or “forall”)

e Eventually(p): is true in a state if property p is true at some state
on every execution path starting from that state
e F, AF, & (“diamond” or “future” or “exists”)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is Model Checking?

Does model M satisfy a property P ?
(written M |=P)

What is “M"?
What is “P"?

What is “satisfy”?

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

What is “M"?

Example Program:

State Transition Diagram

reserved = false;
while (true) {
getQuery();
if (numTickets >0 && !reserved)
reserved = true;
if (numTickets > 0 && reserved) {
reserved = false;
numTickets--;

What is “M"?

Example Program:

What is interesting about this?
Are tickets available?

reserved = false; .
Is a ticket reserved?

while (true) {
getQuery();
if (numTickets > 0 && !reserved)
reserved = true;
if (numTickets > 0 && reserved) {
reserved = false;
numTickets--;

What is “M"?

Abstracted Program: fewer states

reserved = false;
while (true) {
getQuery();
if (available && !reserved)
reserved = true;
if (available && reserved) {
reserved = false;
available =7;

State Transition Graph or Kripke Model

10

What is “M"?

Abstracted Program: fewer states

reserved = false;
while (true) {
getQuery();
if (available && !reserved)
reserved = true;
if (available && reserved) {
reserved = false;
available =7;

ar > !a!\r>

State Transition Graph or Kripke Model

11

What is “M"?
State: valuations to all variables
concrete state: (hnumTickets=5, reserved=false)

abstract state: (a=true, r=false)

Initial states: subset of states
Arcs: transitions between states

Atomic Propositions:
a: numTickets >0
r: reserved = true

ar > !a!\r>

State Transition Graph or Kripke Model

12

An Example Concurrent Program

A simple concurrent mutual
exclusion program

Two processes execute
asynchronously

There is a shared variable
turn

Two processes use the
shared variable to ensure
that they are not in the
critical section at the same
time

Can be viewed as a
“fundamental” program:
any bigger concurrent one
would include this one

10: while True do

11: wait (turn = 0);
// critical section
12: work () ; turn := 1;

13: end while;

| | // concurrently with

20: while True do

21 : wait(turn = 1) ;
// critical section
22: work (); turn := 0;

23: end while

Reachable States
of the Example Program

\ @@\ "% [e

® ‘/ﬁ
PESR) (g
l9%3

Each state is a valuation
of all the variables:

urn and the two program

ounters for two processes

ttttttttttt Carnegie Mellon University
SSSSSSSS .
School of Computer Science

What is “M"? A Labelled Transition System

M= (S, Sy, R, L) Q

Kripke structure:

S — finite set of states Q O

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is “M"? A Labelled Transition System

M= (S, S),R,L) 6)

Kripke structure:

S — finite set of states
Spc S — set of initial states Q O

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is “M"? A Labelled Transition System

M= (S, S, R,L)
Kripke structure:
S — finite set of states
So< S - set of initial states Q>

R — S x S—setof arcs

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

What is “M"? A Labelled Transition System

M= (S, S,R,L) @
Kripke structure:

S — finite set of states —

r » 1alr
Sy S —set of initial states i Q
R < S x S—setofarcs (e.2.. “x=5"CAP)

- AP i - Atomic propositions capture
L:S—2 mapping from states to a set of basic broperties

atomic propositions - For software, atomic props
depend on variable values
- The labeling function labels
each state with the set of
propositions true in that state

18

Atomic Propositions

 We must decide in advance which facts are important.

e« We can have “x=5" or “x=6", but not “x”; similarly for relations (e.g.,
“X<y”).

« Example: “In all the reachable states (configurations) of the
system, the two processes are never in the critical section at the
same time”

o Equivalently, we can say that: Invariant(—(pc1=12 A pc2=22))
o Also: “Eventually the first process enters the critical section”
e Eventually(pc1=12)

o “pc1=12", “pc2=22" are atomic properties

institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

20

Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

21

Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

22

Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

23

Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

24

Model of Computation

State Transition Graph Computation Traces

Unwind State Graph to obtain traces. A frace is an
infinite sequence of states. The semantics of a FSM
is a set of traces.

25

Model of Computation

State Transition Graph Infinite Computation Tree

Represent all traces with an infinite computation tree

26

What is “P"?
Different kinds of temporal logics
Syntax: What are the formulas in the logic?

Semantics: What does it mean for model M to satisfy formula P?

Formulas:
- Atomic propositions: properties of states
- Temporal Logic Specifications: properties of traces.

27

Computation Tree Logics

Examples: Safety (mutual exclusion): no two processes can be at a critical
section at the same time

Liveness (absence of starvation): every request will be
eventually granted

Temporal logics differ according to how they handle branching in the underlying
computation tree.

In a linear temporal logic (LTL), operators are provided for describing system
behavior along a single computation path.

In a branching-time logic (CTL), the temporal operators quantify over the paths
that are possible from a given state.

28

Temporal Logics

e« There are four basic temporal operators:
« X p=Nextp, p holds in the next state
e G p = Globally p, p holds in every state, p is an invariant
e [p=Future p, p will hold in a future state, p holds eventually
e pUaqg-=pUntil g, assertion p will hold until g holds

e Precise meaning of these temporal operators are defined on
execution paths

institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

Execution Paths

« Apathttin M is an infinite sequence of states (s0, s1, s2, ...), such that
V120.(s;, Si.1) € R
o T denotes the suffix of 1t starting at s;

« M, 1 = f means that f holds along path 1t in the Kripke structure M,
o “the path mtin the transition system makes the temporal logic predicate f true”
o Example: AT. TE G (=(pc1=12 A pc2=22))

* In some temporal logics one can quantify the paths starting from a
state using path quantifiers
o A for all paths
o E:there exists a path

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Summary: Formulas over States and Paths

 State formulas
o Describe a property of a state in a model M
o If peAP, then pis a state formula
o Iffand g are state formulas, then —f, f A g and f v g are state formulas
o Iffis a path formula, then E f and A f are state formulas

e Path formulas
o Describe a property of an infinite path through a model M
o Iffis a state formula, then fis also a path formula
o Iffand g are path formulas, then —f,fA g, fvg Xf, Ff, Gf andfU gare path formulas

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

LTL logic operators wrt Paths

Linear Time Logic (LTL) [Pnueli 77]: logic of temporal sequences.

e LTL properties are constructed from atomic propositions in AP; logical operators

A, Vv, —; and temporal operators X, G, F, U.

e The semantics of LTL properties is defined on paths:

* a: o holds in the current state (atomic)

* Xa:: o holds in the next state (Next)

* Fz yholds eventually (Future)

* GA: A holds from now on (Globally)

* (U p): a holds until g holds (Until)

e —O—0O0—0—

a

32

Satisfying Linear Time Logic

e Given a transition system T = (5, |, R, L) and
an LTL property p, T satisfies p if all paths
starting from all initial states | satisfy p

e Example LTL formulas:
- Invariant(—(pc1=12 A pc2=22)):
G(—(pc1=12 A pc2=22))
- Eventually(pc1=12):
F(pc1=12)

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

- Invariant(—(pc1=12 A pc2=22)):
G(—(pc1=12 A pc2=22))
- Eventually(pc1=12):
F(pc1=12)

@ @

Each state is a valuation
of all the variables:
urn and the two program
institute For

Carnegie Mellon University
SOFTWARE : ounters for two processes
RESEARCH School of Computer Science

LTL Satisfiability Examples

(Hp does not hold @p holds

On this path: F p holds, G p does not hold, p does not hold,
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Typical LTL Formulas

« G (Req = F Ack). whenever Request occurs, it will be eventually Acknowledged.
» G (DeviceEnabled): DeviceEnabled always holds on every computation path.

« G (F Restart): Fairness: from any state one will eventually get to a Restart state. l.e. Restart
states occur infinitely often.

* G (Reset = F Restart). whenever the reset button is pressed one will eventually get to the
Restart state.

« Pedantic note;
o Gissometimes written O
o Fissometimes written ¢

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Practice Writing Properties

 |f the door is locked, it will not open until someone unlocks it
o assume atomic predicates locked, unlocked, open

 |If you press ctrl-C, you will get a command line prompt

« The saw will not run unless the safety guard is engaged

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Practice Writing Properties

 |f the door is locked, it will not open until someone unlocks it
o assume atomic predicates locked, unlocked, open
o G (locked = (-open U unlocked))

 |If you press ctrl-C, you will get a command line prompt
o G (ctrlC = F prompt)

« The saw will not run unless the safety guard is engaged
o G (—safety = —running)

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

LTL Model Checking Example

* Pressing Start will
eventually result in heat

« G(Start = F Heat)

Start
Close

~ Heat
o

institute for Carnegie Mellon University =™
SOFTWARE .
RESEARCH School of Computer Science

LTL Model Checking

f (primitive formula)
o Just check the properties of the current state

« Xf
o Verify f holds in all successors of the current state
« Gf

o Find all reachable states from the current state, and ensure f holds in all of them
= use depth-first or breadth-first search
- fUg

o Do a depth-first search from the current state. Stop when you get to a g or you loop back on an already
visited state. Signal an error if you hit a state where f is false before you stop.

. Ff

o Harder. Intuition: look for a path from the current state that loops back on itself, such that f is false on every
state in the path. If no such path is found, the formula is true.

= Reality: use Buchi automata

Carnegie Mellon University
School of Computer Science

institute for

RESEARCH

SOFTWARE ‘

LTL Model Checking Example

* Pressing Start will
eventually result in heat

« G(Start = F Heat)

Start
Close

~ Heat
o

institute for Carnegie Mellon University =™
SOFTWARE .
RESEARCH School of Computer Science

LTL Model Checking Example

« The oven doesn't heat up
until the door is closed.

(—Heat) U Close
(—Heat) W Close
G (not Closed => not Heat)

Start
Close
~ Heat

d Error

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Semantics of LTL Formulas

& —O—0O—0O— M, m=p

M,T[|:—|g
M, =818
M, m=givEg:

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

43

Semantics of LTL Formulas

g—»o—»o—»oﬂ M, m=p
M, n=—g
Mr=g,n8
Mr=g,vE
7 MreXg

0

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

M =g

44

Semantics of LTL Formulas

o —0O0—0O0—0—

® M, m=p
M,T[|:—|g
M, =g nE>
M,T[lzg7\/g2

O—@—0O0—0O—

g

MnreXg

O—0O0—@—0O—

g

Mnrn=Fg

0

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

M =g

Jk>0 | M, nk =g

45

Semantics of LTL Formulas

e O—0O0—0—

® M, m=p
M,T[|:—|g
M,T[lzg7/\g2
M,T[lzg7\/g2

Oo—@®—0O0—0O—

g

MnreXg

O—O—@—0O—

g

Mnrn=Fg

o —0 00

Mnrn=Gg

0

0

0

n=S... A P € L(S)

M, g
Mnr=eg,AM nEeg,
Mnr=eg,vM, =g,

M =g
Jk>0 | M, nk =g

vk>0 | M, nk= g

46

Semantics of LTL Formulas

®&—0O——0O—O— M rep < w=S... AP e L(S)
p
M, tE—g & Mnwrg
M rneg, ng, & Ma=giAMrneg,
Mnreg,vg, & Ma=g,vM, neg,
O—@—0O—0O— M,neXg & Manaleg
g
O—0 '.g O M, an=Fg < Jk>0 | M, nkeg
*—0o 00 Mnrn=Gg <& VK0 | M, nkeg
g g g g
$—0—0—C Mnrne=g, U Jk>0 | M, nk =
9 o o tEg§1YE82 & | M, n*E g,

AVOSj<k M, W = g,

47

Semantics of LTL Formulas

@ 0 0 M, e=p =
p
M, ntEe—g —
Mnrneg g <
Mnrneg, vg, <
SHE L MreXg =
g
Oo—0O0—@—0O— M rn=Fg —
g
e o 0 0 - MreGg N

n=S... A p € L(S)

Mnwrg
Mnrneg,AM,nEg,
Mnrn=eg,vM, n=g,

Mneg
Fk>0 | M, nk e g
vk>0 | M, nk=g

M =g Ug, @O | M,ﬁk@

g2 must eventually hold

semantics of “until” in English are potentially unclear—

that’'s why we have a formal definition

AVOS<KM, ™ = g,

48

Semantics of Formulas

M,s=p < p e L(s) M, mte=f S n=s..AM,sef

M, s e —f SMsef M, nEe—-g SM g

M,sefinf, SMsefianMsef, M rEeEging SMrnegiAM g

M,sefivf, SMsefivM,sef Mnregivgs SMrnegivM, =g

M,s eE g, < an=s.. | M, neg; Mrn=Xg SMa'eg

M,seAg; & Vn=s.. M, n =gy M, rneFg < 3Ik>0 | M, nk=g
Mrn=Gg < Vk>0 | M, nkeg

Mrn=g/Ug, <3k=0| M, nkeg,
A VOSJ<k M,) =&

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

Model Checking Complexity

e Given a transition system T = (S, I, R, L) and an LTL formula f
- One can check if the transition system satisfies the temporal logic formula
fin O(2!"1 x (|S| + |R])) time
e Given a transition system T = (S5, |, R, L) and a CTL formula f
- One can check if a state of the transition system satisfies the temporal
logic formula f in O(|f] x (|S| + [R])) time

e Model checking procedures can generate counter-examples without
increasing the complexity of verification (= “for free”)

. L . .
institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

State Space Explosion

Problem:
Size of the state graph can be exponential in size of the
program (both in the number of the program variables and the
number of program components or processes) e

M=M,|| ... || M,

If each M, has just 2 local states, potentially 2" global states

Research Directions: State space reduction

51

Explicit-State Model Checking

e One can show the complexity results using depth first
search algorithms
- The transition system is a directed graph

- CTL model checking is multiple depth first searches (one for
each temporal operator)

- LTL model checking is one nested depth first search (i.e., two
interleaved depth-first-searches)

- Such algorithms are called explicit-state model checking
algorithms.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Temporal Properties = Fixpoints

o States that satisfy AG(p) are all the states which are not in EF(—p) (= the
states that can reach —p)

« Compute EF(—p) as the fixpoint of Func: 2° — 2°

e Given Z C S,
- Func(Z) = —p U reach-in-one-step(Z) This is called the
~ or Func(Z) = —p U EX(Z) / inverse image of Z
e Actually, EF(—p) is the least-fixpoint of Func

- smallest set Z such that Z = Func(Z)

- to compute the least fixpoint, start the iteration from Z=J, and apply the Func
until you reach a fixpoint

- This can be computed (unlike most other fixpoints)

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

Pictoral Backward Fixpoint

Inverse Image of —p = EX(—p)

Initial ’
states \y

im:ti.a! states that viola’Fe AG(p) states that can reach —p = EF(—p)
= initial states that satisfy EF(—p) = states that violate AG(p)

This fixpoint computation can be used for:

e verification of EF(—p) ” -
- or falsification of AG(p) ﬂ’]’ ;;’;‘;”;fefgmgrl‘ccfafsl:foa

Symbolic Model Checking

o Symbolic Model Checking represent state sets and the transition
relation as Boolean logic formulas

- Fixpoint computations manipulate sets of states rather than individual
states

- Recall: we needed to compute EX(Z), but Z C S

e Forward and backward fixpoints can be computed by iteratively
manipulating these formulas
- Forward, inverse image: Existential variable elimination

- Conjunction (intersection), disjunction (union) and negation (set
difference), and equivalence check

e Use an efficient data structure for manipulation of Boolean logic
formulas: Binary Decision Diagrams (BDDs)

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH School of Computer Science

To produce the explicit counter-example, use
the “onion-ring method”

A counter-example is a valid execution path

For each Image Ring (= set of states), find a state and
link it with the concrete transition relation R

Since each Ring is “reached in one step from previous
ring” (e.g., Ring#3 = EX(Ring#4)) this works

Each state z comes with L(z) so you know what is true at
each point (= what the values of variables are)

P@>

Initial O

Model Checking Performance/Examples

e Performance:

o ModebI|Checkers today can routinely handle systems with between 100 and 300 state
variables.

o Systems with 10120 reachable states have been checked.

o By using appropriate abstraction techniques, systems with an essentially unlimited
number of states can be checked.

« Notable examples:

o |EEE Scalable Coherent Interface - In 1992 Dill's group at Stanford used Murphi to find
several errors, ranging from uninitialized variables to subtle logical errors

o IEEE Futurebus - In 1992 Clarke’s group at CMU found previously undetected design errors

o PowerScale multiprocessor (processor, memory controller, and bus arbiter) was verified
by Verimag researchers using CAESAR toolbox

o Lucent telecom. protocols were verified by FormalCheck - errors leading to lost
transitions were identified

o PowerPC 620 Microprocessor was verified by Motorola’s Verdict model checker.

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

Efficient Algorithms for
LTL Model Checking

« Use Buchi automata
o Beyond the scope of this course

« Canonical reference on Model Checking:

o Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Computation Tree Logics

« Formulas are constructed from path quantifiers and temporal operators:

1. Path Quantifiers:
* A -"for every path”
* E -"there exists a path”

LTL: start with an A and then use only Temporal Operators

2. Temporal Operator:

« Xa - aholds next time

* Fa- aholds sometime in the future
* Ga- aholds globally in the future
* aUf - aholds until holds

institute for Carnegie Mellon University
I S SOFTWARE

RESEARCH

School of Computer Science

The Logic CTL

In a branching-time logic (CTL), the temporal operators quantify over the paths that
are possible from a given state (sg). Requires each temporal operator (X, F, G, and
U) to be preceded by a path quantifier (A or E).

M,s, FAG ¢

N

M,s, F EF ¢ M,s, EEG ¢

60

Remember the Example

Carnegie Mellon University
School of Computer Science

oeminsaring e LINEAC VS, Branching Time

(turn—Op 1=10,pc2= 20)

A computation tree
View (turn=0,pc:1=10,pc2=20)

- GUEO-GU-GY-Eo-GGY

Example/Typical CTL Formulas

« EF (Started A —Read)y). it is possible to get to a state where Started holds
but RFeady does not hold.

« AG (Reqg = AF Ack). whenever Reqguest occurs, it will be eventually
Acknowledged.

» AG (DeviceEnabled): DeviceEnabled always holds on every
computation path.

* AG (EF Restart). from any state it is possible to get to the Restart state.

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

() p does not hold
@ p holds

At state s:
EF p, EX (EX p),
AF (—lp), —p holds

AF p, AG p,
EG p, p does not hold

CTL Examples

S

At state s:

EF p, AF p,

EX (EX p),

EX p, EG p, p holds

AG p, AG (—p),
AF (—p) does not hold

S

At state s:

EF p, AF p,

AG p, EG p,

Ex p, AX p, p holds

EG (- p), EF (—p),
does not hold

Trivia

* AG(EF p) cannot be expressed in
LTL

o Reset property: from every state it is
possible to getto p

= But there might be paths where you
never gettop

o Different from A(GF p)

= Along each possible path, for each
state in the path, there is a future
state where p holds

= Counterexample: ababab...

institute for Carnegie Mellon University
SOFTWARE .
School of Computer Science

RESEARCH

Trivia

« A(FG p) cannot be expressed in
CTL

o Alonﬁ all paths, one eventually
reaches a point where p always .
holds from then on y

= But at some points in some paths
where p always holds, there might
be a diverging path where p does

not hold
o Different from AF(AG p) > S2
= Along each possible path there b ’@
exist% a statg such th%t p always \>

holds from then on

= Counterexample: the path that
stays in sO

institute for Carnegie Mellon University
SOFTWARE .
RESEARCH School of Computer Science

Linear vs Branching-Time logics

e LTL is a linear time logic: when determining if a path satisfies an
LTL formula we are only concerned with a single path

e CTLis a branching time logic: when determining if a state
satisfies a CTL formula we are concerned with multiple paths

e The computation is viewed as a tree which contains all the paths
« The computation tree is obtained by unrolling the transition relation

e The expressive powers of CTL and LTL are incomparable (LTL C

CTL*, CTL C CTL¥%)
e Basic temporal properties can be expressed in both logics
e Not in this lecture, sorry! (Take a class on Modal Logics)

. L . .
institute for Carnegie Mellon University

SOFTWARE .
RESEARCH School of Computer Science

Linear vs Branching-Time logics

Some advantages of LTL

» LTL properties are preserved under
“abstraction”: i.e.,if M

“approximates” a more complex

model M’, by introducing more

paths, then
c MEy= MFEFy
» “counterexamples” for LTL are

simpler: single executions (not trees).

» The automata-theoretic approach to
LTL model checking is simpler (no
tree automata).

* most properties people are
|tnterested in are (anecdotally) linear-

ime.

Carnegie Mellon University
SOFTWARE

Some advantages of BT

BT allows expression of some useful
properties like ‘reset’.

CTL, a limited fragment of the more
complete BT logic CTL*, can be model
checked in time linear in the formula
size (as well as in the transition
system).

« But formulas are usually smaller than
models, so this isn't as important as it
may first seem.

Some BT logics, like y-calculus and

CTL, are well-suited for the kind of

fixed-point computation scheme

used in symbolic model checking.

institute for ‘

RESEARCH School of Computer Science

Software Model Checking?

Use a finite state programmin Ian%uage, like executable design
specifications (Statecharts, xUML, etc.).

Extract finite state machines from programs written in conventional
programming languages
Unroll the state machine obtained from the executable of the program.

Use a combination of the state space reduction techniques to avoid
generating too many states.

Verisoft (Bell Labs)

FormalCheck/xUML (UT Austin, Bell Labs)

ComFoRT (CMU/SEI)
Use static ana/)/sis to extract a finite state skeleton from a program, model
check the resuft.

Bandera - Kansas State

Java PathFinder - NASA Ames

SLAM/Bebop - Microsoft

SOFTWARE
RESEARCH

institute for ‘ Carnegie Mellon University

School of Computer Science

